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Polymorphism, a term derived from the Greek words for “much/many” (poly,
����� ) and “form” (morphē, ���	
� ), is used in disciplines as diverse as linguis-
tics, computer science, biology, genetics, and crystallography. In the life sciences
industry, two completely different types of polymorphism play a major role:
polymorphisms in DNA sequence and polymorphs of crystalline substances. In
the former, great strides are being made using polymorphisms in their DNA se-
quence to predict an individual’s susceptibility to disease and response to drugs,
making it possible to design and select appropriate drugs. In the latter, the poly-
morphic form of a drug substance or excipient can have a profound impact on
a spectrum of aspects, such as biological action, production, formulation and in-
tellectual property protection. This book deals exclusively with the polymorphs
of solids, covering not only polymorphs in the narrow sense, i.e., different crys-
talline forms of the same molecular entity, but also other solid-state forms rele-
vant to industry, such as solvates, salts, and the amorphous form.

Interest in the solid-state properties of drugs has grown tremendously in re-
cent decades as can be seen, for example, by the numerous conferences and
workshops organized by various scientific and commercial institutions. This in-
terest is well deserved. Anyone who has worked in the field for some time can
point to examples where insufficient understanding of solid-state properties has
led to serious setbacks. Problems encountered range from the sudden unex-
pected inability to produce reliably a form that has been used for pivotal clinical
studies and is the basis for registration documents to variations in the drug
product properties due to seemingly random changes of the solid form during
processing or storage. Conversely, a thorough understanding of solid-state prop-
erties can create opportunities, which are increasingly being exploited for the
benefit of both the company and the patient. Not only can patent protection be
broadened or prolonged, and production made more efficient and cheaper, but
the properties of the drug can also be improved to the advantage of the patient.

Increasing recognition of the importance of polymorphism to the life sciences
industry has generated a great deal of interest and the field has been evolving
rapidly. Given the pace of recent developments, an update is both useful and
timely. This book discusses the whole breadth of the subject, covering all rele-
vant aspects of solid-state issues for the pharmaceutical industry. It should act
as a manual and a guideline for scientists dealing with solid-state issues, and
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serve both as an introduction to people new to the field and as a source for ex-
perts to round off their knowledge. It also provides valuable information for
scientists working in other areas where solid-state issues are important, such as
animal health, agrochemical, and specialty chemical industries.

Chapters are organized according to the following aspects of polymorphism:
relevance, tools, properties, practical approaches, and legal issues. Chapter 1 dis-
cusses the relevance of solid-state forms in the pharmaceutical industry and
makes recommendations on how best to approach solid-state issues. Chapter 2,
on the thermodynamics of polymorphs, provides the theoretical tools needed to
understand solid-state behavior. Chapters 3 to 7 give detailed descriptions, in-
structions, and hints on how to characterize solids, since solid-state behavior
can only be understood after thorough characterization. Such an understanding
is crucial to making the right decisions at key stages of drug development and
production. Chapters 8 to 10 highlight the properties and importance of solid-
state forms that are not included in the narrow definition of polymorphism,
namely, solvates, hydrates and the amorphous form. Essential practical aspects
for development scientists are described in Chapters 11 to 13, which deal with
identifying relevant polymorphs, finding optimal salts and controlling solid-state
behavior during processing. The last two chapters discuss legislative aspects of
solid-state properties. Often, solid-state forms can be protected by patents, which
may create significant financial benefits. Chapter 14 outlines the principles of
intellectual property protection and provides relevant examples. Finally, since
the solid form can have an impact on the safety and efficacy of drugs, Chapter
15 explains regulatory issues in connection with solid-state behavior. Rules,
based on scientific considerations, are elucidated.

The broad range of topics discussed in this text, from thermodynamics to le-
gal issues, emphasizes the complexity of the subject. It also demonstrates that
the challenges and opportunities connected with solid-state properties can only
be addressed successfully through an integral approach that considers all these
aspects.

The strength of this volume lies in the quality of its contributions. My sincere
thanks go to every author for the excellent standard of their submissions and
their engaged cooperation. The balance of contributions from industry, acade-
mia and government highlights the far-reaching importance of the subject.
From a personal perspective, I very much appreciated the fact that after develop-
ing the concept for this book and inviting authors to submit chapters on specif-
ic themes, colleagues willingly agreed to do so despite their very busy schedules.
Finally, I thank Wiley-VCH for recognizing the timeliness of such a volume and
Dr. Elke Maase and Dr. Bettina Bems for an enjoyable collaboration in the prep-
aration of this book.

