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This book was inspired by a stream of nearly simultaneous reports in 2004 and
2005 demonstrating that the fundamental biological process of autophagy, pri-
marily known for its role in cytoplasmic maintenance, represents a previously
unrecognized innate and adaptive immunity mechanism that functions as a de-
fense against intracellular pathogens and probably has other roles within the
immune system. Although hints to the role of autophagy in immune defenses
and other roles in immunity have existed in the literature, the most recent burst
of publications made a compelling and definitive case for the importance of au-
tophagy in immunity. A further motivation for this project came from the op-
portunity to merge these new findings with the superb recent progress on ge-
netics, biochemistry and cell biology of autophagy. The product is a book cover-
ing the basic aspects of autophagy as a cytoplasmic maintenance process play-
ing a role in cell survival and death, its role in health and disease in general,
and the new cutting edge – the role of autophagy in immunity. Using this book,
the reader can find a full range of information on autophagy in one place cover-
ing both its fundamental molecular mechanisms and its many physiological
roles.

Autophagy is a homeostatic intracellular mechanism, whereby a cell digests
parts of its own cytoplasm for removal or turn-over, as eloquently summarized
in the Foreword by P. Seglen. The term autophagy represents a set of distinct
yet related pathways. These range from the robust process of macroautophagy
to a rather subtle process of chaperone mediated autophagy, as detailed in
Chapter 1 by J. Legakis and D. Klionsky, which also provides the fundamentals
of autophagy based on the powerful genetics in yeast and other organisms.
Macroautophagy sequesters significant portions of the cytosol or whole organ-
elles into a characteristic double membrane vacuole termed the autophagosome,
for eventual degradation in autolysosomes, covered extensively in Chapter 2 by
S. Tooze and colleagues and Chapter 3 by N. Mizushima. Chaperone mediated
autophagy, covered in some detail in Chapter 4 by A. Cuervo and colleagues
and touched upon in Chapter 12 by D. Schmid and C. Münz, is a degradative
pathway whereby individual proteins are imported directly into the lysosomes.
In macroautophagy, or its variant manifestation of microautophagy, the trapped
cytosol or organelles are eventually delivered to degradative compartments (in
mammalian cells – autolysosome) for digestion and removal. In its probably
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most common presentation, autophagy recycles stable cytosolic macromolecules,
such as proteins with long half-lives, to supply nutrients and maintain essential
cellular anabolic needs and viability under starvation conditions. The organelle
removal function of autophagy is a just as important housekeeping function, by
controlling the pool of peroxisomes or removing compromised mitochondria, in
the latter case potentially protecting cells from unscheduled apoptosis. Although
autophagy is a cell maintenance mechanism, under certain conditions, excessive
autophagy can cause non-apoptotic programmed cell death, covered in Chapter
5 by Y. Debnath and C. Fung. Autophagy has been implicated in cancer, degen-
erative disorders, such as Huntington, Parkinson, and Alzheimer diseases, nor-
mal development, and aging, covered in detail in Chapter 4 by A. Cuervo and
colleagues.

A number of very precise studies on anti-viral action of autophagy have been
the true forerunner of our present more general understanding of the role of
autophagy in defense against intracellular pathogens, as covered in Chapter 13
by B. Levine. More recent studies demonstrate that autophagy is also an innate
immunity effector against intracellular bacteria, a central theme of the second
half of this book, encompassing: Chapter 6 on Mycobacterium tuberculosis elimi-
nation by autophagy (Harris et al.); Chapter 7 by T. Yoshimori and A. Amano
on autophagic elimination of streptococci if they invade host cells and find
themselves in the cytosol; Chapter 8 on the role of autophagy in capturing the
intracellular Shigella and its ability to escape this process; and Chapter 9 by K.
Rich and P. Webster on Listeria. Some highly evolved pathogens have mecha-
nisms for harnessing autophagy to their own benefit, as suggested in Chapter
10 by M. Gutierrez and M. Colombo and discussed in Chapter 11 by M.-P. Stein
and C. Roy. The duality of effects of autophagy is also reflected in the Adden-
dum to B. Levine’s Chapter 13 provided by J. Sparks and M. Denison. Signifi-
cantly, autophagy has a strong impact on MHCII presentation (Chapter 12 by
D. Schmid and C. Münz) and is controlled by cytokines (Chapters 6 and 13)
clearly extending the role of autophagy to adaptive immunity.

