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Preface

This book is intended for graduate or advanced students as well as for professionals in physics
and chemistry, and covers the fundamental concepts of statistical physics and physical kinet-
ics. These concepts are supported by an examination of contemporary problems for the sim-
plest systems of bound or free atoms. The concepts under consideration relate to a wide range
of physical objects: liquids and solids, gases and plasmas, clusters and systems of complex
molecules, polymers and amphiphiles. Along with pure substances, two-component systems
such as mixtures, solutions, electrolytes, suspensions and gels are considered. A wide spec-
trum of phenomena are represented, including phase transitions, glassy transitions, nucleation
processes, transport phenomena, superfluidity and electrophoresis. The various structures of
many-particle systems are analyzed, such as crystal structures of solids and clusters, lamellar
structures in solutions, fractal aggregates, and fractal structures, including an aerogel and a
fractal fiber.

Different methods of describing some systems and phenomena are compared, allowing
one to ascertain various aspects of the problems under consideration. For example, a com-
parison of statistical and dynamical methods for the analysis of a system of many free atomic
particles allows one to understand the basis of statistical physics which deals with the proba-
bilities of a given property for a test particle and the distribution functions of particles of this
ensemble. This comparison shows the character of the transition from a dynamical description
of individual particles of the ensemble to a statistical description of a random distribution of
particles, and the validity of such a randomization in reality.

Starting from the thermodynamic parameters of an ensemble of many particles and the
thermodynamic laws in their universal form, we try to supplement this with a microscopic
description that does not have such a universal nature. As a result, one can gain a deeper
understanding of the nature of objects or phenomena of a given class and determine for them
the limits of validity of the simpler method. For example, when analyzing the solid–liquid
phase transition, we are guided by condensed rare gases, and the microscopic description of
the system as a modified lattice model leads to the conclusion that the phase transition results
from excitation of the configuration of these objects and consists in the formation of voids
inside the objects. The void concept of configuration excitation allows us to understand the
nature of the phase and glassy transitions for condensed rare gases and the difference between
the phase definition for bulk systems and clusters. Of course, the elementary configuration
excitation has a different nature for other systems, but this analysis shows the problems which
must be considered for them.



XIV Preface

The book has been developed from a lecture course on statistical physics and the kinetic
theory of various atomic systems. Its goal is to present the maximum possible number of con-
cepts from these branches of physics in the simplest way, using simple contemporary prob-
lems and a variety of methods. The lecture course depends also on other lecture courses and
problems described in detail in the list of books given at the end of this book.

Boris M. Smirnov



1 Introduction

This book covers various aspects of the properties and evolution of systems of many particles
which are the objects of statistical physics and physical kinetics. The basic concepts for the
description of these systems have existed for more than a century. This book is an addition
to existing courses on statistical physics and physical kinetics and includes a new method for
studying ensembles of many particles. In describing the various concepts of statistical physics
and physical kinetics in this book, we are guided by the simplest systems of many identical
atoms – rare and condensed inert gases – although more complex systems are considered for
properties which are not typical of inert gases. In addition, the various parameters of rare
gases and the phenomena involving them are considered.

In considering ensembles of many identical atomic particles, one can describe the ensem-
ble state on the basis of states of individual particles, accounting for the interactions between
them. Then the analysis of the behavior of each particle (or its trajectory in the classical case)
that corresponds to a dynamic description of a system of particles may be simplified by using
the probability of an individual particle having certain parameters. In this manner we move
on to the distribution functions of parameters of individual particles or to a statistical descrip-
tion, and the variation of the distribution function with time characterizes the evolution of this
system, which is the basis of physical kinetics. One may expect that this transition to the
distribution functions of the parameters of particles will allow us to extract the important in-
formation, and therefore this approach both simplifies the analysis and facilitates the removal
of minor details from the problem. This is so, but the transition from a dynamic description of
a system to a statistical one is not trivial and cannot be grounded in a general form, although
it is possible for certain systems. The analysis of this transition allows us to understand more
deeply the character of statistical physics, and we use the simplest means and arguments to
achieve this goal.

Statistical physics starts from thermodynamics, which deals with average parameters of
the ensembles of many particles. The universal laws of thermodynamics and its concepts
are the foundations of statistical physics, which is developing by removing some of the as-
sumptions of thermodynamics. Thermodynamics works with equilibrium systems of many
particles, whereas statistical physics and physical kinetics consider non-equilibrium and non-
stationary particle ensembles.