Basel, January 2006 Rolf Hilfiker
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Rolf Hilfiker, Fritz Blatter, and Markus von Raumer

1.1
Introduction

Many organic and inorganic compounds can exist in different solid forms [1–6].
They can be in the amorphous (Chapter 10), i.e., disordered, or in the crystal-
line, i.e., ordered, state. According to McCrone’s definition [2], “The polymorph-
ism of any element or compound is its ability to crystallize as more than one
distinct crystal species”, we will call different crystal arrangements of the same
chemical composition polymorphs. Other authors use the term “polymorph”
more broadly, including both the amorphous state and solvates (Chapter 15).
Since different inter- and intramolecular interactions such as van der Waals in-
teractions and hydrogen bonds will be present in different crystal structures, dif-
ferent polymorphs will have different free energies and therefore different phys-
ical properties such as solubility, chemical stability, melting point, density, etc.
(Chapter 2). Also of practical importance are solvates (Chapter 8), sometimes
called pseudopolymorphs, where solvent molecules are incorporated in the crys-
tal lattice in a stoichiometric or non-stoichiometric [6, 7] way. Hydrates (Chapter
9), where the solvent is water, are of particular interest. If non-volatile molecules
play the same role, the solids are called co-crystals. Solvates and co-crystals can
also exist as different polymorphs, of course.

In addition to the crystalline, amorphous and liquid states, condensed matter
can exist in various mesophases. These mesophases are characterized by exhibit-
ing partial order between that of a crystalline and an amorphous state [8, 9].
Several drug substances form liquid crystalline phases, which can be either ther-
motropic, where liquid crystal formation is induced by temperature, or lyotropic,
where the transition is solvent induced [10–12].

Polymorphism is very common in connection with drug substances, which
are mostly (about 90%) small organic molecules with molecular weights below
600 g mol–1 [13, 14]. Literature values concerning the prevalence of true poly-
morphs range from 32% [15] to 51% [16, 17] of small organic molecules. Ac-
cording to the same references, 56 and 87%, respectively, have more than one
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solid form if solvates are included. When a compound is acidic or basic, it is of-
ten possible to create a salt (Chapter 12) with a suitable base or acid, and such
a salt can in turn often be crystallized. Such crystalline salts may also exist as
various polymorphs or solvates. Obviously, solvates, co-crystals and salts will
have different properties from the polymorphs of the active molecule. Since
salts generally have higher water solubility and bioavailability than the corre-
sponding uncharged molecule, they are popular choices for drug substances.
About half of all active molecules are marketed as salts [14, 18]. Polymorphs,
solvates, salts, and co-crystals are schematically depicted in Fig. 1.1. We will use
the term “drug substance” for the therapeutic moiety, which may be a solvate,
salt or a co-crystal, while the single, uncharged molecule will be called the “ac-
tive molecule”.

Most drug products (formulated drug substances) are administered as oral
dosage forms, and by far the most popular oral dosage forms are tablets and
other solid forms such as capsules. Drugs for parenteral application are also of-
ten stored as solids (mainly as lyophilized products) and dissolved just prior to
use since in general the chemical stability of a molecule in the solid form is
much higher than in solution. Drugs administered by inhalation have become
increasingly popular, and dry powder inhalers are now commonly in use. Evi-
dently, therefore, both the solid form of the drug substance and the selected ex-
cipients have a strong impact on the properties of the formulated drug. Even if
the envisaged market form of the drug is a solution, information about the sol-
id-state properties of the drug substance may still be necessary [19]. If different
forms have significantly different solubilities, it may be possible to unintention-
ally create a supersaturated solution with respect to the least soluble form by
creating a concentrated solution of a metastable form. Also, the drug substance
will in most cases be handled as a solid in some stages of the manufacturing
process, and its handling and stability properties may depend critically on the
solid form.

1 Relevance of Solid-state Properties for Pharmaceutical Products2

Fig. 1.1 Schematic depiction of various types of solid forms.



