

Fragment-based Approaches in Drug Discovery

Edited by
Wolfgang Jahnke and Daniel A. Erlanson

WILEY-VCH Verlag GmbH & Co. KGaA

**Fragment-based Approaches
in Drug Discovery**

Edited by
Wolfgang Jahnke and
Daniel A. Erlanson

Methods and Principles in Medicinal Chemistry

Edited by R. Mannhold, H. Kubinyi, G. Folkers

Editorial Board

H.-D. Höltje, H. Timmerman, J. Vacca, H. van de Waterbeemd, T. Wieland

Previous Volumes of this Series:

R. Seifert, T. Wieland (eds.)

G-Protein Coupled Receptors as Drug Targets

Vol. 24

2005, ISBN 3-527-30819-9

O. Kappe, A. Stadler

Microwaves in Organic and Medicinal Chemistry

Vol. 25

2005, ISBN 3-527-31210-2

W. Bannwarth, B. Hinzen (eds.)

Combinatorial Chemistry

Vol. 26, 2nd Ed.

2005, ISBN 3-527-30693-5

G. Cruciani (ed.)

Molecular Interaction Fields

Vol. 27

2005, ISBN 3-527-31087-8

M. Hamacher, K. Marcus, K. Stühler, A. van Hall, B. Warscheid, H. E. Meyer (eds.)

Proteomics in Drug Design

Vol. 28

2005, ISBN 3-527-31226-9

D. Triggle, M. Gopalakrishnan, D. Rampe, W. Zheng (eds.)

Voltage-Gated Ion Channels as Drug Targets

Vol. 29

2006, ISBN 3-527-31258-7

D. Rognan (ed.)

Ligand Design for G Protein-coupled Receptors

Vol. 30

2006, ISBN 3-527-31284-6

D. A. Smith, H. van de Waterbeemd, D. K. Walker

Pharmacokinetics and Metabolism in Drug Research

Vol. 31, 2nd Ed.

2006, ISBN 3-527-31368-0

T. Langer, R. D. Hofmann (eds.)

Pharmacophores and Pharmacophore Searches

Vol. 32

2006, ISBN 3-527-31250-1

E.R. Francotte, W. Lindner (eds.)

Chirality in Drug Research

Vol. 33

2006, ISBN 3-527-31076-2

Fragment-based Approaches in Drug Discovery

Edited by
Wolfgang Jahnke and Daniel A. Erlanson

WILEY-VCH Verlag GmbH & Co. KGaA

Series Editors

Prof. Dr. Raimund Mannhold

Molecular Drug Research Group
Heinrich-Heine-Universität
Universitätsstrasse 1
40225 Düsseldorf
Germany
Raimund.mannhold@uni-duesseldorf.de

Prof. Dr. Hugo Kubinyi

Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Prof. Dr. Gerd Folkers

Collegium Helveticum
STW/ETH Zürich
8092 Zürich
Switzerland
folkers@collegium.ethz.ch

Volume Editors

Dr. Wolfgang Jahnke

Novartis Institutes for Biomedical Research
Novartis Pharma AG
Lichtstrasse
4002 Basel
Switzerland
wolfgang.jahnke@novartis.com

Dr. Daniel A. Erlanson

Sunesis Pharmaceuticals, Inc.
341 Oyster Point Boulevard
South San Francisco, CA 94080
USA
erlanson@sunesis.com

■ All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data:

A catalogue record for this book is available from the British Library

Bibliographic information published by

Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Cover SCHULZ Grafik Design, Fußgönheim