Based on this pragmatic standpoint and postulating the validity of the statistical descrip-
tion, we try to analyze the properties of a system under consideration in the simplest way.
A system of many identical particles permits various structures for these particles and their
aggregate states. The structures of systems of bound particles and the competition between
different structures will be considered below. In order to understand the nature of the processes
and phenomena of statistical physics, we study the simplest or limiting cases. In particular,
when considering the problem of the phase transition between aggregate states for clusters
and bulk systems, we refer to ensembles of bound atoms with a pair interaction between them,
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being guided by condensed rare gases. We restrict ourselves to a two-aggregate approach,
where there are only solid or liquid aggregate states of clusters or bulk. The phase transi-
tion results from configuration excitation of ensembles of bound atoms, and the elementary
excitations in the case of pair interactions between atoms are perturbed vacancies or voids.
The void concept allows us to understand the microscopic nature of the phase transition and
offers the possibility of analyzing additional aspects of this phenomenon in comparison with
thermodynamic ones. As a result, one can connect the phase and glass transitions on the basis
of the void concept of configuration excitation for such systems.

The establishment of an equilibrium state of a system of many particles and the evolution
of this system result from elementary processes involving individual particles, and the rates
of these processes determine the variation of the state of the total system. Then the statistical
description of this system is connected to the kinetics of evolution of real systems, and this
book contains the theory of equilibria and evolution of some systems. If the equilibrium of
the system relates simultaneously to different degrees of freedom, we obtain thermodynamic
equilibrium. But the stationary state of real systems may differ from the thermodynamic one
in the case of different relaxation times for different degrees of freedom. Then the stationary
state of the system is determined by the hierarchy of relaxation times, and a certain hierarchy
of relaxation times leads to a corresponding stationary state of the system of many atomic
particles. This has real consequences; for instance, if thermodynamic equilibrium were to be
reached in our universe it would lead to thermal death of all life, and such a problem was dis-
cussed widely in the 19th century. Furthermore, in the case of thermodynamic equilibrium on
the Earth’s surface, hydrogen and carbon could be found there only in the form of water and
carbon dioxide. Under such conditions both living organisms and certain objects or chemical
compounds, such as paper, plants or hydrocarbons, could not exist on Earth. These exam-
ples show that we are surrounded by non-equilibrium systems in reality, and the character of
the establishment of a stationary state for some non-equilibrium systems as well as related
phenomena are considered in this book.

If thermodynamic equilibrium is violated, universal thermodynamic laws become invalid.
On the other hand, non-equilibrium conditions lead to various states and phenomena, de-
pending on the hierarchy of relaxation times. For example, the parameters of the electron
subsystem of a gas-discharge plasma differ from those of a neutral component allowing us to
achieve ionization under the action of an external electric field, even in a cold plasma. Next,
the properties of fractal structures depend on kinetics of the processes of joining of elemental
particles which conserve their individuality in fractal structures. Fractal structures are non-
equilibrium ones and can be transformed in compact structures as a result of reconstruction
processes. But at low temperatures the restructuring processes last for a long time, and fractal
structures are practically stable at relatively low temperatures.

One more example of a non-equilibrium phenomenon is the formation of a glassy state of
a system of bound atoms. Let us consider a simple system of particles which can be found
in two aggregate states at low and high temperatures: solid and liquid. Usually this transition
has an activation character, so that the rate of this transition drops sharply with a decreasing
temperature. Therefore rapid cooling of the liquid state up to temperatures below the melting
point can lead to the formation of a metastable supercooled state. This is a metastable state,
and when perturbed by small fluctuations, the system returns to the initial state. The sub-
sequent cooling of the system to below the freezing point creates a supercooled liquid state
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which is unstable, i.e. the system does not return to the initial state after small fluctuations.
However, this unstable state has a long lifetime (practically infinite) because of the activation
character of the process of decay of this state. In this way, frozen unstable states can be formed
at low temperatures. This method of formation of a non-equilibrium state was studied first for
glasses, and therefore this unstable state is called the glassy state. Thus the non-equilibrium
character of relaxation processes for a system of many atomic particles makes the states and
character of evolution of these systems more rich and varied.

In the course of our description, we move from equilibrium systems to non-equilibrium
ones, and from stationary systems to non-stationary ones. We start from the general principles
of the statistical physics with its application to various objects, and find the connection of
statistical physics to adjacent areas of physics, such as thermodynamics and the mechanics of
many particles. Elementary processes which lead to equilibria in a system of many particles
also determine transport phenomena, and various structures of individual particles may be
formed as a result of interactions. All this is a topic of this book. Next, we focus on the phase
and glassy transitions in simple systems of bound atoms, and the growth of a new phase as a
result of nucleation phenomena.

