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XI

Life is governed by a relatively small number of chemical reactions that exploit a
limited variety of simple concepts. However, their combination has led to an
amazing chemical diversity which is still beyond the reach of the organic chemist,
even in the most complex supramolecular systems, despite a huge set of synthetic
methods. Among these basic processes and reactions, cis-trans isomerization
(CTI) is undoubtedly one of the finest ways to tune the physical and chemical
properties of biomolecules and hence to control their biological activities. More-
over, CTI of simple molecules generates molecular diversity in the form of geo-
metric isomers with particular structures and properties.
Surprisingly, chemists were rather slow to study CTI, and it is only fairly

recently that it has been taken into account in attempts to understand biological
processes at the molecular level. The Swiss chemist Alfred Berthoud first investi-
gated the light-driven CTI of alkenes and proposed a radical mechanism that
accounted for the reversibility of the phenomenon, a theory which is still taught
today.
Since the first attempts to understand CTI in simple molecular systems, a huge

amount of work has been done to investigate CTI processes in biology, such as
chromophore isomerization in chromoproteins. The finding that CTI concerns
not only double bonds but also pseudo double bonds and restrained single bonds
has led to extensive study of protein folding, modulation of the activity of peptides
and proteins, and the construction of sophisticated supramolecular structures.
CTI was also found to be implicated in the organization of metal complexes and
supramolecular systems, though the mechanisms are basically different from
those proposed for CTI of organic molecules.
The study of CTI has given rise to a large number of publications, which are the

fruit of active collaborations between scientific teams whose expertise ranges
from in silico quantum molecular mechanics to medicine. For these reasons, CTI
processes concern not only chemists and biochemists, but also physicists and phy-
sicians.
Over the past 20 years there have been considerable changes in the way we con-

sider CTI. In view of the results obtained in chemistry and biochemistry, CTI
appears to be much more than a simple tuning of the properties of the molecule
itself, and important remote effects have been highlighted. It is now obvious that
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the inversion about either a double bond or a restrained single bond generates
extensive changes in molecular size and shape, and in stereoelectronic properties,
all of which function cooperatively. This has considerable consequences for the
behavior of larger molecular systems such as membranes and proteins, and is sus-
pected to be a particular way of storing potential energy usable not only for chem-
ical reactions but also for macroscopic movement.
Light-driven CTI also plays a central role in the transduction of light into a

chemical signal and so is the starting point of light perception in primitive organ-
isms and in the vision of more complex organisms. CTI has also emerged as the
basic concept underpinning holographic information storage of extraordinary ca-
pacity and resolution. However, we should never forget that billions of years
before chemists utilized CTI to tune gel–sol phase transitions, nature used this
simple reaction to modulate membrane permeability to enable adaptive responses
to stress and environmental change.
Beyond protein folding, the discovery of peptidyl prolyl isomerases (PPIases)

and related proteins has opened the way to novel concepts in biology: the notion
of chaperone-assisted receptor binding is an emerging field of research which
sheds light on receptor function and protein–protein interactions. The recent dis-
covery of a secondary amide peptide bond cis-trans isomerase (APIase) heralds
new advances in this field.
Recently, the French Nobel prizewinner Jean-Marie Lehn proposed the use of

CTI as a source of molecular diversity in dynamic combinatorial chemistry. The
prospect of using a dynamic fully reversible process such as CTI for the evolution-
ary selection of ligands is extremely attractive and should lead to fundamental
advances in this field of research.
Althought this book will not tackle the technological uses of CTI nor its applica-

tion in supramolecular chemistry, the impressive advances in the development of
molecular devices that produce a microscopic motion as well as a macroscopic
movement must be cited herein.
Progress in the study of CTI should lead not only to better understanding of

one of the main molecular bases of life, but also to the development of fascinating
tools for studying biomolecules. These main lines of research are not incompati-
ble, since one talks of supramolecular systems able to release bioactive molecules
at the right place through a controlled CTI process. I am confident that work on
CTI will yield important applications beneficial to humankind, and I sincerely
hope that this book, which collates most of the recent data on CTI in biology,
organic and inorganic chemistry, will help scientists to work with this aim in
mind.

Saclay, January 6th 2006 Christophe Dugave
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1
Nomenclature
Christophe Dugave

Molecules in which free rotation around one or more bonds is restricted may exist
as distinct stable rotamers in proportions that depend on the free enthalpy differ-
ence DG� of each rotamer. They can interconvert provided the intrinsic rotational
barrier DG‡ is not too high (Fig. 1.1). In the simplest case, there are two marked
energy minima separated by energy barriers to rotation, which often implies
either the effective breaking of a chemical bond (i.e. C=C photoisomerization in
ethylene derivatives) or a disruption of conjugation (i.e. isomerization of a Y–C=X
system, X and Y being heteroatoms). Therefore, there are only two geometrical
isomers for one given system and theoretically 2n possible isomers for a molecule
that contains n isomerizable systems (e.g. retinal).