In fact, the whole existence of a drug is affected by the properties of the solid
form, and the final goal of solid form development is to find and select the sol-
id with the optimal characteristics for the intended use.

Initially, when the drug substance is first produced, one has to be certain that
the desired solid form is obtained in a consistent, pure and reproducible man-
ner. Subsequently, when it is formulated to obtain the drug product, one has to
make sure that no undesired transitions occur (Chapter 13). For this phase, a
profound knowledge of potential solvate formation is especially useful. It is
highly advisable to avoid using solvents that can form solvates with the drug
substance in the formulation process. Otherwise, such solvates might be gener-
ated during formulation and subsequently desolvated in a final drying step. In
such a situation the final polymorph would probably differ from the initial one
– an undesirable effect in most cases. Similarly, the energy–temperature dia-
gram (Chapter 2) of the polymorphs and the kinetics of the change from one
polymorph into another should be known so that one can be sure that tempera-
ture variations during the formulation process will not lead to an unacceptable
degree of change in the solid form.

In the next step, when the drug substance or drug product is stored during
its shelf-life, it is imperative that the solid form does not transform over time.
Otherwise, important properties of the drug might change drastically. Stability
properties have to be evaluated with respect to ambient conditions, storage, and
packaging. Thermodynamic stability depends on the environment. A solvate, for
example, represents a metastable form under ambient conditions but is likely to
be the most stable form in its solvent. Thermodynamically, any metastable form
will eventually transform into a more stable form. The kinetics under which
this transformation occurs, however, are polymorph specific. Therefore, the exis-
tence of a more stable polymorph does not necessarily imply that a metastable
polymorph cannot be developed.

In the final step, when the patient takes the drug, the solubility and dissolu-
tion rate of the drug substance will be influenced by its solid form. This will af-
fect the bioavailability if solubility is a rate-limiting step, i.e., if the drug belongs
to class 2 or 4 of the biopharmaceutics classification system (BCS) [20]. Because
a change of solid form may render a drug ineffective or toxic, regulatory autho-
rities demand elucidation and control of solid-state behavior (Chapter 15).

Finally, thorough, experimentally obtained knowledge of the solid-state behav-
ior also has the advantages that a good patent situation for a drug substance
can be obtained and that valuable intellectual property can be generated (Chap-
ter 14). Although in hindsight everything may appear to be easy and straightfor-
ward, crystalline molecular solid-state forms are non-obvious, novel and require
inventiveness. For instance, typically, many attempts to crystallize an amor-
phous drug substance fail until, suddenly, a stable crystalline form is obtained.
Once seed crystals are available, the crystallization becomes the simple last step
of a production process.
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1.2
Drug Discovery and Development

Typically, it takes eight to twelve years, or sometimes even longer, for a mole-
cule with biological activity to progress from its first synthesis to market intro-
duction as an efficacious, formulated drug [21]. This process is normally divided
into two main phases: (a) research or discovery and (b) development [22]. In the
research phase, the appropriate target for a particular disease model is identified
and validated, and candidate molecules are synthesized or chosen from libraries.
They are primarily tested with respect to binding affinity to the target or, if pos-
sible, directly for their potential to alter a target’s activity. Sometimes other pa-
rameters, such as selectivity, are also considered. Promising candidates are
usually termed “hits”. As a rule at this stage, limited attention is paid to the
possibility to formulate a drug for a certain administration route. Often, from a
drug delivery aspect, simple vehicles like DMSO solutions are used. As a result,
the activity of especially poorly water-soluble drugs may not be identified at all
because they precipitate under the used in vitro conditions [23]. In a medicinal
chemistry program the “hits” are then modified to improve physicochemical pa-
rameters such as solubility and partition coefficient. This is the first time that
solid-state properties come into play. When solubility is evaluated, it is critical to
know whether the solubility of an amorphous or crystalline substance was mea-
sured. Permeation measurements are performed using, e.g., Caco-2 [24], PAM-
PA [25] or MDCK [26] assays, and dose–response studies are conducted in in vi-
tro models. Selectivity is assessed in counter screens. At the same time, prelim-
inary safety studies are carried out, and IP opportunities are assessed. Struc-
ture–activity relationship (SAR) considerations play a large role at this stage.