Composition ProSatz Unger, Weinheim

Printing Strauss GmbH, Mörlenbach

Bookbinding Litges & Dopf GmbH, Heppenheim

Printed in the Federal Republic of Germany

Printed on acid-free paper

ISBN-13: 978-3-527-31291-7

ISBN-10: 3-527-31291-9

Contents

Preface XV

A Personal Foreword XVII

List of Contributors XIX

Part I: Concept and Theory

1 The Concept of Fragment-based Drug Discovery 3

Daniel A. Erlanson and Wolfgang Jahnke

1.1 Introduction 3

1.2 Starting Small: Key Features of Fragment-based Ligand Design 4

1.2.1 FBS Samples Higher Chemical Diversity 4

1.2.2 FBS Leads to Higher Hit Rates 5

1.2.3 FBS Leads to Higher Ligand Efficiency 6

1.3 Historical Development 6

1.4 Scope and Overview of this Book 7

References 9

2 Multivalency in Ligand Design 11

Vijay M. Krishnamurthy, Lara A. Estroff, and George M. Whitesides

2.1 Introduction and Overview 11

2.2 Definitions of Terms 12

2.3 Selection of Key Experimental Studies 16

2.3.1 Trivalency in a Structurally Simple System 17

2.3.2 Cooperativity (and the Role of Enthalpy) in the “Chelate Effect” 18

2.3.3 Oligovalency in the Design of Inhibitors to Toxins 18

2.3.4 Bivalency at Well Defined Surfaces (Self-assembled Monolayers, SAMs) 18

2.3.5 Polyvalency at Surfaces of Viruses, Bacteria, and SAMs 18

2.4 Theoretical Considerations in Multivalency 19

2.4.1 Survey of Thermodynamics 19

2.4.2 Additivity and Multivalency 19

2.4.3	Avidity and Effective Concentration (C_{eff})	22
2.4.4	Cooperativity is Distinct from Multivalency	24
2.4.5	Conformational Entropy of the Linker between Ligands	25
2.4.6	Enthalpy/Entropy Compensation Reduces the Benefit of Multivalency	26
2.5	Representative Experimental Studies	26
2.5.1	Experimental Techniques Used to Examine Multivalent Systems	26
2.5.1.1	Isothermal Titration Calorimetry	26
2.5.1.2	Surface Plasmon Resonance Spectroscopy	27
2.5.1.3	Surface Assays Using Purified Components (Cell-free Assays)	27
2.5.1.4	Cell-based Surface Assays	27
2.5.2	Examination of Experimental Studies in the Context of Theory	28
2.5.2.1	Trivalency in Structurally Simple Systems	28
2.5.2.2	Cooperativity (and the Role of Enthalpy) in the “Chelate Effect”	29
2.5.2.3	Oligovalency in the Design of Inhibitors of Toxins	29
2.5.2.4	Bivalency in Solution and at Well Defined Surfaces (SAMs)	30
2.5.2.5	Polyvalency at Surfaces (Viruses, Bacteria, and SAMs)	31
2.6	Design Rules for Multivalent Ligands	32
2.6.1	When Will Multivalency Be a Successful Strategy to Design Tight-binding Ligands?	32
2.6.2	Choice of Scaffold for Multivalent Ligands	33
2.6.2.1	Scaffolds for Oligovalent Ligands	33
2.6.2.2	Scaffolds for Polyvalent Ligands	35
2.6.3	Choice of Linker for Multivalent Ligands	36
2.6.3.1	Rigid Linkers Represent a Simple Approach to Optimize Affinity	36
2.6.3.2	Flexible Linkers Represent an Alternative Approach to Rigid Linkers to Optimize Affinity	37
2.6.4	Strategy for the Synthesis of Multivalent Ligands	37
2.6.4.1	Polyvalent Ligands: Polymerization of Ligand Monomers	38
2.6.4.2	Polyvalent Ligands: Functionalization with Ligands after Polymerization	38
2.7	Extensions of Multivalency to Lead Discovery	39
2.7.1	Hetero-oligovalency Is a Broadly Applicable Concept in Ligand Design	39
2.7.2	Dendrimers Present Opportunities for Multivalent Presentation of Ligands	40
2.7.3	Bivalency in the Immune System	40
2.7.4	Polymers Could Be the Most Broadly Applicable Multivalent Ligands	42
2.8	Challenges and Unsolved Problems in Multivalency	44
2.9	Conclusions	44
	Acknowledgments	45
	References	45

3	Entropic Consequences of Linking Ligands	55
	<i>Christopher W. Murray and Marcel L. Verdonk</i>	
3.1	Introduction	55
3.2	Rigid Body Barrier to Binding	55
3.2.1	Decomposition of Free Energy of Binding	55
3.2.2	Theoretical Treatment of the Rigid Body Barrier to Binding	56
3.3	Theoretical Treatment of Fragment Linking	57
3.4	Experimental Examples of Fragment Linking Suitable for Analysis	59
3.5	Estimate of Rigid Body Barrier to Binding	61
3.6	Discussion	62
3.7	Conclusions	64
	References	65
4	Location of Binding Sites on Proteins by the Multiple Solvent Crystal Structure Method	67
	<i>Dagmar Ringe and Carla Mattos</i>	
4.1	Introduction	67
4.2	Solvent Mapping	68
4.3	Characterization of Protein–Ligand Binding Sites	69
4.4	Functional Characterization of Proteins	71
4.5	Experimental Methods for Locating the Binding Sites of Organic Probe Molecules	71
4.6	Structures of Elastase in Nonaqueous Solvents	72
4.7	Organic Solvent Binding Sites	73
4.8	Other Solvent Mapping Experiments	75
4.9	Binding of Water Molecules to the Surface of a Protein	78
4.10	Internal Waters	79
4.11	Surface Waters	80
4.12	Conservation of Water Binding Sites	81
4.13	General Properties of Solvent and Water Molecules on the Protein	82
4.14	Computational Methods	83
4.15	Conclusion	85
	Acknowledgments	85
	References	85

Part 2: Fragment Library Design and Computational Approaches

5	Cheminformatics Approaches to Fragment-based Lead Discovery	91
	<i>Tudor I. Oprea and Jeffrey M. Blaney</i>	
5.1	Introduction	91
5.2	The Chemical Space of Small Molecules (Under 300 a.m.u.)	92
5.3	The Concept of Lead-likeness	94
5.4	The Fragment-based Approach in Lead Discovery	96
5.5	Literature-based Identification of Fragments: A Practical Example	99

