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Preface

“The whole is more than the sum of its parts” is a phrase that is attributed to the
Greek philosopher Aristotle (384–322 BC), who in his book Metaphysica com-
pared a syllable with its individual letters. Applied to medicinal chemistry, it
means that an active molecule is more than its parts and pieces. In this respect,
we need not step down to the level of individual atoms, it is just enough to con-
sider larger fragments of a protein ligand. More than 30 years ago, Green dis-
sected the avidin ligand biotin into a methyl-substituted imidazolinone, hexanoic
acid, and a sulfur atom. The binding affinities of the two organic fragments were
several decades lower than the affinity of the original ligand or of desthio-biotin.
This was a clear indication that the proper combination of fragments may lead to
high-affinity ligands. However, the result corresponded to expectation and see-
mingly nobody concluded to go the other way, i.e. to combine fragments to a
high-affinity ligand. Later, Page and Jencks formulated the “anchor principle”: if
two molecules A and B, both interacting with different pockets of the binding site
of a protein, are combined to A–B, one molecule may be considered as a substitu-
ent of the other one. The entropy loss from freezing translational and rotational
degrees of freedom can be attributed to one of the molecules; the other molecule
contributes to affinity with its “intrinsic” free energy of binding, without an unfa-
vorable entropy term. In this manner, a higher affinity of A-B is observed than ex-
pected from the affinities of the original molecules A and B. Of course, both frag-
ments have to be combined in a relaxed manner and the final molecule has to fit
the binding site without steric or other constraints.

In the following years, several authors confirmed the observation that the affi-
nity of a ligand is more than the “sum of its fragments”. Surprisingly, only ten
years ago this principle was used for a systematic design of protein ligands from
fragments by the “SAR by NMR” method, developed by Fesik and his group at Ab-
bott Laboratories. Several other techniques followed, using protein crystallogra-
phy, NMR, MS, cysteine tethering, or the dynamic assembly of ligands, to men-
tion only some approaches. Within a short time, fragment-based design became a
hot topic in drug discovery and in experimental techniques, as well as in chem-
informatics and virtual screening. In addition to drug- and lead-likeness, desirable
properties of fragment libraries were also defined and libraries for screening and
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docking were generated, using these property definitions. It is clear that the com-
bination of a limited number of fragments generates a multitude of different com-
binations, making this approach as attractive as combinatorial chemistry - without
the need for producing millions of molecules.

This book is the very first to provide a comprehensive overview on this fascinat-
ing area, which opens a new perspective for the rational design of potential drugs.
It is hoped that its content stimulates further research and strengthens the role of
structure-based design in drug discovery.

We would like to express our gratitude to the editors Wolfgang Jahnke and Dan
Erlanson, who assembled this book in short time, despite their hard work and re-
sponsibilities in their companies. We are also very grateful to all chapter authors,
who accepted the invitation to contribute and to deliver their manuscripts in time.
Of course, we appreciate the ongoing support of Renate Dötzer and Frank Wein-
reich,WILEY-VCH, for this book series and their valuable collaboration in this pro-
ject.

May 2006 Raimund Mannhold, Düsseldorf
Hugo Kubinyi,Weisenheim am Sand
Gerd Folkers, Zürich
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A Personal Foreword

The dilemma of rapidly emerging fields is that reviews are often outdated before
they are printed. To make a contribution that would endure, we knew we had to go
beyond a snapshot of the current state of fragment-based drug discovery and in-
stead provide a framework for upcoming advances. To achieve this goal, we
needed to convince leading scientists to take time from their busy schedules to
write chapters. Fortunately, nearly all those we approached agreed; and what you
hold in your hands is a virtual, although not comprehensive, “Who’s Who“ in frag-
ment-based drug discovery. We are extremely grateful to all of our contributors for
the quality of their chapters.

One striking feature of this book is that more than half of the chapters come
from industry-based researchers, and even many of the academic contributors have
close ties to industry. It has been alleged that the best science is done in academia;
this book proves that this is not necessarily the case. Indeed, industrial researchers
have largely pioneered fragment-based drug discovery strategies. Part of the reason
may be that many of the techniques involved require expensive equipment and in-
frastructure as well as large collaborations between scientists from disparate disci-
plines - collaborations that would be difficult to set up outside industry. The multi-
disciplinary nature of fragment-based approaches shows in this volume: contribu-
tors include computational chemists, NMR spectroscopists, X-ray crystallogra-
phers, mass-spectrometrists, as well as organic and medicinal chemists.

Although fragment-based strategies for drug discovery have now pervaded la-
boratories across the world, the ultimate success of any drug discovery technology
is measured in the quantity and quality of drugs that it produces. Fragment-based
drug discovery has only been practical for the past decade, too soon to expect it to
produce marketed drugs, but we believe these will come in time. Moreover, many
of the techniques and concepts described in this book will alter drug discovery en-
deavors in subtle, tangential ways. Ideally, readers will be inspired to improve the
methods described here, or even to develop fundamentally new methods for frag-
ment-based drug discovery. But even if this book only changes the way medicinal
chemists approach lead optimization, or persuades them to look more closely at
weak but validated hits, it will have served its purpose.