Fig. 1.1 Schematic representation of general cis-trans isomer-
ism of a double bond.



Fig. 1.2 General Z/E nomenclature for the description of
geometrical isomers in p-systems.

The first proposed nomenclature suggested that isomers should be called cis
when W and Y are on the same side of the double bond and trans when they are
on the opposite side (Fig. 1.2), provided W „ X and Y „ Z. However, this nomen-
clature was limited to the particular case where W and Y are identical. The more
recent nomenclature of Cahn–Ingold–Prelog, based on the German Zusammen
(Z) and Entgegen (E) notation, was extended to systems where W and Y are differ-
ent substituents (Fig. 1.2). There is no direct relation between the two nomencla-
tures since they depend on the nature of substituents; and so the Z isomer is not
necessarily cis. Moreover, the order of priority is determined by the atomic num-
ber of each atom connected to the C=C double bond [1]. Although the E/Z nomen-
clature may also be applied to compounds B/B¢ and C/C¢, these are considered as
conformational isomers, whereas compounds A/A¢ are configurational isomers.
Z/E isomerism is not limited to true double bonds and may be used when sp2

electrons of a heteroatom are conjugated with a p-system to form a planar pseudo
double bond. In particular, in the case of amides, the cis isomer is called E. Al-
though the general tendency now is to use the E/Z nomenclature in chemistry,
despite their inaccuracy cis and trans are still utilized by biochemists because they
give a more readily understandable description of molecular shape, in particular
for amides in peptides and proteins. When the chains are connected through a
motif containing more than three dihedral angles (i.e. carbamates), the syn–anti

1 Nomenclature2

Fig. 1.3 Usual nomenclature for geometric isomers of esters,
amides, carbamates, and ureas (t: trans, c: cis).



and cis–trans nomenclatures are usually applied since they refer to the relative
position of substituents (Fig. 1.3).
Cis-trans isomerism may also occur with true single bonds. In fact, preferred

conformational minima for x = 180� (anti) and – 60� (gauche) are usually found
in alkanes (Fig. 1.4A). However, in severely crowded compounds, backbone
valence angles are smaller than tetrahedral and therefore the Prelog–Klyne
nomenclature is the standard (Fig. 1.4B) [2]. However, this notation is unhelpful
for energy minima for x of about 90 and 150�, a situation which is common for
SinX2n+2 polysilanes and which has resulted in a proliferation of nonstandard
symbols and notations. Recently, Michl and West have suggested the use of new
labels that account for particular conformations found in polymers, disulfides,
etc. (Fig. 1.4C). They also recommend specifying the positive or negative sense
(right or left) since these conformers are chiral. This notation also accounts for
strongly deformed p-systems with the syn (x » 0�) and anti (x » 180�) configura-
tions [3].

Fig. 1.4 Proposed labels for favored dihedral angles in the
Cahn–Ingold–Prelog (A), Prelog–Klyne (B), and Michl–West
(C) nomenclatures.

Metal complexes display a wide variety of coordination geometries that permit
the existence of several geometric isomers. The situation is rather more compli-
cated thanwith organic molecules since the three-dimensional arrangement of
coordinates around the metal core leads to the multiplication of possible diastereo-
mers. The cis/trans notation is usually employed but this nomenclature is based on a
spatial reference: “cis” means “adjacent” while “trans” means “opposite” (Fig. 1.5)
[4].

31 Nomenclature



1 Nomenclature

Fig. 1.5 Possible geometric isomerism around a metal core
in a square planar (A) and two octahedral complexes (B, C).

The number of possible diastereomers depends on the variety of ligands and
sometimes requires use of the one-letter code (cis/trans is noted c/t). This nomen-
clature may be applied to square planar complexes and to square planar pyramidal
and octahedral complexes, but not to tetrahedral complexes where a given posi-
tion is equivalent to any other. Moreover, geometric isomerism often implies the
existence of optical isomerism.
The new labels fac and mer were introduced to reflect the relative position of

three identical ligands around the octahedral structure. Thus, placing the three
groups on one face of the octahedron gives rise to the facial isomer, and placing
the three groups around the center gives rise to the meridional isomer (Fig. 1.6).
When there are only two different ligands, the cis/trans and fac/mer nomenclature
may be mixed in order to describe the complex geometry unambiguously [4].