5.6	Conclusions	107
	Acknowledgments	109
	References	109
6	Structural Fragments in Marketed Oral Drugs	113
	<i>Michal Vieth and Miles Siegel</i>	
6.1	Introduction	113
6.2	Historical Look at the Analysis of Structural Fragments of Drugs	113
6.3	Methodology Used in this Analysis	115
6.4	Analysis of Similarities of Different Drug Data Sets Based on the Fragment Frequencies	118
6.5	Conclusions	123
	Acknowledgments	124
	References	124
7	Fragment Docking to Proteins with the Multi-copy Simultaneous Search Methodology	125
	<i>Collin M. Stultz and Martin Karplus</i>	
7.1	Introduction	125
7.2	The MCSS Method	125
7.2.1	MCSS Minimizations	126
7.2.2	Choice of Functional Groups	126
7.2.3	Evaluating MCSS Minima	127
7.3	MCSS in Practice: Functionality Maps of Endothiapepsin	132
7.4	Comparison with GRID	135
7.5	Comparison with Experiment	137
7.6	Ligand Design with MCSS	138
7.6.1	Designing Peptide-based Ligands to Ras	138
7.6.2	Designing Non-peptide Based Ligands to Cytochrome P450	140
7.6.3	Designing Targeted Libraries with MCSS	140
7.7	Protein Flexibility and MCSS	141
7.8	Conclusion	143
	Acknowledgments	144
	References	144

Part 3: Experimental Techniques and Applications

8	NMR-guided Fragment Assembly	149
	<i>Daniel S. Sem</i>	
8.1	Historical Developments Leading to NMR-based Fragment Assembly	149
8.2	Theoretical Foundation for the Linking Effect	150
8.3	NMR-based Identification of Fragments that Bind Proteins	152
8.3.1	Fragment Library Design Considerations	152

8.3.2	The “SHAPES” NMR Fragment Library	154
8.3.3	The “SAR by NMR” Fragment Library	156
8.3.4	Fragment-based Classification of protein Targets	160
8.4	NMR-based Screening for Fragment Binding	163
8.4.1	Ligand-based Methods	163
8.4.2	Protein-based Methods	165
8.4.3	High-throughput Screening: Traditional and TINS	167
8.5	NMR-guided Fragment Assembly	167
8.5.1	SAR by NMR	167
8.5.2	SHAPES	169
8.5.3	Second-site Binding Using Paramagnetic Probes	169
8.5.4	NMR-based Docking	170
8.6	Combinatorial NMR-based Fragment Assembly	171
8.6.1	NMR SOLVE	171
8.6.2	NMR ACE	173
8.7	Summary and Future Prospects	176
	References	177
9	SAR by NMR: An Analysis of Potency Gains Realized Through Fragment-linking and Fragment-elaboration Strategies for Lead Generation	181
	<i>Philip J. Hajduk, Jeffrey R. Huth, and Chaohong Sun</i>	
9.1	Introduction	181
9.2	SAR by NMR	182
9.3	Energetic Analysis of Fragment Linking Strategies	183
9.4	Fragment Elaboration	187
9.5	Energetic Analysis of Fragment Elaboration Strategies	188
9.6	Summary	190
	References	191
10	Pyramid: An Integrated Platform for Fragment-based Drug Discovery	193
	<i>Thomas G. Davies, Rob L. M. van Montfort, Glyn Williams, and Harren Jhoti</i>	
10.1	Introduction	193
10.2	The Pyramid Process	194
10.2.1	Introduction	194
10.2.2	Fragment Libraries	195
10.2.2.1	Overview	195
10.2.2.2	Physico-chemical Properties of Library Members	196
10.2.2.3	Drug Fragment Library	197
10.2.2.4	Privileged Fragment Library	197
10.2.2.5	Targeted Libraries and Virtual Screening	197
10.2.2.6	Quality Control of Libraries	201
10.2.3	Fragment Screening	201
10.2.4	X-ray Data Collection	202

10.2.5	Automation of Data Processing	203
10.2.6	Hits and Diversity of Interactions	205
10.2.6.1	Example 1: Compound 1 Binding to CDK2	205
10.2.6.2	Example 2: Compound 2 Binding to p38 α	207
10.2.6.3	Example 3: Compound 3 Binding to Thrombin	207
10.3	Pyramid Evolution – Integration of Crystallography and NMR	207
10.3.1	NMR Screening Using Water-LOGSY	208
10.3.2	Complementarity of X-ray and NMR Screening	210
10.4	Conclusions	211
	Acknowledgments	211
	References	212

11 Fragment-based Lead Discovery and Optimization Using X-Ray Crystallography, Computational Chemistry, and High-throughput Organic Synthesis 215