The goal of this volume was to provide the reader not only with the applica-
tions of autophagy in infectious diseases and immunity, but also to generate a
definitive text for autophagy in general. In other words, a reader who is inter-
ested primarily in the fundamental principles and broad biological aspects of
autophagy, should find this book an indispensable companion and a compre-
hensive source of information. For those who are primarily interested in the
burgeoning field of autophagy in innate and adaptive immunity, the chapters
covering the basic principles of autophagy are just as important to understand
fully the underlying processes.

The book starts with a foreword by Professor Per Seglen, a doyen in the field
of autophagy, who has defined many biochemical and cell biological features of
autophagy and has also produced both classical and contemporary highly cited
papers in this field. A careful reader of the foreword will extract many useful
concepts on autophagosomes, amphisomes and autolysosomes, and precious
cautionary notes on interpretations of cause and effect in diseases and in cell
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survival vs. cell-death promoting faces of autophagy. The editor is indebted to
Per for his willingness to write a foreword to this volume and give the reader
both his sage advice on general aspects of autophagy and sum it all up includ-
ing the latest developments in the context of defense against intracellular patho-
gens.

Furthermore, the reader is a true beneficiary of the combination of excitement
and enthusiasm that pervades the field of autophagy research, and enormous
expertise of the contributing authors in this area. The editor of this book is in-
debted immensely to all contributing authors. The chapters by Drs. Ana Maria
Cuervo, Daniel Klionsky, Beth Levine, Sharon Tooze and Naboru Mizushima,
taken together, can give a textbook on autophagy as a standalone product. Like-
wise, the chapters that link autophagy with innate and adaptive immunity by
Drs. Christian Münz, Chichiro Sasakawa, Tamotsu Yoshimori, and others sum-
marize the new breakthroughs in immunological applications of autophagy.
They also define the nidus for the developing field of immunophagy, a term
used by the Editor of this book in a recent review in Current Opinion in Immu-
nology to describe collectively these processes.

I acknowledge the excellent coordination and open lines of communication
with the publisher including the gentle prompts from Andreas Sendtko, impor-
tance of NIH funding (AI45148 and AI42999) for all my scientific activities in-
cluding this one, great support and understanding at home beyond what a per-
son can expect or deserves, and above all the collective responsiveness and en-
thusiasm for this book by the main protagonists in the field of autophagy. My
great personal and professional respect for many of the contributors to this
book has been reaffirmed in the process.

Placitas (between Albuquerque and Santa Fe), April 2006 Vojo Deretic
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Autophagy, the mechanism by which cells envelop and degrade their own cyto-
plasm, plays a dual role in cellular physiology. On the one hand, autophagy
serves vital functions such as the supply of essential amino acids during nitro-
gen starvation, the mobilization of iron from intracellular stores, the sequestra-
tion of aggregated (and potentially harmful) abnormal proteins that cannot be
digested by the proteasomes, and the containment and degradation of infectious
organisms. On the other hand, autophagy is frequently turned on during pro-
grammed cell death, complementing the apoptotic caspases in the orderly liqui-
dation of the cell. In certain cases, particularly if the major caspases are some-
how incapacitated, autophagy can, by itself, complete the death process. Autoph-
agy may thus either support or prevent cell survival, depending on the biologi-
cal context.

In a pathological setting, this autophagic duality may cause problems of inter-
pretation. Many diseases are accompanied by alterations in cellular membrane
fluxes, often causing massive accumulations of intracellular vacuoles of varying
morphologies. Do these changes represent an attempt to combat the disease or
do they contribute to disease progression (or both – or neither)? What is the na-
ture of the vacuoles that are the affected steps in the vacuolar dynamics and in
what direction are they altered?

As a first step in the analysis, the observed vacuoles need to be identified;
however, unfortunately, this is not a straightforward matter. In addition to the
three major types of autophagic vacuoles, i.e. autophagosomes, amphisomes
and (auto)lysosomes, endosomes may contain cellular material derived from dis-
integrated surrounding cells or, in late, multivesicular endosomes, internalized
by invagination of the endosomal delimiting membrane. In certain diseases,
such as Alzheimer’s, both the endocytic and autophagic pathways are afflicted,
causing the accumulation of an extremely heterogeneous array of vacuoles. It
should be noted that a prolonged disturbance of vacuole fluxes may induce the
formation of unusual vacuoles, which may be difficult to classify by morphologi-
cal criteria.

Autophagosomes, the autophagic vacuoles formed when the sequestering
membrane cisternae (the phagophores) have completed the enclosure process,
can be recognized in the electron microscope as areas of absolutely normal cyto-
plasm, circumscribed by delimiting membranes, but not deviating morpologi-
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cally from their surroundings. The delimiting membrane can sometimes be
seen as a double-membrane (cisternal) structure, sometimes as a thick, osmio-
philic layer and sometimes (artificially) as an open, electron-lucent cleft. How-
ever, since later autophagic vacuoles may contain sequestered membraneous ele-
ments closely apposed to their (single) delimiting membrane, an apparent “dou-
ble membrane” is a less reliable diagnostic criterion for an autophagosome than
its contents of unaltered cytoplasm.

