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Foreword

Mutations with an effect on coat color or behavior were recorded by mouse fanciers
well before the science of Genetics was established. They were curiosities, occur-
ring by chance at very low frequency, and their main advantage was to make the
mouse an even more interesting pet animal with many phenotypic variations that
could be produced in different combinations by breeding.

Over the last century, mouse geneticists, especially the most sagacious, collated
and studied a great variety of mutations, many of them exhibiting neuromuscular,
eye or skeletal defects and abnormal fur or coat colors. These mutations were dis-
covered either spontaneously, in the nucleus of inbred strains, or as side-products
of the many experiments that were undertaken to assess the genetic risks as-
sociated with the use of nuclear radiations. All have been extremely helpful, con-
tributing for example, to the development of the genetic map. A few of these
mutants have also been used as animal models for human diseases while others,
such as the nude or SCID mice, which can both permanently accept a variety of
grafts including xenografts, were and still are used as tools for research in im-
munology or oncology.

More recently, by taking advantage of the exceptional mutagenic activity of ethyl-
nitroso-urea, programs aimed at the mass-production of new mutations have been
undertaken in several laboratories worldwide. With such on-going programs, muta-
tions are no longer rare events occurring spontaneously, but random hits still occur
in the mouse genome. Their phenotypes can be studied in great detail but the
characterization of the molecular defect will necessarily follow (forward genetics).

With the development of highly efficient techniques of genetic engineering in
pluripotent embryonal stem cells (ES cells) and the availability of a nearly complete
sequence of the mouse genome, the situation has changed dramatically. Here again,
large projects involving a network of laboratories have been undertaken with the
aim of producing a very large number of knockout mutations, ideally one in every
gene of the mouse genome, and it is likely that these projects will reach their goal
within the next five years. Geneticists will then have at their disposal a collection of
ES cell libraries, with up to 20,000 genes potentially inactivated. Any genetic defect
can then be accurately identified but the main problem will then be to describe the
phenotype of the mutant mice as precisely and comprehensively as possible.

The reason for developing such projects is quite clear: producing many muta-
tions and phenotyping them very precisely is the best and most logical way of as-
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sessing the function of the genes in the mouse genome. Indeed, when a gene be-
comes non-functional after a mutation has occurred, careful comparison of the
mutant and normal phenotype in addition to taking into account the molecular de-
fect generated by the mutational event, is an excellent (not to say the best) method
of assessing the function(s) of the gene in question. In short, the production of new
mutations and the precise phenotyping of the mutant genotype are the two sides of
the same coin.

Geneticists have worked out many strategies for the efficient production of new
mutations in the mouse genome using either chemical mutagenesis or gene trap-
ping or gene targeting but until recently phenotyping was not their main concern
and as a result has received less attention. In other words, whilst it was technically
possible to inactivate almost any gene in the mouse genome, there was limited
scientific interest in the subsequent analysis of the resulting phenotype as the rele-
vance of any data thus obtained was thought to be questionable. Indeed, many
knockouts produced over the last 10 years in genes which were thought to be ex-
tremely important, were reported to be phenotypically “normal” to the great sur-
prise of their creators!

There is a wide range of difficulties associated with the process of phenotyping.
Although it is easy to detect and describe a cerebellar defect in the mouse or a dis-
order which leads to the animal losing its fur after a few days, it is more difficult to
detect an inner ear defect with a relatively late onset or a very subtle degenerative
disorder of the retina and it is virtually impossible to detect the phenotype of certain
mutations in genes involved in the innate mechanisms of defense unless a specific
challenge test is carried out to reveal the mutation. The situation is even more com-
plex when modifier genes in the genetic background interact with the pathology of
the mutant allele.

This book, edited by Professor Martin M. Hrabe de Angelis in cooperation with
Steve Brown and Pierre Chambon, is original and the timing of its publication is
opportune. It consists of 13 chapters, all written by expert scientists who are mem-
bers of the EUMORPHIA consortium and work in different research institutes
across Europe. This volume describes in detail a series of screens known as
EMPReSS (European Mouse Phenotyping Resource for Standardized Screens) that
encompass more than 150 standard operating procedures (SOPs) covering all the
main body systems of the mouse.

This book will definitely be of major interest to those creating or using a variety of
mutant mice and the authors must be warmly thanked for this initiative.

April 2006 Jean Louis Guénet

Foreword
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Preface

The speed with which information regarding mammalian genomes has accumu-
lated over the last few years is remarkable. Yet, despite this wealth of information,
its immediate use in the diagnosis and therapy of human diseases is limited since
only a small fraction of mutations causing congenital malformations or other
human diseases has been identified.