Jeff Blaney, Vicki Nienaber, and Stephen K. Burley

11.1	Introduction	215
11.2	Overview of the SGX Structure-driven Fragment-based Lead Discovery Process	217
11.3	Fragment Library Design for Crystallographic Screening	218
11.3.1	Considerations for Selecting Fragments	218
11.3.2	SGX Fragment Screening Library Selection Criteria	219
11.3.3	SGX Fragment Screening Library Properties	220
11.3.4	SGX Fragment Screening Library Diversity: Theoretical and Experimental Analyses	220
11.4	Crystallographic Screening of the SGX Fragment Library	221
11.4.1	Overview of Crystallographic Screening	222
11.4.2	Obtaining the Initial Target Protein Structure	224
11.4.3	Enabling Targets for Crystallographic Screening	225
11.4.4	Fragment Library Screening at SGX-CAT	225
11.4.5	Analysis of Fragment Screening Results	226
11.4.6	Factor VIIa Case Study of SGX Fragment Library Screening	228
11.5	Complementary Biochemical Screening of the SGX Fragment Library	230
11.6	Importance of Combining Crystallographic and Biochemical Fragment Screening	232
11.7	Selecting Fragments Hits for Chemical Elaboration	233
11.8	Fragment Optimization	234
11.8.1	Spleen Tyrosine Kinase Case Study	234
11.8.2	Fragment Optimization Overview	240
11.8.3	Linear Library Optimization	241
11.8.4	Combinatorial Library Optimization	242
11.9	Discussion and Conclusions	243
11.10	Postscript: SGX Oncology Lead Generation Program	245
	References	245

12	Synergistic Use of Protein Crystallography and Solution-phase NMR Spectroscopy in Structure-based Drug Design: Strategies and Tactics	249
	<i>Cele Abad-Zapatero, Geoffrey F. Stamper, and Vincent S. Stoll</i>	
12.1	Introduction	249
12.2	Case 1: Human Protein Tyrosine Phosphatase	252
12.2.1	Designing and Synthesizing Dual-site Inhibitors	252
12.2.1.1	The Target	252
12.2.1.2	Initial Leads	252
12.2.1.3	Extension of the Initial Fragment	254
12.2.1.4	Discovery and Incorporation of the Second Fragment	256
12.2.1.5	The Search for Potency and Selectivity	257
12.2.2	Finding More “Drug-like” Molecules	258
12.2.2.1	Decreasing Polar Surface Area on Site 2	258
12.2.2.2	Monoacid Replacements on Site 1	258
12.2.2.3	Core Replacement	259
12.3	Case 2: MurF	261
12.3.1	Pre-filtering by Solution-phase NMR for Rapid Co-crystal Structure Determinations	261
12.3.1.1	The Target	261
12.3.1.2	Triage of Initial Leads	261
12.3.1.3	Solution-phase NMR as a Pre-filter for Co-crystallization Trials	262
12.4	Conclusion	263
	Acknowledgments	264
	References	264
13	Ligand SAR Using Electrospray Ionization Mass Spectrometry	267
	<i>Richard H. Griffey and Eric E. Swayze</i>	
13.1	Introduction	267
13.2	ESI-MS of Protein and RNA Targets	268
13.2.1	ESI-MS Data	268
13.2.2	Signal Abundances	268
13.3	Ligands Selected Using Affinity Chromatography	271
13.3.1	Antibiotics Binding Bacterial Cell Wall Peptides	272
13.3.2	Kinases and GPCRs	272
13.3.3	Src Homology 2 Domain Screening	273
13.3.4	Other Systems	274
13.4	Direct Observation of Ligand-Target Complexes	275
13.4.1	Observation of Enzyme-Ligand Transition State Complexes	276
13.4.2	Ligands Bound to Structured RNA	276
13.4.3	ESI-MS for Linking Low-affinity Ligands	277
13.5	Unique Features of ESI-MS Information for Designing Ligands	282
	References	282

14	Tethering	285
<i>Daniel A. Erlanson, Marcus D. Ballinger, and James A. Wells</i>		
14.1	Introduction	285
14.2	Energetics of Fragment Selection in Tethering	286
14.3	Practical Considerations	289
14.4	Finding Fragments	289
14.4.1	Thymidylate Synthase: Proof of Principle	289
14.4.2	Protein Tyrosine Phosphatase 1B: Finding Fragments in a Fragile, Narrow Site	292
14.5	Linking Fragments	293
14.5.1	Interleukin-2: Use of Tethering to Discover Small Molecules that Bind to a Protein–Protein Interface	293
14.5.2	Caspase-3: Finding and Combining Fragments in One Step	296
14.5.3	Caspase-1	299
14.6	Beyond Traditional Fragment Discovery	300
14.6.1	Caspase-3: Use of Tethering to Identify and Probe an Allosteric Site	300
14.6.2	GPCRs: Use of Tethering to Localize Hits and Confirm Proposed Binding Models	303
14.7	Related Approaches	306
14.7.1	Disulfide Formation	306
14.7.2	Imine Formation	307
14.7.3	Metal-mediated	307
14.8	Conclusions	308
	Acknowledgments	308
	References	308

Part 4: Emerging Technologies in Chemistry

15	Click Chemistry for Drug Discovery	313
<i>Stefanie Röper and Hartmuth C. Kolb</i>		
15.1	Introduction	313
15.2	Click Chemistry Reactions	314
15.3	Click Chemistry in Drug Discovery	316
15.3.1	Lead Discovery Libraries	316
15.3.2	Natural Products Derivatives and the Search for New Antibiotics	317
15.3.3	Synthesis of Neoglycoconjugates	320
15.3.4	HIV Protease Inhibitors	321
15.3.5	Synthesis of Fucosyltransferase Inhibitor	323
15.3.6	Glycoarrays	324
15.4	<i>In Situ</i> Click Chemistry	325
15.4.1	Discovery of Highly Potent AChE by <i>In Situ</i> Click Chemistry	325
15.5	Bioconjugation Through Click Chemistry	328
15.5.1	Tagging of Live Organisms and Proteins	328