Amphisomes, the products of fusion between endosomes and autophago-
somes, quickly get their contents denatured due to acidification by the proton
pump brought in by the endosomal fusion partner. The denaturation is visible
in the electron microscope as a darkening and a somewhat altered morphology
relative to the cytoplasmic surroundings. Multiple inputs from both autophagy
and endocytosis often make the amphisomes large and complex. The contents
will usually serve to distinguish amphisomes from autophagosomes, but they
cannot be reliably distinguished from early autolysosomes by morphological cri-
teria alone, particularly because the endosomal fusion partner contributes small
amounts of lysosomal enzymes that may initiate degradation of the amphisomal
contents. With more advanced degradation, autolysosomes usually become dis-
tinctive.

Organelle markers can make the identification of autophagic and endocytic
vacuoles considerably easier. Few markers are entirely specific, but by using
them in combination, information can be obtained both from the presence and
the absence of a marker. In immunogold labeling studies, a relatively degrada-
tion-resistant cytosolic enzyme such as superoxide dismutase (SOD) can be used
to mark autophagic vacuoles (autophagosomes, amphisomes and autolyso-
somes), an endocytosed, gold-conjugated protein like bovine serum albumin
(BSA) can be used to mark endosomes, amphisomes and lysosomes, and a lyso-
somal membrane protein, e.g. LGP120, can be used to mark lysosomes. The
combination of positive and negative markers will then identify endosomes
(SOD–/BSA+/LGP–), autophagosomes (SOD+/BSA–/LGP–), amphisomes (SOD+/
BSA+/LGP–) and autolysosomes (SOD+/BSA ± /LGP+). A similar approach can
be used in light microscopic studies, using, for example, the lipidated mamma-
lian Atg8 analogue, LC3-II, as a marker for all types of autophagic vacuoles, in
combination with a marker of acidic vacuoles, e.g. monodansylcadaverine and
suitable endosomal and lysosomal markers.

Markers may also give information about flux perturbations. The accumula-
tion of a specific vacuolar organelle is not necessarily the result of an increased
rate of its formation, but may equally well reflect a reduced rate of its disappear-
ance due to a defective fusion step. For example, a microtubule poison like vin-
blastine will block all vacuole transport and fusion, and cause autophagosomes
and endosomes to accumulate. An inhibitor of intralysosomal protein degrada-
tion, like leupeptin, will not only increase the size and visibility of autolyso-
somes, but the impaired fusion capacity of the congested lysosomes will also
cause amphisomes to pile up. Similar changes in cellular vacuole populations
may occur as a result of pathological alterations in vacuolar fusion rates. Even
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moderate fusion defects may have large morphological consequences if they per-
sist over long periods of time, as may be the case in many of the slowly pro-
gressing autophagy-related diseases.

Experimental interruption of the autophagic-lysosomal flux offers useful ways
of measuring flux rates. Since inhibition of intralysosomal protein degradation
has been shown not to affect autophagic sequestration on a short-term basis,
the intravacuolar accumulation of an autophagocytosed cytosolic enzyme after
leupeptin treatment provides a precise measure of the autophagic sequestration
rate (an autophagic membrane marker like LC3-II is less suitable for this pur-
pose, because its vacuolar dynamics are influenced by factors other than the
rates of sequestration and intralysosomal degradation). However, by blocking
the autophagic flux altogether with a sequestration inhibitor such as 3-methyl-
adenine (3-MA), the flux rate can be calculated, e.g. as the 3MA-sensitive part of
the degradation of long-lived cellular protein. The effectiveness of this inhibitor
also makes it useful in assessing the secondary effects of autophagy: if a cellular
response is insensitive to 3-MA, an autophagic causation can be excluded. In
contrast, 3-MA sensitivity is compatible with an involvement of autophagy,
although it does not prove it (as is the case with inhibitors in general).