Animal models are essential to the understanding of the genetics and pathogene-
sis of human diseases. The mouse is intensively used as a model system because of
its similarity to humans in genome organization, development, biochemical path-
ways, and physiology. Mouse models have been the key to unraveling several fun-
damental scientific findings which are important for understanding the molecular
mechanisms underlying human diseases in addition to the development and testing
of drugs and therapies. Specific advantages of the mouse as a model system include:
� The genome is 90 % identical to the human genome.
� It is possible to alter the genome in the mouse using gene-driven and phenotype-

driven approaches and to produce models of human diseases, including genetic
diseases.

� Alteration of the mouse genome may also produce changes in the normal
functioning of organs, systems, and behavior, giving insight into the mecha-
nisms behind their normal function and possible treatments for malfunction.

� The mouse model is used for drug screening and testing of therapies, including
gene delivery and gene therapy.

The bottleneck in the process of establishing suitable mouse models is quite often
appropriate phenotyping. From my own experience as a postdoctoral fellow, pheno-
typic analysis of “my” mouse mutants were focused on very specific organ systems
and their function.

This strategy was successful and unraveled several important functional aspects
of genes but at the same time I was not able to detect additional phenotypic altera-
tions in the very same mouse model. These additional alterations were caused by
the pleiotropic effect of the gene of interest. I simply missed additional alterations
because I did not look for them or because of the lack of equipment and experience
in specific methods used in other areas of research.

Triggered by this experience and the expertise in phenotype-driven forward
genetics screens the idea of the German Mouse Clinic was born. The German



XVIII

Mouse Clinic is a unique platform for the comprehensive standardized pheno-
typing of mouse lines. Fourteen laboratories specializing in different areas of
research, work under one roof and measure over 240 parameters in every mouse
line and as a result many new findings have emerged. For almost all lines, includ-
ing well-known mutant mouse lines, new phenotypes have been identified. This
confirms the power and feasibility of standardized comprehensive phenotyping.

The German Mouse Clinic works in close collaboration with pan-European pro-
jects such as EUMORPHIA and EUMODIC. Together with my colleagues Steve
Brown and Pierre Chambon we were able to bring together experts in the field of
mouse functional genomics to assemble a book that presents a wide set of stan-
dardized phenotyping assays in 13 research fields.

This book should be seen as a starting point rather than as an end-product since
mouse phenotyping will be developed further over the coming years and additional
chapters and research fields such as “genome−environment interaction” might be
added in future editions.

Implementation of the “German Mouse Clinic” led to a unique platform for com-
prehensive phenotyping. Baselines for more than 240 parameters have been estab-
lished, and “Proof of Principle” has been shown in several mouse lines; for
example, through the GMC an additional severe metabolic disorder was demon-
strated in the mouse line ABE17 which was previously known only as a neurologi-
cal model for prion disease. Comprehensive phenotyping was essential in the dis-
covery of this additional feature, which will impact upon the interpretation of af-
fected pathways. Japan, the USA, and other countries in Europe are implementing
organizations similar to the GMC, underlining the need for these enterprises. The
realization of the GMC was only possible with substantial financial support from
the NGFN and the GSF. The GMC has already produced important scientific
results through the isolation and characterization of various mouse models. In the
lung function screen, we have built a unique database of reference values regarding
the phenotypic variance of respiratory function in inbred mouse strains. We have
been able to detect strong inter-strain variance (e. g. a factor of 3 for lung compli-
ance), and a high genetic-to-total variance suggests a significant genetic contribu-
tion to phenotypic variability. Mouse strains with an obviously unfavorable lung
function, which should be prone to lung diseases, may serve as ideal animal
models.

However, the phenotypic analysis of mouse mutants is often focused on the in-
dividual research interests of the particular laboratory or limited to specific tests be-
cause of the lack of equipment and experience of specific methods in other research
areas.

In order to take better advantage of the existing mutant mouse lines and to pro-
vide the scientific community with a platform for systematic, standardized, and
comprehensive phenotyping of mouse models, we have established the German
Mouse Clinic (GMC) at the GSF in Munich. We have brought together experts from
different institutions (Universities of Bonn, Marburg, Munich (TU and LMU),
GBF) to work side by side in one building. Within NGFN 1, the coordinating team
of the GMC and the GMC staff built up the German Mouse Clinic in a concerted
effort (the set-up of the laboratories, establishment of a unique and comprehensive

Preface
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primary screen, standardization of methods, etc). Because the GMC is unique in its
concept and organization, it sets standards for SOPs and comprehensive analysis of
mouse models. The phenotyping platform covers the research areas of dysmor-
phology, behavior, neurology, ophthalmology, clinical chemistry, immunology,
allergy, nociception, molecular phenotyping, lung function, energy metabolism,
and pathology and is well equipped with the newest technologies (e. g. microcom-
puter tomography, blood auto-analyzer). We offer phenotypic analysis on the basis
of scientific collaboration and have the facilities to house guest scientists in dedi-
cated guest laboratories.