March 2006 Wolfgang Jahnke, Basel
Daniel A. Erlanson, San Francisco

XVII





XIX

List of Contributors

Cele Abad-Zapatero
Abbott Laboratories
Department of Structural Biology
R46Y, AP-10
100 Abbott Park Road
Abbott Park, IL 60064–6098
USA

Marcus D. Ballinger
Sunesis Pharmaceuticals, Inc.
341 Oyster Point Boulevard
South San Francisco, CA 94080
USA

Jeffrey M. Blaney
SGX Pharmaceuticals, Inc.
10505 Roselle Street
San Diego, CA 92121
USA

Stephen K. Burley
SGX Pharmaceuticals, Inc.
10505 Roselle Street
San Diego, CA 92121
USA

Thomas G. Davies
Astex Therapeutics Ltd
436 Cambridge Science Park
Milton Road
Cambridge, CB4 0QA
UK

Daniel A. Erlanson
Sunesis Pharmaceuticals, Inc.
341 Oyster Point Boulevard
South San Francisco, CA 94080
USA

Lara A. Estroff
Department of Materials Science and
Engineering
Cornell University
214 Bard Hall
Ithaca, NY 14853
USA

Richard H. Griffey
SAIC, San Diego
10260 Campus Point Drive
San Diego, CA 92121
USA

Philip J. Hajduk
Abbott Laboratories
R46Y, AP 10
100 Abbott Park Road
Abbott Park, IL 60064–6098
USA

Matthias Hochgürtel
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The Concept of Fragment-based Drug Discovery
Daniel A. Erlanson and Wolfgang Jahnke

1.1
Introduction

Fragment-based drug discovery builds drugs from small molecular pieces. It com-
bines the empiricism of random screening with the rationality of structure-based
design. Though the concept was articulated decades ago, the approach has be-
come practical only recently.

Historically, most drugs have been discovered by one of two methods. The first
of these was famously summarized by Nobel Laureate Sir James Black, who noted
that the best way to find a new drug is to start with an existing one. Indeed, any
successful drug spawns a surge of similar molecules, as illustrated by the number
of chemically similar COX-2 inhibitors or HIV protease inhibitors on the market
and in development. Though often disparaged as “me-too” or “patent-busting”,
such efforts are productive. The first drug to market is rarely the best; one need
only consider the state of HIV medication now compared to a decade ago to
appreciate this fact. Even the search for new drugs often begins with known start-
ing points in the form of natural ligands such as substrates, co-factors or inhibi-
tors.

For diseases and targets where no drug or other starting point exists, the second
major route of drug discovery, random screening, is essential. This approach to
drug discovery is perhaps the oldest and most venerable but requires serendipity.
Indeed, it was a serendipitous observation of bacterial killing by fungus that led
Alexander Fleming to the discovery of the natural product penicillin. Many highly
successful drugs, from cyclosporine to paclitaxel, have been discovered by screen-
ing collections of compounds. With each medicinal chemistry program, more che-
mical compounds and their analogs are added to corporate screening libraries.

The invention of combinatorial chemistry in the late 1980s and early 1990s
vastly expanded the number of compounds in chemical collections, just as the de-
velopment of sophisticated automation equipment and miniaturization of biologi-
cal assays led to the advent of high-throughput screening, or HTS. Today, most
major pharmaceutical companies and many biotechnology companies have in-
house collections of hundreds of thousands or even millions of molecules.
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In parallel to HTS, more rational routes for drug discovery have been sought.
Structure-based drug design attempts to design inhibitors in silico on the basis of
the three-dimensional structure of the target protein.

Among the latest developments in drug discovery is a concept called fragment-
based drug design, or fragment-based screening (FBS). In contrast to conven-
tional HTS, where fully built, “drug-sized” chemical compounds are screened for
activity, FBS identifies very small chemical structures (“fragments”) that may only
exhibit weak binding affinity. Follow-up strategies are then applied to increase affi-
nity by elaborating these minimal binding elements. Fragment-based drug design
thus attempts to build a ligand piece-by-piece, in a modular fashion. Structural in-
formation plays a central role in most follow-up strategies. Therefore, fragment-
based drug design can be viewed as the synthesis of random screening and struc-
ture-based design.

1.2
Starting Small: Key Features of Fragment-based Ligand Design

Fragment-based screening promises to have a great impact on drug discovery be-
cause of several advantages, which are summarized in the following sections.

1.2.1
FBS Samples Higher Chemical Diversity

Typical chemical libraries used for HTS contain 105 to 106 individual compounds.
Though a million-compound library sounds vast, it covers only a very small por-
tion of “drug space”, the theoretical set of possible small, drug-like molecules. In
fact, a widely quoted estimate (actually a back-of-the-envelope calculation in a foot-
note in a review of structure-based drug design) places this number at 1063 mole-
cules [1], a number beyond the comprehension of anyone except perhaps astro-
physicists. A recent estimate of the total number of molecules available for screen-
ing in all the commercial and academic institutions on the Earth is around 100
million, or 108, so even a planet-wide screening effort would not even scratch the
surface of diversity space [2]. This will never change in any meaningful way. To
understand why, imagine assembling a library of 1063 molecules. Even if minia-
turization advances to the point where we need only 1 pmol of each molecule
(about 0.5 ng for a 500-Da molecule), this would still require gathering
5�1047 tons of material, roughly 26 orders of magnitude larger than the mass of
our planet. Clearly, libraries screened in HTS will always explore only a tiny frac-
tion of drug space.