Molecules that show promise in all important aspects are called “leads”. Often
several series of leads are identified and are then further optimized and scruti-
nized in more sophisticated models, including early metabolic and in vivo stud-
ies. Both pharmacokinetics (PK, the quantitative relationship between the admi-
nistered dose and the observed concentration of the drug and its metabolites in
the body, i.e., plasma and/or tissue) and pharmacodynamics (PD, the quantita-
tive relationship between the drug concentration in plasma and/or tissue and
the magnitude of the observed pharmacological effect) are studied in animal
models to predict bioavailability and dose in humans. Simultaneously with char-
acterization of the drug substance, a proper dosage form needs to be designed,
enabling the drug substance to exert its maximum effect. For freely water-solu-
ble drugs this is less critical than for poorly water-soluble drugs, which without
the aid of an adequate dosage form cannot be properly investigated in the re-
search stage. In the discovery phase, high-throughput methods play an increas-
ingly important role in many aspects, such as target identification, synthesis of
potential candidate molecules, and screening of candidate molecules. Consider-
ing that only about 1 out of 10 000 synthesized molecules will reach the market
[21], high-throughput approaches are a necessity. The optimal molecule arising
from these assessments is then promoted to the next stage, i.e., development.
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The development process of a pharmaceutical product is depicted in Fig. 1.2. It
consists of a non-clinical and a clinical phase. While drug companies’ approaches
to the non-clinical phase can differ somewhat, the clinical phase is treated very
similarly due to regulatory requirements. In the non-clinical phase enough data
is gathered to compile an Investigational New Drug Application (IND) in the
US or a Clinical Trial Application (CTA) in the European Union, which is the pre-
requisite for the first use of the substance in humans. For obvious reasons, partic-
ular emphasis is placed on toxicology studies during this phase, including assess-
ment of toxicity by single-dose and repeated-dose administration and evaluation of
carcinogenicity, mutagenicity and reproductive toxicity. An absolute necessity at
this stage is that the drug is maximally bioavailable, resulting in sufficient expo-
sure of the animals to the drug to obtain an adequate assessment of its toxicity
profile. Whenever possible, the need for animal studies is reduced by using,
e.g., human cell in vitro tests. The non-clinical development phase lasts between
one and two years, and the attrition rate is ca. 50% (Fig. 1.2). At the end of the
non-clinical phase, the decision has to be made whether the neutral molecule, a
salt, or a co-crystal will be developed. If a salt form or co-crystal is chosen, it
has to be clear which salt (Section 1.4.1) or co-crystal is optimal. In the clinical
phases the product is first tested on healthy volunteers and then on small and
large patient populations. For certain disease indications, like oncology, Phase I
studies are performed directly on patients. Approximate population sizes are given
in Fig. 1.2. One has to bear in mind, however, that these numbers depend signif-
icantly on the indication the drug is intended to treat. Attrition rates during the
clinical phases are between 80 and 90%. During the clinical phases, analytical,
process and dosage-form development continues in parallel with long-term toxi-
cology studies. Of course, solid-state properties continue to play a crucial role dur-
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Fig. 1.2 Drug development process with a description of respective phases,
approximate number of test persons, timelines and attrition rates. These
numbers are a rough guideline only and can differ significantly according
to the specific indication, the characteristics of the drug substance, etc.



ing both chemical development of the drug substance and pharmaceutical devel-
opment of the dosage form.

1.3
Bioavailability of Solids

An issue that has to be addressed for every drug product, and which is closely
related to its solid-state properties, is whether its solubility and dissolution rate
are sufficiently high. This leads to the question of what the minimal acceptable
solubility and dissolution rates are.

Bioavailability essentially depends on three factors: solubility, permeability
and dose [27], and the question of minimal acceptable solubility can only be an-
swered if the other two factors are known. According to the BCS a drug sub-
stance is considered highly soluble when the highest strength dosage is soluble
in 250 mL of aqueous media over the pH range 1.0–7.5 [28].