15.5.2	Activity-based Protein Profiling	330
15.5.3	Labeling of DNA	332
15.5.4	Artificial Receptors	333
15.6	Conclusion	334
	References	335
16	Dynamic Combinatorial Diversity in Drug Discovery	341
	<i>Matthias Hochgürtel and Jean-Marie Lehn</i>	
16.1	Introduction	341
16.2	Dynamic Combinatorial Chemistry – The Principle	342
16.3	Generation of Diversity: DCC Reactions and Building Blocks	343
16.4	DCC Methodologies	346
16.5	Application of DCC to Biological Systems	347
16.5.1	Enzymes as Targets	349
16.5.2	Receptor Proteins as Targets	355
16.5.3	Nucleotides as Targets	357
16.6	Summary and Outlook	359
	References	361
	Index	365

Preface

“The whole is more than the sum of its parts” is a phrase that is attributed to the Greek philosopher Aristotle (384–322 BC), who in his book *Metaphysica* compared a syllable with its individual letters. Applied to medicinal chemistry, it means that an active molecule is more than its parts and pieces. In this respect, we need not step down to the level of individual atoms, it is just enough to consider larger fragments of a protein ligand. More than 30 years ago, Green dissected the avidin ligand biotin into a methyl-substituted imidazolinone, hexanoic acid, and a sulfur atom. The binding affinities of the two organic fragments were several decades lower than the affinity of the original ligand or of desthiobiotin. This was a clear indication that the proper combination of fragments may lead to high-affinity ligands. However, the result corresponded to expectation and seemingly nobody concluded to go the other way, i.e. to combine fragments to a high-affinity ligand. Later, Page and Jencks formulated the “anchor principle”: if two molecules A and B, both interacting with different pockets of the binding site of a protein, are combined to A–B, one molecule may be considered as a substituent of the other one. The entropy loss from freezing translational and rotational degrees of freedom can be attributed to one of the molecules; the other molecule contributes to affinity with its “intrinsic” free energy of binding, without an unfavorable entropy term. In this manner, a higher affinity of A–B is observed than expected from the affinities of the original molecules A and B. Of course, both fragments have to be combined in a relaxed manner and the final molecule has to fit the binding site without steric or other constraints.

In the following years, several authors confirmed the observation that the affinity of a ligand is more than the “sum of its fragments”. Surprisingly, only ten years ago this principle was used for a systematic design of protein ligands from fragments by the “SAR by NMR” method, developed by Fesik and his group at Abbott Laboratories. Several other techniques followed, using protein crystallography, NMR, MS, cysteine tethering, or the dynamic assembly of ligands, to mention only some approaches. Within a short time, fragment-based design became a hot topic in drug discovery and in experimental techniques, as well as in cheminformatics and virtual screening. In addition to drug- and lead-likeness, desirable properties of fragment libraries were also defined and libraries for screening and

docking were generated, using these property definitions. It is clear that the combination of a limited number of fragments generates a multitude of different combinations, making this approach as attractive as combinatorial chemistry - without the need for producing millions of molecules.

This book is the very first to provide a comprehensive overview on this fascinating area, which opens a new perspective for the rational design of potential drugs. It is hoped that its content stimulates further research and strengthens the role of structure-based design in drug discovery.

We would like to express our gratitude to the editors Wolfgang Jahnke and Dan Erlanson, who assembled this book in short time, despite their hard work and responsibilities in their companies. We are also very grateful to all chapter authors, who accepted the invitation to contribute and to deliver their manuscripts in time. Of course, we appreciate the ongoing support of Renate Dötzer and Frank Weinreich, WILEY-VCH, for this book series and their valuable collaboration in this project.

May 2006

*Raimund Mannhold, Düsseldorf
Hugo Kubinyi, Weisenheim am Sand
Gerd Folkers, Zürich*

A Personal Foreword

The dilemma of rapidly emerging fields is that reviews are often outdated before they are printed. To make a contribution that would endure, we knew we had to go beyond a snapshot of the current state of fragment-based drug discovery and instead provide a framework for upcoming advances. To achieve this goal, we needed to convince leading scientists to take time from their busy schedules to write chapters. Fortunately, nearly all those we approached agreed; and what you hold in your hands is a virtual, although not comprehensive, “Who’s Who” in fragment-based drug discovery. We are extremely grateful to all of our contributors for the quality of their chapters.

One striking feature of this book is that more than half of the chapters come from industry-based researchers, and even many of the academic contributors have close ties to industry. It has been alleged that the best science is done in academia; this book proves that this is not necessarily the case. Indeed, industrial researchers have largely pioneered fragment-based drug discovery strategies. Part of the reason may be that many of the techniques involved require expensive equipment and infrastructure as well as large collaborations between scientists from disparate disciplines - collaborations that would be difficult to set up outside industry. The multi-disciplinary nature of fragment-based approaches shows in this volume: contributors include computational chemists, NMR spectroscopists, X-ray crystallographers, mass-spectrometrists, as well as organic and medicinal chemists.