Fig. 1.6 Fac andmer isomers in octahedral metal complexes.

Syn/anti nomenclature is mainly employed for octahedral complexes when geo-
metric isomerism arises from the presence of a fused ring. Therefore, the syn iso-
mer has adjacent fused rings whereas the anti isomer has opposite fused rings [5].
In summary, molecular variety leads to a multiplicity of stereoisomerisms,

which in turn has given rise to several specific nomenclatures. These will be uti-
lized throughout this handbook with the overriding purpose of clarity, rather than
strict accuracy.

4
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2
General Mechanisms of Cis-Trans Isomerization: A Rapid Survey
Christophe Dugave

2.1
Introduction

A database search yields more than 20 000 references that contain “Z–E isomeri-
zation,” “cis-trans isomerization,” or “geometric isomerization” as keywords, and
the general tendency is an increase in the number of papers devoted to the kinetic
aspects of cis-trans isomerization (CTI) in all fields. The main isomerization path-
ways have probably been discovered, though many remain the object of intense
theoretical (see Chapter 7) and experimental research (see Chapters 4–6, 8–10, 13,
and 14). In the present chapter, general CTI mechanisms will be divided into
homolytic and heterolytic cleavage of the p-bond which allows isomerization,
though some molecular motifs such as amides are able to switch from cis to trans
via both processes. An overview of CTI in metal complex (mainly thermal, photo-
chemical, and oxidative isomerizations) will be the purpose of Chapter 14 and will
not be detailed here.

2.2
Homolytic Cis-Trans Isomerization

Since the elucidation of the photoisomerization of alkenes in 1928, numerous
CTI pathways have been proposed. In fact, many unsaturated compounds may
isomerize via different pathways depending on the conditions. For example, poly-
enes may photoisomerize via either the p,p* singlet or triplet excited states and
also via photosensitization by singlet–singlet and triplet–triplet intersystem cross-
ing [1] via a perpendicular radical transition state that accounts for the formation
of the least stable Z isomer [2]. CTI of olefine and polyene systems has been thor-
oughly investigated using a wide variety of models including stilbenes and stil-
bene analogs, retinal derivatives and carotenoids, etc., as well as simple cycloalk-
enes (Fig. 2.1) [3], leading to the parallel emergence of novel theories and power-
ful techniques to probe the behavior of molecular systems in the 10–14 to 10–11 s
range, such as femtosecond laser spectroscopy [4] (see Chapter 4).



Fig. 2.1 Some model compounds used for studying photo-
isomerization processes: Z-1,2-bis-a-naphthylethylene 1,
retinal 2, b-carotene 3, cyclooctene 4.

However, there are many other CTI pathways for the simple polyenes: aborted
heterogeneous hydrogenation, radical reactions initiated by radical generators
including photosensitization by ketones [5] and paramagnetic molecules (e.g. oxy-
gen, atomic bromine and iodine, nitrogen oxide) and heat [6,7]. Recently, a new
mechanism for the iodine/light-catalyzed CTI of stilbene has been proposed and
seems to imply the formation of a complex between iodine and the alkene that
leads to a single radical adduct [8]. A similar process was proposed for the
thiyl radical-mediated CTI of polyenes [9]. A relevant example is retinal, which
may isomerize experimentally through many of these distinct pathways. More-
over, many pathways play an important part in the CTI of polyenes in vivo where
they have a central role in vision, metabolism, and accidental alteration of biomol-
ecules, in particular phospholipids (Fig. 2.2).

Fig. 2.2 Possible mechanisms of cis-trans (Z-E) isomerization
of olefins and related compounds via heterolytic cleavage of
the C=C bond: photoisomerization (path A).
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As a general rule, the more the molecule is conjugated, the lower the energy
barrier to isomerization. While nonconjugated alkenes require typically 97–
164 kcal mol–1 to isomerize via the lowest triplet state and the p,p* singlet state,
respectively, the calculated energy barrier to CTI of retinal Schiff bases lies be-
tween 23 and 60.6 kcal mol–1 depending on the C=C bond and the protonation
state of the imine [10]. It is well known that cis-polyacetylene isomerizes to the all-
trans compound upon heating to 150 �C. In the same way, diarylazo compounds
require less energy to isomerize from trans to cis than stilbene derivatives, reflect-
ing the optimal wavelength needed to induce CTI, for example kmax = 319 nm for
azobenzene and kmax = 294 nm for stilbene.
Z-E isomerization via simple geometric inversion (one-bond flip, OBF, Fig.