The explored fraction of diversity space swells when working with smaller mole-
cules (“fragments”), because there are fewer possible small molecules than possible
large molecules. If we screen small molecular fragments, rather than drug-sized
molecules, we can cover exponentially larger swaths of diversity space with much
smaller collections of molecules. To illustrate, imagine two sets of compounds, each
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consisting of 1000 fragments. If we were to exhaustively make all binary combina-
tions with a single asymmetric linker, this would yield (1000 molecules)�
(1000 molecules) = 1 000 000 molecules to synthesize and screen, a daunting task.
In contrast, if we could identify the five best fragments in each set and only combine
and screen those, we would only need to synthesize and test [(1000 mole-
cules) + (1000 molecules)] + [(5 molecules)� (5 molecules)] = 2025 molecules. This
number is clearly much more manageable, and still covers the same chemical diver-
sity space.

A first-principles computational analysis suggests that there are roughly
13.9�106 stable, synthetically feasible small molecules with a molecular weight
less than or equal to 160 Da (44�106 once stereoisomers are considered,
although the approach excludes compounds containing three- and four-mem-
bered rings and elements other than carbon, hydrogen, oxygen, nitrogen, and ha-
logens) [3]. This is still a large number, but it is at least a comprehensible number,
especially compared with 1063. It shows that, with fragment-based screening, a
higher (although still very small) proportion of diverse drug space can be covered.
From a technical standpoint as well, focusing on these smaller fragments could
simplify many aspects of the drug discovery process, from compound acquisition
and synthesis through data management.

1.2.2
FBS Leads to Higher Hit Rates

Imagine a small fragment with high but imperfect complementarity to a target
protein. Now imagine adding a methyl group at exactly the right spot to increase
complementarity even further: rendering the fragment more complex in the right
manner leads to slightly increased affinity to the target protein. But imagine add-
ing the methyl group at any other spot, so that it protrudes from this fragment to-
wards the receptor such that the modified fragment can no longer bind to the tar-
get: rendering the fragment more complex in the “wrong” manner ablates affinity
for the receptor. Notably, there are many more ways to increase complexity in the
“wrong” manner, and doing so often leads to a decrease of binding affinity by sev-
eral orders of magnitude, whereas in the lucky case of increasing complexity in
the “right” manner, binding is generally only enhanced by one or two orders of
magnitude. This simple example makes sense intuitively, and a more rigorous
theoretical analysis comes to the same conclusion: as molecules become more
complex, additional chemical groups are much more likely to ablate binding than
to enhance it [4]. The probability of binding (the “hit rate” in screening) thus de-
creases with increasing ligand complexity. Libraries containing smaller com-
pounds (“fragments”) are expected to exhibit higher hit rates, although the result-
ing affinities are generally weak and so require sensitive detection methods.
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1.2.3
FBS Leads to Higher Ligand Efficiency

Screening drug-sized molecules is thought to favor ligands with several sub-opti-
mal binding interactions, rather than those with a few optimal interactions. This
is schematically shown in Fig. 1.1: the drug-sized molecule on the left side is iden-
tified by HTS since it binds to the receptor. However, none of the binding interac-
tions are optimal, since establishing one optimal interaction would disrupt an-
other interaction. All binding interactions are thus compromised and do not re-
tain the full strength they would have without the molecular strain.

Relative to their molecular size, fragments can thus show more favorable bind-
ing energies than drug-sized molecules. The binding energy, normalized by the
number of heavy atoms in the ligand, is referred to by the term ligand efficiency
[5]. Smaller fragments can have higher ligand efficiency, leading to smaller drugs
with better chances for favorable pharmacokinetics [6, 7]. This concept is also
being applied to conventional HTS with the advent of “lead-like”, instead of
“drug-like,” compound libraries [8].

1.3
Historical Development

The basic concept of fragment-based drug discovery was developed about 25 years
ago by William Jencks, who wrote in 1981 that the affinities of whole molecules
could be understood as a function of the affinities of separate parts:

“It can be useful to describe the Gibbs free energy changes for the binding to a
protein of a molecule, A–B, and of its component parts, A and B, in terms of the
“intrinsic binding energies” of A and B (�GA

i and �GB
i ) and a “connection Gibbs

energy” (�Gs) that is derived largely from changes in translational and rotational
entropy [9].”
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Fig. 1.1
Potential drawback of HTS (left), and principle and advantages
of FBS (right): In HTS, fully assembled, “drug-sized” ligands
are identified, but with multiple compromised, non-optimal
binding interactions. In FBS, ligands for individual subpockets
are identified separately, and show few but good binding inter-
actions. Follow-up strategies such as fragment elaboration or
linking are used to increase ligand affinity.