Contemporary statistical physics and physical kinetics use classical methods, developed a
century ago, but new subjects and phenomena arise over time. This book contains a wide spec-
trum of subjects and phenomena which are analyzed below within the framework of statistical
physics. We consider various aspects of these problems concerning the properties, structures
and behavior of various objects. Thus we deal with atomic objects and phenomena which are
described by the methods of statistical physics and physical kinetics. Such systems, on the
one hand, contain a large number of atomic particles, and, on the other hand, thermodynamic
equilibrium can be violated in these systems.





Part I
Statistical Physics of Atomic Systems





2 Basic Distributions in Systems of Particles

2.1 The Normal or Gaussian Distribution

Statistical physics deals with systems consisting of a large number of identical elements, and
some parameters of the system are the sum of parameters of individual elements. Let us
consider two such examples. In the first case the Brownian motion of a particle results from
its collisions with gaseous atoms, and in the second case we have a system of free particles
(atoms), so that the total energy of the system is the sum of the energies of the individual
particles, and the momentum of an individual particle varies in a random manner when it
collides with other particles. Our task is to find the displacement of the particle position in the
first case and the variation of its momentum in the second case after many collisions. Thus
our goal in both cases is to find the probability that some variable z has a given value after
n � 1 steps if the distribution for each step is random and the variation of particle parameters
after each step is given.

Let the function f(z, n) be the probability that the variable has a given value after n steps,
and ϕ(zk) dzk is the probability that after the kth step the variable’s value ranges from zk to
zk + dzk. Since the functions f(z), ϕ(z) are the probabilities, they are normalized by the
condition:

∞∫
−∞

f(z, n) dz =

∞∫
−∞

ϕ(z) dz = 1

From the definition of the above functions we have:

f(z, n) =

∞∫
−∞

dz1 · · ·
∞∫

−∞
dzn

n∏
k=1

ϕ(zk)

and

z =
n∑

k=1

zk (2.1)

Introduce the characteristic functions:

G(p) =

∞∫
−∞

f(z) exp(−ipz) dz, g(p) =

∞∫
−∞

ϕ(z) exp(−ipz) dz (2.2)

The inverse operation yields:

f(z) =
1
2π

∞∫
−∞

G(p) exp(ipz) dp, ϕ(z) =
1
2π

∞∫
−∞

g(p) exp(ipz) dp
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Equation (2.2) gives:

g(0) =

∞∫
−∞

ϕ(z) dz = 1; g′(0) = i

∞∫
−∞

zϕ(z) dz = izk; g′′(0) = −z2
k (2.3)

where zk and z2
k are the mean shift and the mean square shift of the variable after one step.

From the formulae (2.1) and (2.3) there follows:

G(p) =

∞∫
−∞

exp

(
−ip

n∑
k=1

zk

)
n∏

k=1

ϕ(zk) dzk = gn(p)

and hence

f(z) =
1
2π

∞∫
−∞

gn(p) exp(ipz) dp =
1
2π

∞∫
−∞

exp(n ln g + ipz) dp

Since n � 1, the integral converges at small p. Expanding ln g in a series over small p, we
have

ln g = ln
(

1 + izkp − 1
2
z2

k p2

)
= izkp − 1

2

(
z2

k − zk
2
)

p2

This gives:

f(z) =
1
2π

∞∫
−∞

dp exp
[
ip(nzk − z) − n

2

(
z2

k − zk
2
)

p2
]

=
1√

2πΔ2
exp

[
− (z − z)2

2Δ2

] (2.4)

where z = nzk is the mean shift of the variable after n steps, and nΔ2 = n
[
z2

k − (zk)2
]

is the

mean square deviation of this quantity. The value Δ for a system of many identical elements
is called the fluctuation of this quantity. Formula (2.4) is called the normal distribution or the
Gaussian distribution. Formula (2.4) is valid if small p provides the main contribution to the
integral (2.3), i.e. zkp � 1, z2

kp2 � 1. Because this integral is determined by nz2
k p2 ∼ 1,

the Gaussian distribution holds true for a large number of steps or elements n � 1.