Although fragment-based strategies for drug discovery have now pervaded laboratories across the world, the ultimate success of any drug discovery technology is measured in the quantity and quality of drugs that it produces. Fragment-based drug discovery has only been practical for the past decade, too soon to expect it to produce marketed drugs, but we believe these will come in time. Moreover, many of the techniques and concepts described in this book will alter drug discovery endeavors in subtle, tangential ways. Ideally, readers will be inspired to improve the methods described here, or even to develop fundamentally new methods for fragment-based drug discovery. But even if this book only changes the way medicinal chemists approach lead optimization, or persuades them to look more closely at weak but validated hits, it will have served its purpose.

March 2006

*Wolfgang Jahnke, Basel
Daniel A. Erlanson, San Francisco*

List of Contributors

Cele Abad-Zapatero

Abbott Laboratories
Department of Structural Biology
R46Y, AP-10
100 Abbott Park Road
Abbott Park, IL 60064–6098
USA

Marcus D. Ballinger

Sunesis Pharmaceuticals, Inc.
341 Oyster Point Boulevard
South San Francisco, CA 94080
USA

Jeffrey M. Blaney

SGX Pharmaceuticals, Inc.
10505 Roselle Street
San Diego, CA 92121
USA

Stephen K. Burley

SGX Pharmaceuticals, Inc.
10505 Roselle Street
San Diego, CA 92121
USA

Thomas G. Davies

Astex Therapeutics Ltd
436 Cambridge Science Park
Milton Road
Cambridge, CB4 0QA
UK

Daniel A. Erlanson

Sunesis Pharmaceuticals, Inc.
341 Oyster Point Boulevard
South San Francisco, CA 94080
USA

Lara A. Estroff

Department of Materials Science and
Engineering
Cornell University
214 Bard Hall
Ithaca, NY 14853
USA

Richard H. Griffey

SAIC, San Diego
10260 Campus Point Drive
San Diego, CA 92121
USA

Philip J. Hajduk

Abbott Laboratories
R46Y, AP 10
100 Abbott Park Road
Abbott Park, IL 60064–6098
USA

Matthias Hochgürzel

Alantos Pharmaceuticals AG
Im Neuenheimer Feld 584
69120 Heidelberg
Germany

Jeffrey R. Huth

Abbott Laboratories
R46Y AP 10
Abbott Park, IL 60064
USA

Wolfgang Jahnke

Novartis Institutes for Biomedical
Research
Novartis Pharma AG
Lichtstrasse
4002 Basel
Switzerland

Harren Jhoti

Astex Therapeutics Ltd
436 Cambridge Science Park
Milton Road
Cambridge, CB4 0QA
UK

Martin Karplus

Department of Chemistry and
Chemical Biology
Harvard University
12 Oxford Street
Cambridge, MA 02138
USA

Hartmuth C. Kolb

Department of Molecular and
Medical Pharmacology
University of California
Los Angeles, CA 90095
USA

Vijay M. Krishnamurthy

Department of Chemistry and
Chemical Biology
Harvard University
12 Oxford Street
Cambridge, MA 02138
USA

Jean-Marie Lehn

Laboratoire de Chimie
Supramoléculaire
ISIS/ULP
8, allée Gaspard Monge
67083 Strasbourg Cedex
France

Carla Mattos

Department of Molecular and Structural
Biochemistry
North Carolina State University
Campus Box 7622
128 Polk Hall
Raleigh, NC 27695
USA

Rob L. M. van Montfort

Astex Therapeutics Ltd
436 Cambridge Science Park
Milton Road
Cambridge, CB4 0QA
UK

Christopher W. Murray

Astex Therapeutics Ltd
436 Cambridge Science Park
Milton Road
Cambridge, CB4 0QA
UK

Vicki Nienaber

SGX Pharmaceuticals, Inc.
10505 Roselle Street
San Diego, CA 92121
USA

Tudor I. Oprea

Division of Biocomputing
University of New Mexico
School of Medicine
MSC11 6145
Albuquerque, NM 87131
USA

Dagmar Ringe

Departments of Biochemistry and Chemistry, and Rosenstiel Basic Medical Sciences Research Center
Brandeis University, MS 029
415 South Street
Waltham, MA 02454-9110
USA

Stefanie Röper

Department of Chemistry
The Scripps Research Institute
10550 North Torrey Pines Road
La Jolla, CA 92037
USA

Daniel S. Sem

Chemical Proteomics Facility at Marquette
Department of Chemistry
Marquette University
535 North 14th Street
Milwaukee, WI 53233
USA

Miles Siegel

Discovery Chemistry Research,
DC 1920
Lilly Research Laboratories
Indianapolis, IN 46285
USA

Geoffrey F. Stumper

Abbott Laboratories
Department of Structural Biology
R46Y, AP-10
100 Abbott Park Road
Abbott Park, IL 60064–6098
USA