Neuherberg, April 2006 Martin Hrabé de Angelis

Preface
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1

Characterizing Hearing in Mice

Karen P. Steel

1.1

Introduction

Hearing impairment is very common in humans. One child in 1000 is born with a
significant hearing impairment, and another one in 1000 develops progressive
hearing loss during the first few years of life [1]. Age-related progressive hearing
loss affects large numbers of people, and by the age of 70 years, more than half of
the UK population has a 25-dB or greater hearing impairment, sufficient to benefit
from wearing a hearing aid [2]. Hearing impairment often causes serious com-
munication problems in sufferers, with much resulting social and economic isola-
tion from the rest of the community.

Deafness is a very heterogeneous disorder, with a wide range of causes. This
makes it difficult to study directly in humans. Many different genes are known to be
involved in deafness. For example, for non-syndromic human deafness, over 80 loci
have been defined and 30 genes identified [3], and Online Mendelian Inheritance in
Man lists over 400 distinct syndromes including deafness as a feature. In most
clinical collections reported, GJB2 mutations are a major contributor (for example,
associated with 33 % of severe or profound familial childhood deafness in the UK,
[4]), but the vast majority of other cases, including most later-onset progressive
hearing loss cases, have no molecular diagnosis. There are probably several
hundred genes involved in deafness in humans, any one of which can be mutated
and cause deafness in an individual. Mouse mutations are available for a relatively
small proportion of these genes. Around 200 mouse mutants with some sort of
auditory system defect have been described [5, 6] but despite the rapid progress in
identifying genes underlying deafness over the past few years, many deafness
genes have not yet been identified in mouse or human. More mouse mutants with
hearing or balance defects will give us access to more of the molecules critical for
normal hearing, as well as more candidate genes for deafness in humans.

In addition to single-gene causes of deafness, minor variations in multiple differ-
ent genes (genetic background) can also interact to make a person more or less
likely to develop hearing loss as they get older, and twin, sib and family studies have
demonstrated a range of heritabilities up to around 0.5 for age-related hearing loss
[7−9]. Noise, drugs and infections can all contribute to hearing impairment, but
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these will interact with the particular gene variants carried by an individual to in-
fluence the degree of damage. For example, the A1555G mutation of the human
mitochondrial genome makes carriers highly susceptible to ototoxic drug-induced
deafness [10], and there are several mouse mutations that predispose the carriers to
noise-induced hearing loss [11−14]. Genetics is therefore an important factor in
hearing impairment.

Mice are excellent models for human deafness. The structure and function of the
auditory system is very similar in the two species. The range of pathological fea-
tures observed in deaf mice appears to be very similar to the pathology in human
deafness, although it is inevitably much more difficult to investigate the develop-
ment of the pathology in humans than it is in an animal model like the mouse. Not
surprisingly, the same genes appear to underlie deafness in the two species. There
are many examples where the mouse deafness gene has been identified by posi-
tional cloning and this has led very rapidly to the finding of mutations in the or-
thologous human gene in people with inherited deafness. Similarly, genes found to
be involved in human deafness often give essentially the same phenotype when
mutated in the mouse. Comparisons of mouse and human genes involved in deaf-
ness are given in a useful website edited by Zheng and Johnson [6].

Sensory deficits are often difficult to detect in a mutant mouse, yet are of obvious
importance in human disease as well as influencing behavioral phenotypes of
newly-created mutant mice. Complete deafness (for example deafness, Tmc1dn),
rapidly progressive blindness (for example retinal degeneration, Pde6brd) or specific
anosmias can go undetected for generations because of the lack of overt signs that
are obvious to those handling the mice. Many standard inbred strains carry muta-
tions causing sensory defects, complicating assessment of new mutations created
on these backgrounds. For example, Pde6brd is carried in C3H strains, C57BL mice
show a specific inability to detect the smell of isovaleric acid, and many inbred
strains such as C57BL and DBA carry mutations contributing to progressive hear-
ing loss [15−18]. In this chapter, I focus on ways of characterizing the hearing ability
of mouse mutants, including simple screening methods. This is not intended to be
a comprehensive catalog of all the ways that the auditory system could be studied,
but simply highlights the major approaches that might be considered.

1.2

Behavioral Tests of Hearing

Although there have been a few reports of conditioned behavioral tests for hearing,
mice are very difficult to train, and tests like these reflect other features in addition
to sensory function. However, a simple test for hearing is to elicit a Preyer reflex.
This is a flick backwards of the pinna upon hearing a sharp sound, and in young
mice with very good hearing, this is sometimes part of a startle response in which
the whole body of the mouse jumps. The mice often stay still for a second after the
first exposure, but with repeated exposures, they usually stop responding. The
Preyer reflex is a suprathreshold response, not an indication of normal thresholds,
so it can be used to pick out non-responding mice that have a severe or profound

1 Characterizing Hearing in Mice