2.2 Specifics of Statistical Physics

Statistical physics considers systems containing a large number of elements. Hence average
values can be used instead of the distribution for some parameters of these elements. Below
we demonstrate this in an example of the distribution of identical particles in a region. In this
case we have a closed volume Ω containing a fixed number N of free particles. Our goal is to
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find the distribution of a number of particles located in a small part Ωo � Ω of this volume.
We assume the mean number of these particles n = NΩo/Ω to be large. The probability Wn

of finding n particles in a given volume is the product of the probability of locating n particles
in this volume (Ωo/Ω)n, the probability of locating the other N − n particles outside this
volume (1−Ωo/Ω)N−n, and the number of ways Cn

N to do it, so that this probability is given
by the formula

Wn = Cn
N

(
Ωo

Ω

)n(
1 − Ωo

Ω

)N−n

This probability satisfies the normalization condition
∑
n

Wn = 1.

Let us consider the limit n � 1, n = N Ωo

Ω � 1, n � N, n2 � N . Then we have

Wn =
nn

n!
exp(−n) (2.5)

This formula is called the Poisson formula.
In the case considered, n � 1, n � 1, the function Wn has a narrow maximum at n = n.

Using the Stirling formula

n! =
1√
2πn

(n

e

)n

, n � 1 (2.6)

we find that the expansion of Wn near n has the form

ln Wn = lnWo − (n − n)2

2n
(2.7)

where Wo = (2πn)−1/2, and the fluctuation of the number of particles in a given volume
equals

Δ =
√

n2 − (n)2 =
√

n � n (2.8)

We use this result to demonstrate the general principle of statistical physics. Let us divide
the total volume in some cells, so that the average number of particles in the ith cell of the vol-
ume Ωi is equal to ni = N Ωi

Ω , where N is the total number of particles in the total volume Ω.
Then, ignoring the fluctuations, we deal with the mean numbers ni of particles in the cells,
and the distribution of the number of particles in a given cell is concentrated near its average
number. One can see that the fluctuations are relatively small, and the above statement is valid
if the number of particles in the cells is large enough: ni � 1.

Note that the distribution of particles in cells, neglecting the fluctuations, can be obtained
by two methods. In the first case we make a measurement of the distribution over the cells
and find ni particles in the ith cell. This value coincides with the average value ni, with an
accuracy up to the size of the fluctuations. In the second case we follow a test particle which
is found in a cell i during a time ti from the total observation time t. Then the number of
particles in the ith cell equals Nti/t and it coincides with ni, again with an accuracy up to the
size of the fluctuations. Thus when we operate with average values in statistical physics, in
the first approximation we neglect fluctuations.
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2.3 Temperature

Let us consider a system of free atoms. Due to collisions between atoms, a certain distribution
of atomic energies is established. One can introduce the temperature of atoms T for this
distribution on the basis of the relationship:

εz =
1
2
T (2.9)

where εz is the average kinetic energy of one atom for its motion in the direction z. Because
the three directions are identical, the average kinetic energy of an individual atom ε is equal
to

ε =
3
2
T (2.10a)

Usually the temperature is expressed in kelvins (K). Often the value kBT is used in the
formulae (2.9) and (2.10) instead of T , where kB = 1.38 · 10−16 erg/K is the Boltzmann
constant, the conversion coefficient between erg and K. The use of the Boltzmann constant in
physical relations is connected to the history of the introduction of temperature, when tem-
perature and energy were considered to be the values of different dimensionalities. Below we
accept the kelvin as an energetic unit and hence we shall not use the above conversion factor.
Table 2.1 shows the connection of this energetic unit to other units.

Table 2.1. Conversion factors between kelvins (K) and other energetic units.

Energy unit erg eV cal/mol cm−1 Ry

Conversion factor 1.3806 · 10−16 8.6170 · 10−5 1.9873 0.69509 6.3344 · 10−6

Let us consider an ensemble of n free atoms of a temperature T and find the distribution of
this system over the total kinetic energy of atoms. It is given by formula (2.4), where instead
of a variable z we use the total kinetic energy of atoms E. Its average value equals

E = nε =
3
2
nT (2.10b)

and the mean squared deviation of the total kinetic energy is

Δ2 = n
(
ε2 − ε2

)
where ε and ε2 are the average values of the energy and energy squared for an individual
atom. Evidently ε2 ∼ T 2, and the relative width of the distribution function of the total
kinetic energy of the atoms is

δ ∼ Δ
E

∼ 1√
n

i.e. this value is small if there are a large number of atoms in the system.
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2.4 The Gibbs Principle