Although most disease-related alterations in autophagic-lysosomal traffic are
likely to be secondary, they can be the primary causes of some pathological con-
ditions, most notably the lysosomal storage diseases. In these diseases, a defi-
ciency in a single lysosomal enzyme will cause a massive intralysosomal accu-
mulation of undegradable material that eventually disrupts all lysosomal func-
tions, resulting in complex cellular and pathological alterations. Autophagic and
endocytic influxes to the lysosome will gradually slow down, and prelysosomal
autophagic and endocytic vacuoles will accumulate, their contents of unde-
graded material representing a spreading of the storage syndrome beyond the
lysosomes. In the closely related Danon disease, lysosomes have apparently be-
come fusion-incompetent due to a mutation in the lysosomal membrane pro-
tein, LAMP-2, resulting in reduced influxes to the lysosome, and an accumula-
tion of amphisomes and autophagosomes. During aging, the gradual intralyso-
somal accumulation of undegradable lipofuscin inclusions will similarly disturb
lysosomal function and has been shown to cause a reduced chaperone-mediated
lysosomal protein uptake as well as a reduced flux through the autophagic path-
way.

In many neurodegenerative diseases, mutant proteins that somehow escape
proteasomal degradation may instead become autophagocytosed and gradually
form undegradable aggregates inside lysosomes. The resulting lysosomal stor-
age syndrome, including the accumulation of prelysosomal autophagic vacuoles,
may in the long run impair the autophagic sequestration of toxic protein aggre-
gates and thus contribute to progression of the disease. Events that take place
in the piled-up amphisomes may exacerbate the situation: in Alzheimer’s dis-
ease, toxic peptides seem to be generated by intra-amphisomal proteolysis. If
exocytic recycling from amphisomes takes place, it could possibly be involved in
the formation of the extracellular aggregates (plaques) characteristic of several
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neurodegenerative diseases. Preciously little is known about amphisome physi-
ology; hopefully, a better understanding of this pivotal organelle, strategically lo-
cated at the junction between the autophagic and endocytic pathways, may shed
some light on the complex pathology of degenerative diseases.

In relation to infectious pathogens, autophagy has been shown to play a dual
role. On the one hand, autophagy is a part of the innate and adaptive immune
defense, participating in the generation of antigenic peptides for MHC class II
presentation as well as in the sequestration, containment and degradation of
bacteria like Streptococcus, Shigella and Mycobacterium. The bacteria fight back by
attempting to suppress autophagic activity. On the other hand, bacteria like Cox-
iella, Legionella and several RNA viruses enter cells by a phagocytic route, but
eventually become autophagocytosed intracellularly and take up residence inside
autophagic vacuoles. In these cases, autophagy may promote infectivity.

Can better knowledge about autophagy help to combat autophagy-related dis-
eases? Clearly, the slow progression of many of the degenerative diseases should
leave a lot of room for therapeutic intervention. A stimulation of autophagic ac-
tivity by intermittent amino acid starvation is one obvious strategy that seems to
work well in mice (which can prolong their lifespan by fasting), but adequate
data for humans are lacking. Autophagy-stimulatory drugs, such as rapamycin,
represent another possibility that has shown considerable promise in several de-
generative disease models. Conversely, in the case of infections or programmed
cell death promoted by autophagy, autophagy suppressants like 3-MA have been
demonstrated to be protective under experimental conditions. The development
of autophagy modifiers that are pharmacologically acceptable and effective in
vivo would seem like a promising therapeutic avenue.

Consideration should also be given to the possibility of overcoming or circum-
venting lysosomal dysfunctions. Some improvement has been reported with ly-
sosomal enzyme replacement therapy to lysosomal storage disease patients, but
the endocytic delivery of missing enzymes to lysosomes may be hampered by
poor lysosomal uptake or fusion capacity. The amphisomes should, at least at
an early stage, be more accessible. By supplying amphisomes, through the en-
docytic pathway, with lytic enzymes and other factors required for efficient de-
gradation of problematic substrates, these organelles could possibly be turned
into artificial lysosomes, tailored for a specific purpose. Hopefully, additional
therapeutic strategies will be suggested by future research into the inner work-
ings of the autophagic–endocytic-lysosomal network.

Oslo, December 1st, 2005 Per O. Seglen
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Color Plates

Fig. 1.1 Schematic representation of various
transport routes to the lysosome/vacuole.
There exist a number of pathways by which
substrates are delivered to the lysosome/va-
cuole. Some of the sequestration events oc-
cur at the organelle membrane, these are de-
noted by the prefix “micro”. In other cases,
the enclosure of the substrate occurs spa-
tially away from the lysosome/vacuole mem-
brane. These pathways begin with the prefix
“macro”. Macro- and microautophagy are
nonspecific degradation pathways, which in-
clude a variety of cargoes, depending on the