2.3A) involves the torsional relaxation of the perpendicular excited state via an
adiabatic mechanism which implies a non-volume-conserving process. This is not
compatible with the ultrafast CTI in polyenes, in particular retinyl chromophores,
and two other possible ways of photo-CTI have been proposed over the past
15 years [11].
The hula twist mechanism (HT, Fig. 2.3B), first validated with carotenoids, is

not consistent with the time-scale of photoisomerization of chromoproteins since
CTI of the retinal chromophore, which is inserted deep inside the protein, neces-
sitates a major reorganization of the peptide molecular framework. Therefore, a
new volume-conserving mechanism, called bicyclic pedal (BP, Fig. 2.3C), was pro-
posed. In fact, all these mechanisms are still a topic of discussion since chromo-
protein photo-intermediates highlighted by recent studies do not confirm this
hypothesis. In particular, several photo-products of the retinal Schiff base in the

92.2 Homolytic Cis-Trans Isomerization

Fig. 2.3 Three possible pathways for the photo-CTI of
polyenes: (A) one-bond flip (OBF); (B) hula twist (HT);
(C) bicyclic pedal (BP).
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rhodopsin protein family display a slightly constrained structure which is not tak-
en into account by such theories.
In many cases, the CTI process competes with rearrangements and cyclizations

that occur during the radiationless transition. Z-Stilbene is well known to give
dihydrophenanthrene as a photoproduct along with E-stilbene (Fig. 2.4A). Revers-
ible photocyclization is even the dominant reaction in fulgide [12] and merocya-
nine [13] systems [3] (Fig. 2.4B,C).

Fig. 2.4 Photoisomerization of E-stilbene gives a mixture of
Z-stilbene and dihydrophenantrene (A), whereas mero-
cyanines isomerize directly to the enantiomeric spiropyran
forms (B) and E-fulgides transform into the corresponding
cyclic adduct.

2.3
Heterolytic Cis-Trans Isomerization

Although diazene compounds undergo photoisomerization in a similar way to
alkenes [14,15], they also interconvert from Z to E and E to Z via simple doublet
inversion (Fig. 2.5 path d), as also observed with other nitrogen-containing com-
pounds such as nitroso derivatives. Moreover, the ultrafast isomerization of azo-
sulfides implies a cleavage/recombination mechanism though radical anion cleav-
age seems to operate in the Z isomer exclusively, preventing isomerization from Z
to E [16].
CTI driven by conjugation transfer (including deconjugation and tautomeric

effects) gives rise to a wide range of mechanisms that may explain isomerization
of many molecular motifs such as push–pull olefins, acrylates, imines and enam-
ines, amides, and related compounds. Push–pull olefins, which are substituted by
electron-donating and electron-withdrawing groups simultaneously, can isomer-

10



2.3 Heterolytic Cis-Trans Isomerization

ize spontaneously by simple transfer of conjugation which decreases the double
bond character of C=C (Fig. 2.5 path e). The tautomeric effect in the enol/ketone
and enamine/imine equilibria plays a similar role, since electron delocalization is
disrupted by a change in polarity (Fig. 2.5 path f) [3].

Fig. 2.5 Possible mechanisms for CTI via the heterolytic
disruption of the conjugation of double bonds and pseudo
double bonds (radical cleavage/recombination pathway was
omitted there since it is not a true CTI process).
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Several exogenous entities may also facilitate a cis-trans interconversion. Lewis
acids and transition metals may disrupt conjugation by simply “hijacking” the
p-electrons (Fig. 2.3 path g). Transition metal p-bases also operate via an insertion
inside a triangular intermediate (path h) [17]. Brønstedt acids (path i) and nucleo-
philes (path j) can also facilitate CTI via the formation of a tetrahedral intermedi-
ate. Amide and analogous compounds are undoubtedly the most versatile com-
pounds in terms of possible mechanisms of CTI since most of the proposed path-
ways, including radical mechanisms, may account for the experimental results.
This probably reflects the very low energy barrier (typically 5–30 kcal mol–1) to
CTI. In peptides and proteins, amide CTI seems to occurs via a simple disruption
of the double-bond character (path k) putatively through the creation of either
intra- or intermolecular H-bonds [3,18]. The geometric deviation from double-
bond planarity helps to lower the energy barrier to isomerization and also plays
an important role in energy storage, as observed with photointermediates of chro-
moproteins.
Rotation around hindered or retrained single bonds usually implies that the

molecule reaches the energy barrier that restricts interconversion from one con-
former to another. In general terms, steric hindrance is the main limitation and
heating is then sufficient to cross the barrier, although additional interactions
such as H-bonds, stereoelectronic effects and ionic interactions may either ham-
per or facilitate the rotation.
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