An important aspect of statistical physics consists in the analysis of distribution functions
for particles of an ensemble. In this way we start from the general problem of the energy
distribution for weakly interacting particles of a closed system. Let us consider an ensemble
of a large number of particles and distribute the particles by states which are described by a set
of quantum numbers i. The state of a particle includes its internal quantum numbers, which
are the electron shell state for an atom, the vibrational and rotational states for a molecule etc.
In addition, we denote the particle state’s coordinates r and momentum p. In reality, we deal
with a certain range Δr of particle positions in a space and a range Δp of particle momenta.
Hence each value of the index i includes a group of gi states, which is a large number gi � 1.

Our goal is to find the average number of particles found in each group i of states. Let
us analyze the peculiarities of a system of free particles. In reality, these particles are free for
most of the observation time, but for a short period they interact strongly with surrounding
particles or with walls of a vessel where these particles are located. This interaction is of
importance because it establishes a certain equilibrium for this system of particles. But, when
analyzing the state of an individual particle, we assume it to be free at that time.

Thus we have a gaseous system of many free particles, so that weak interactions of seldom
collisions of particles lead to a certain distribution of particles over states depending on the
parameters of the system. Taking the total number of particles to be n, we assume that this
number does not vary with time. Denote the number of particles in the ith state by ni. Then
the condition of conservation of the total number of particles takes the form:

n =
∑

i

ni (2.11)

Assuming the system of particles under consideration to be closed (i.e. the system does not
exchange by energy with other systems), we require the conservation of the total energy of
particles E:

E =
∑

i

εi ni (2.12)

where εi is the energy of a particle in the ith state. In the course of the evolution of the system
an individual particle can change its state, but the average number of particles in each state
is conserved with some accuracy. Such behavior in a closed system is called thermodynamic
equilibrium.

Transitions of an individual particle between states result from its collisions with other
particles. Apparently, the probability that this particle is found in a given state (as well as the
average number of particles in this state) is proportional to the number of ways in which this
can happen. This is the Gibbs principle, or the principle of homogeneous distribution, which
is the basis of statistical physics. Within the framework of this principle, one can assume
that the probability of a system of particles being found in a given state is proportional to the
number of states which lead to this distribution.

Denote by P (n1, n2, · · · ni · · · ) the number of ways that n1 particles are found in the
first group of states, n2 particles are found in the second group of states, ni particles are found
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in the ith group of states, etc. Let us calculate the number of possible ways of obtaining this
distribution. Assuming that the location of a particle in a certain group of states does not
influence the positions of other particles, the total number of ways for a given distribution of
particles over groups of states to occur is given by the product of distributions inside each
group, i.e.

P (n1, n2 . . . , ni, . . .) = p(ni)p(n2) · · · p(ni) · · · (2.13)

where p(ni) is the number of ways to distribute ni particles inside a given group of states. Let
us perform this operation successively.

First, take n1 particles for the first state from the total number of n particles. There are
Cn1

n = n!
(n−n1)!n1!

ways to do this. Next, select n2 particles from the remaining n − n1

particles for the second state; this can be done in Cn2
n−n1

ways. Continuing this operation, we
determine the probability of the considered distribution of particles:

P (n1, n2, . . . ni, . . .) =
n!∏

i

(ni!)
(2.14)

where Const is a normalization constant. The basis of this formula is the assumption that the
particles are independent, so that the state of one particle does not influence the distribution
of the others.

2.5 The Boltzmann Distribution

Let us determine the most probable number of particles ni that are found in a state i for a
system of weakly interacting particles. Use the fact that ni � 1 and the number of ways P
of obtaining this distribution as well as its logarithm has a maximum at ni = ni. Introducing
dni = ni − ni and assuming ni � dni � 1, we expand the value ln P over dni near

the maximum of this value. Using the relation ln n! = ln
n∏

m=1
m ≈

n∫
0

ln xdx, we have

d ln n!/dn = lnn.
On the basis of this relation, we obtain from formulae (2.4) and (2.14):

ln P (n1, n2, · · ·ni, · · · ) = lnP (n1, n2, · · ·ni, · · · ) −
∑

i

lnni dni −
∑

i

dn2
i

2ni

The condition for the maximum of this value gives:∑
i

lnnidni = 0 (2.15)

Alongside this equation, we take into account the relations which follow from equations (2.11)
and (2.12):∑

i

dni = 0 (2.16)
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∑
i

εidni = 0 (2.17)