organism and the particular stress condi-
tions or stage of development. Selective de-
gradation of peroxisomes, small parts of the
nucleus or foreign pathogens occurs via
macropexophagy, micropexophagy, piecemeal
microautophagy of the nucleus or phagocy-
tosis, respectively. Chaperone-mediated au-
tophagy is a receptor-driven degradative
pathway that is a secondary response to
starvation conditions. The biosynthetic Cvt
pathway is a method of delivery for at least
two vacuolar hydrolases.
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Fig. 1.2 Autophagy and the Cvt pathway.
Autophagy and the Cvt pathway can be de-
picted as a series of separate steps. The
roles of Atg and other proteins, shown to
participate in different parts of the pathway,
are depicted. The proteins classified by only
a number are the corresponding Atg gene
product. Otherwise, the protein name is spe-
cified, except for Vac8, which is indicated as
“V8”. “P” denotes phosphorylation of the in-
dicated protein. (1) Induction. TOR kinase
becomes inactivated upon nutrient limita-
tion, eliciting a series of events, which result
in the induction of autophagy. These include
partial dephosphorylation of Atg13, which al-
ters its association with Atg1. Atg1 is
thought to play a key role in the switch be-
tween growth and starvation. Autophagy-spe-
cific proteins are shown in blue, whereas
Cvt-specific proteins are depicted in purple.

(2) Cargo selection and packaging. Examples
of specific autophagy include the Cvt path-
way, pexophagy and possibly mitophagy.
During growth, the Cvt pathway is active.
The cargo, prApe1, is synthesized as an inac-
tive precursor and rapidly oligomerizes.
Atg19, the cargo receptor, binds to the oligo-
mer, followed by Atg11 binding to the com-
plex. Upon induction of pexophagy, the per-
oxin, Pex3, is degraded, thus exposing the
docking protein, Pex14. Although it is not
proven, Atg11 is proposed to bind to the
newly exposed Pex14. The mechanism of mi-
tophagy is unknown. Once these binding
events occur, the cargo are enwrapped by a
double-membrane vesicle and delivered to
the lysosome/vacuole. (3) Vesicle nucleation.
Membrane is acquired from an unknown
location and the cargo associates with the
forming vesicle. Membrane formation re-
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quires the PI3K complex I; the components
of this complex are shown in Step 3. The
PI3-phosphate (PI3P) generated by this com-
plex recruits a number of Atg proteins to the
PAS, including Atg18, Atg20, Atg21, and
Atg24 [24]. (4) Vesicle expansion and comple-
tion. There are two sets of Atg proteins,
which participate in a series of ubiquitin-like
(Ubl) conjugation reactions. These generate
Atg12–Atg5–Atg16 and Atg8–PE (see text for
details). The functions of these proteins are
not known but they are needed for expansion
and completion of the sequestering vesicle.
(5) Retrieval. As most of the Atg proteins are
not included in the completed vesicle, there
must be a mechanism to release and return
these components back to their original site.
Atg9 and Atg23 have been shown to be
cycling proteins, moving between the PAS and
other punctate structures. Atg9 has been
shown to cycle betweent he mitochondria

and the PAS. The non-PAS localizations of
Atg23 are as yet unidentified. These two pro-
teins may aid in the recovery of Atg compo-
nents, allowing them to be reused for an-
other round of delivery. (6) Targeting, docking
and fusion of the vesicle with the lysosome/va-
cuole. The docking and fusion of the com-
pleted vesicle requires a number of compo-
nents (see text for details). The fusion event
results in a single-membrane vesicle within
the lumen of the lysosome/vacuole. (7)
Breakdown of the vesicle and its contents.
Once inside the lysosome/vacuole, the au-
tophagic or Cvt body must be degraded in
order for the cargo to be released. The lipase
responsible for vesicle lysis is thought to be
Atg15. Upon release into the lumen, the car-
goes of pexophagy and bulk autophagy are
broken down for re-use in the cell, while the
cargoes of the Cvt pathway carry out their
function as hydrolases.
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Fig. 4.1 Autophagy in protein conforma-
tional disorders. Protein conformational dis-
orders result from abnormal conformational
changes in particular proteins (due to muta-
tions or post-translational modifications)
that make them prone to aggregation. In the
early stages of the disorder, the abnormal
proteins often block the activity of proteoly-
tic systems normally responsible for the de-
gradation of soluble proteins (proteasome
and CMA by the lysosome), resulting in

compensatory activation of macroautophagy
to eliminate the oligomeric toxic forms. As
the diseases progress (late stage), a macro-
autophagic failure often occurs, probably
due to problems in the clearance of the au-
tophagocytosed materials, leading to the ac-
cumulation of AVs with partially degraded
contents and eventually to cell death. Abbre-
viations: L = lysosome; LM= limiting mem-
brane; AP= autophagosome; APL=autopha-
golysosome; MLB = multilamelar bodies.