Vincent S. Stoll

Abbott Laboratories
Department of Structural Biology
R46Y, AP-10
100 Abbott Park Road
Abbott Park, IL 60064–6098
USA

Collin M. Stultz

Division of Health Sciences and Technology, and Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology,
32-310
77 Massachusetts Ave.
Cambridge, MA 02139
USA

Chaohong Sun

Abbott Laboratories
R46Y AP 10
Abbott Park, IL 60064
USA

Eric E. Swayze

Isis Pharmaceuticals
1896 Rutherford Rd.
Carlsbad, CA 92008
USA

Marcel L. Verdonk

Astex Therapeutics Ltd
436 Cambridge Science Park
Milton Road
Cambridge, CB4 0QA
UK

Michal Vieth

Discovery Chemistry Research,
DC 1930
Lilly Research Laboratories
Indianapolis, IN 46285
USA

James A. Wells

Department of Pharmaceutical
Chemistry & Molecular and Cellular
Pharmacology
University of California, San Francisco
Box 2552, QB3
1700 4th Street
San Francisco, CA 94143-2552
USA

George M. Whitesides

Department of Chemistry and
Chemical Biology
Harvard University
12 Oxford Street
Cambridge, MA 02138
USA

Glyn Williams

Astex Therapeutics Ltd
436 Cambridge Science Park
Milton Road
Cambridge, CB4 0QA
UK

Part I: Concept and Theory

1

The Concept of Fragment-based Drug Discovery

Daniel A. Erlanson and Wolfgang Jahnke

1.1

Introduction

Fragment-based drug discovery builds drugs from small molecular pieces. It combines the empiricism of random screening with the rationality of structure-based design. Though the concept was articulated decades ago, the approach has become practical only recently.

Historically, most drugs have been discovered by one of two methods. The first of these was famously summarized by Nobel Laureate Sir James Black, who noted that the best way to find a new drug is to start with an existing one. Indeed, any successful drug spawns a surge of similar molecules, as illustrated by the number of chemically similar COX-2 inhibitors or HIV protease inhibitors on the market and in development. Though often disparaged as “me-too” or “patent-busting”, such efforts are productive. The first drug to market is rarely the best; one need only consider the state of HIV medication now compared to a decade ago to appreciate this fact. Even the search for new drugs often begins with known starting points in the form of natural ligands such as substrates, co-factors or inhibitors.

For diseases and targets where no drug or other starting point exists, the second major route of drug discovery, random screening, is essential. This approach to drug discovery is perhaps the oldest and most venerable but requires serendipity. Indeed, it was a serendipitous observation of bacterial killing by fungus that led Alexander Fleming to the discovery of the natural product penicillin. Many highly successful drugs, from cyclosporine to paclitaxel, have been discovered by screening collections of compounds. With each medicinal chemistry program, more chemical compounds and their analogs are added to corporate screening libraries.

The invention of combinatorial chemistry in the late 1980s and early 1990s vastly expanded the number of compounds in chemical collections, just as the development of sophisticated automation equipment and miniaturization of biological assays led to the advent of high-throughput screening, or HTS. Today, most major pharmaceutical companies and many biotechnology companies have in-house collections of hundreds of thousands or even millions of molecules.

In parallel to HTS, more rational routes for drug discovery have been sought. Structure-based drug design attempts to design inhibitors *in silico* on the basis of the three-dimensional structure of the target protein.

Among the latest developments in drug discovery is a concept called fragment-based drug design, or fragment-based screening (FBS). In contrast to conventional HTS, where fully built, “drug-sized” chemical compounds are screened for activity, FBS identifies very small chemical structures (“fragments”) that may only exhibit weak binding affinity. Follow-up strategies are then applied to increase affinity by elaborating these minimal binding elements. Fragment-based drug design thus attempts to build a ligand piece-by-piece, in a modular fashion. Structural information plays a central role in most follow-up strategies. Therefore, fragment-based drug design can be viewed as the synthesis of random screening and structure-based design.

1.2

Starting Small: Key Features of Fragment-based Ligand Design

Fragment-based screening promises to have a great impact on drug discovery because of several advantages, which are summarized in the following sections.

1.2.1

FBS Samples Higher Chemical Diversity

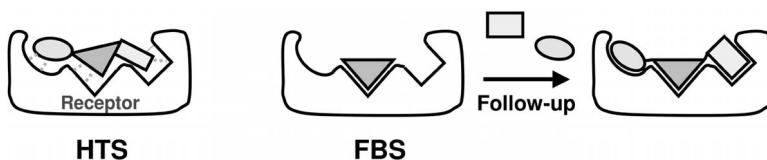
Typical chemical libraries used for HTS contain 10^5 to 10^6 individual compounds. Though a million-compound library sounds vast, it covers only a very small portion of “drug space”, the theoretical set of possible small, drug-like molecules. In fact, a widely quoted estimate (actually a back-of-the-envelope calculation in a footnote in a review of structure-based drug design) places this number at 10^{63} molecules [1], a number beyond the comprehension of anyone except perhaps astrophysicists. A recent estimate of the total number of molecules available for screening in all the commercial and academic institutions on the Earth is around 100 million, or 10^8 , so even a planet-wide screening effort would not even scratch the surface of diversity space [2]. This will never change in any meaningful way. To understand why, imagine assembling a library of 10^{63} molecules. Even if miniaturization advances to the point where we need only 1 pmol of each molecule (about 0.5 ng for a 500-Da molecule), this would still require gathering 5×10^{47} tons of material, roughly 26 orders of magnitude larger than the mass of our planet. Clearly, libraries screened in HTS will always explore only a tiny fraction of drug space.