Equations (2.15) to (2.17) allow us to determine the average number of particles in a given
state. Multiplying equation (2.16) by − lnC and equation (2.17) by 1/T , where C and T are
characteristic parameters of this system, and summing the resultant equations, we have:∑

i

(
ln ni − ln C +

εi

T

)
dni = 0

Because this equation is fulfilled for any dni, we require the expression in parentheses to be
zero. This leads to the following expression for the most probable number of particles in a
given group of states:

ni = C exp
(
−εi

T

)
(2.18)

This formula is called the Boltzmann distribution. In the course of deducing this formula we
assume that the probability of finding a particle in a state i does not depend on the states of
other particles. It is valid for certain statistics of particles if the average population of one state
is small ni � gi. This is the criterion of validity for the Boltzmann distribution.

Let us determine the physical nature of the parameters C and T in equation (2.18), which
follows from the additional equations (2.11) and (2.12). From equation (2.11) we have
C
∑
i

exp(−εi/T ) = N , so that the value C is the normalization constant. The energetic

parameter T is the temperature of the system. One can see that this definition of the tempera-
ture coincides with (2.9).

Let us prove that at large n̄i the probability of observing a significant deviation from n̄i is
small. According to the above equations this value equals (compare with (2.7) and (2.15)):

P (n1, n2, · · ·ni · · · ) = P (n1, n2, · · ·ni, · · · ) exp

[
−
∑

i

(ni − ni)2

2ni

]
(2.19)

In fact, this formula coincides with the Gaussian distribution (2.4). From this it follows
that a shift of ni from the average value ni, at which the probability is not so small, is
|ni − ni| ∼ 1/

√
ni. Since ni � 1, the relative shift of a number of particles in one

state is small: |ni − ni| /ni ∼ 1/
√

ni. Thus the observed number of particles in a given
state differs little from its average value.

On the basis of the above analysis one can formulate the general features of a system of
weakly interacting particles when the number of particles is large. Then one can introduce the
distribution function of particles over states, which is proportional to the numbers of particles
in these states at a given time if we assume that the particles do not interact at that time. This
distribution over states is conserved in time with accuracy ∼ 1/

√
ni, where ni is the average

number of particles in a group of states i. Within the limits of this accuracy, one can define
the distribution function in another way. We observe one particle of the system for a long
time, when the particle is found in various states. Then the distribution function by states is
proportional to the total time during which the particle is found in these states or groups of
states. Within the limits of the above accuracy, both definitions of the distribution function are
identical. This correspondence between averaging over the phase space of particles and over
a long period of observation of one particle is known as the ergodic theorem.
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2.6 Statistical Weight, Entropy and the Partition Function

In formulae (2.15) and (2.19) the subscript i relates to a group of particle states. Below we
consider a general case when i includes a set of degenerate states. Then we introduce the
statistical weight gi of a state as a number of degenerate states i. For example, a diatomic
molecule in a rotational state with the rotational quantum number J has a statistical weight
gi = 2J + 1 that is the number of momentum projections on the molecular axis. Accounting
for the statistical weight, formula (2.12) takes the form:

ni = Cgi exp
(
−εi

T

)
where C is the normalization factor. In particular, this formula gives the relation between the
number densities of particles in the ground No and excited Ni states:

Ni = No
gi

go
exp

(
−εi

T

)
(2.20)

where εi is the excitation energy, and go and gi are the statistical weights of the ground and
excited states.

Let us introduce the entropy Si of a particle which is found in a given group of states:

Si = ln gi (2.21)

assuming an identical probability for particle location in each of these states. If another parti-
cle is found in a state of a group j, the total statistical weight for particle location in these states
is gij = gigj , and the total entropy of the system of these particles is Sij = ln gigj = Si +Sj ,
i.e. the entropy is the additive function. Generalizing the entropy definition for the case when
a particle can be found in several states, we obtain instead of formula (2.21)

S =
〈

ln
1
wi

〉
where wi is the probability of the particle being located in a given state, and an average is
taken over these states. Correspondingly, this formula may be rewritten in the form

S =
∑

i

wi ln
1
wi

By transferring to a system consisting of a certain number of particles or subsystems and
defining the entropy with an accuracy up to a constant for a given system of particles, one can
rewrite this expression for a system of n particles in the form

S = −
∑

i

ni ln ni (2.22)

where ni is the number of particles located in a given state (or the distribution function of
particles over states).