The explored fraction of diversity space swells when working with smaller molecules (“fragments”), because there are fewer possible small molecules than possible large molecules. If we screen small molecular fragments, rather than drug-sized molecules, we can cover exponentially larger swaths of diversity space with much smaller collections of molecules. To illustrate, imagine two sets of compounds, each

consisting of 1000 fragments. If we were to exhaustively make all binary combinations with a single asymmetric linker, this would yield $(1000 \text{ molecules}) \times (1000 \text{ molecules}) = 1\,000\,000$ molecules to synthesize and screen, a daunting task. In contrast, if we could identify the five best fragments in each set and only combine and screen those, we would only need to synthesize and test $[(1000 \text{ molecules}) + (1000 \text{ molecules}) + (5 \text{ molecules}) \times (5 \text{ molecules})] = 2025$ molecules. This number is clearly much more manageable, and still covers the same chemical diversity space.

A first-principles computational analysis suggests that there are roughly 13.9×10^6 stable, synthetically feasible small molecules with a molecular weight less than or equal to 160 Da (44×10^6 once stereoisomers are considered, although the approach excludes compounds containing three- and four-membered rings and elements other than carbon, hydrogen, oxygen, nitrogen, and halogens) [3]. This is still a large number, but it is at least a comprehensible number, especially compared with 10^{63} . It shows that, with fragment-based screening, a higher (although still very small) proportion of diverse drug space can be covered. From a technical standpoint as well, focusing on these smaller fragments could simplify many aspects of the drug discovery process, from compound acquisition and synthesis through data management.

1.2.2


FBS Leads to Higher Hit Rates

Imagine a small fragment with high but imperfect complementarity to a target protein. Now imagine adding a methyl group at exactly the right spot to increase complementarity even further: rendering the fragment more complex in the right manner leads to slightly increased affinity to the target protein. But imagine adding the methyl group at any other spot, so that it protrudes from this fragment towards the receptor such that the modified fragment can no longer bind to the target: rendering the fragment more complex in the “wrong” manner ablates affinity for the receptor. Notably, there are many more ways to increase complexity in the “wrong” manner, and doing so often leads to a decrease of binding affinity by several orders of magnitude, whereas in the lucky case of increasing complexity in the “right” manner, binding is generally only enhanced by one or two orders of magnitude. This simple example makes sense intuitively, and a more rigorous theoretical analysis comes to the same conclusion: as molecules become more complex, additional chemical groups are much more likely to ablate binding than to enhance it [4]. The probability of binding (the “hit rate” in screening) thus decreases with increasing ligand complexity. Libraries containing smaller compounds (“fragments”) are expected to exhibit higher hit rates, although the resulting affinities are generally weak and so require sensitive detection methods.

1.2.3

FBS Leads to Higher Ligand Efficiency

Screening drug-sized molecules is thought to favor ligands with several sub-optimal binding interactions, rather than those with a few optimal interactions. This is schematically shown in Fig. 1.1: the drug-sized molecule on the left side is identified by HTS since it binds to the receptor. However, none of the binding interactions are optimal, since establishing one optimal interaction would disrupt another interaction. All binding interactions are thus compromised and do not retain the full strength they would have without the molecular strain.

Fig. 1.1

Potential drawback of HTS (left), and principle and advantages of FBS (right): In HTS, fully assembled, “drug-sized” ligands are identified, but with multiple compromised, non-optimal binding interactions. In FBS, ligands for individual subpockets are identified separately, and show few but good binding interactions. Follow-up strategies such as fragment elaboration or linking are used to increase ligand affinity.

Relative to their molecular size, fragments can thus show more favorable binding energies than drug-sized molecules. The binding energy, normalized by the number of heavy atoms in the ligand, is referred to by the term ligand efficiency [5]. Smaller fragments can have higher ligand efficiency, leading to smaller drugs with better chances for favorable pharmacokinetics [6, 7]. This concept is also being applied to conventional HTS with the advent of “lead-like”, instead of “drug-like,” compound libraries [8].

1.3**Historical Development**

The basic concept of fragment-based drug discovery was developed about 25 years ago by William Jencks, who wrote in 1981 that the affinities of whole molecules could be understood as a function of the affinities of separate parts:

“It can be useful to describe the Gibbs free energy changes for the binding to a protein of a molecule, A–B, and of its component parts, A and B, in terms of the “intrinsic binding energies” of A and B (ΔG_A^i and ΔG_B^i) and a “connection Gibbs energy” (ΔG^s) that is derived largely from changes in translational and rotational entropy [9].”