A valuable concept for estimating what the minimum solubility of a drug sub-
stance for development purposes should be uses the maximum absorbable dose
(MAD) [29, 30]. MAD corresponds to the maximum dose that could be absorbed
if there were a saturated solution of the drug in the small intestine during the
small intestinal transit time (SITT �270 min). The bioavailable dose is smaller
than MAD due to metabolism of components in the portal blood in the liver
(first pass effect) and in the intestinal mucosal tissue [20]. MAD can be calcu-
lated from the solubility, S, at pH 6.5 (corresponding to typical conditions in
the small intestine), the transintestinal absorption rate (Ka), the small intestinal
water volume (SIWV �250 mL) and the SITT.

MAD (mg) = S (mg mL–1)�Ka (min–1)�SIWV (mL)�SITT (min) (1)

Human Ka can be estimated from measured rat intestinal perfusion experi-
ments [30, 31]. It is related to the permeability (P) through SIWV and the effec-
tive surface of absorption (Sabs) [20].

Ka (min–1) = P (cm min–1)�Sabs (cm2)/SIWV (mL) (2)

In the absence of active diffusion, permeability is related to the diffusion coeffi-
cient (D), the partition coefficient K (= cin membrane/cin solution) and the mem-
brane thickness (�).

P (cm min–1) = D (cm2 min–1)�K/� (cm) (3)

In reality, proportionality between the partition coefficient and the permeability
is only found for a rather small range of partition coefficients [24, 32]. This is
because the model of a single homogeneous membrane is an oversimplification.
The intestinal wall is better represented by a bilayer membrane consisting of an
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aqueous and an adjoining lipid region. Therefore, for highly lipophilic sub-
stances, the water layer becomes the limiting factor and leads to a decrease in
permeability as K is increased [33].

Implicit in Eq. (1) is that the solution stays saturated during the SITT and
therefore that there is a large excess of solid drug in the small intestine. In de-
riving this equation as a limiting case, the authors [29] took into account the
dissolution kinetics of a polydisperse powder and showed how the percentage of
the dose that is absorbed is influenced by solubility, particle size and permeabil-
ity. They showed that for highly soluble drugs, as defined above, the percentage
of dose absorbed is only limited by permeability. For smaller solubilities, the
dissolution rate and hence the particle size become important factors as well.
The influence of particle size is greatest for low-solubility and low-dose drugs.

MAD readily translates into minimal acceptable solubility [30].

Minimal acceptable solubility= S� {target dose (mg)/MAD}
= target dose/{Ka�SIWV�SITT} (4)

Realistic values for Ka lie between 0.001 and 0.05 min–1 and vary over a much nar-
rower range than typical solubilities (0.1 �g mL–1 to 100 mg mL–1) [30]. Consider-
ing these facts and assuming a typical dose of 70 mg, i.e., 1 mg kg–1, minimal ac-
ceptable solubilities between 20 �g mL–1 and 1 mg mL–1 are obtained. When mak-
ing these estimates, one has to keep in mind that the assumptions of the model
break down if there is possible absorption in other parts of the gastrointestinal
tract or if the diffusivity of the drug is changed due to the meal effect, etc. [34].
Furthermore, it is important to realize that S represents a “kinetic” solubility. A
weakly basic drug might be freely soluble in the stomach while its equilibrium sol-
ubility in the small intestine might be very low. Nevertheless, it may remain in the
supersaturated state in the small intestine, in which case that “kinetic” solubility
would be the relevant one for calculating the MAD.

1.4
Phases of Development and Solid-state Research

Normally, solid-state research and development involves the following stages,
which may also overlap:

� deciding whether the uncharged molecule or a salt should be developed;
� identifying the optimal salt;
� identifying and characterizing all relevant solid forms of the chosen drug

substance;
� patenting new forms;
� choosing a form for chemical and pharmaceutical development;
� developing a scalable crystallization process to obtain the desired form of the

drug substance;

1.4 Phases of Development and Solid-state Research 7



� developing a method to determine the polymorphic purity of the drug sub-
stance;

� formulating the drug substance to obtain the drug product;
� developing a method to determine the polymorphic purity of the drug sub-

stance in the drug product.

Not all of these stages may be necessary for every drug substance, and the order of
the stages may be varied according to the specific properties and behavior of the
drug. Particularly for drugs that are poorly water soluble, polymorphism in formu-
lations can play a crucial role since it could significantly influence the dissolution
rate and degree of dissolution required to achieve adequate bioavailability.

1.4.1
Salt Selection

Clearly, the first decision is whether it is more desirable to develop the un-
charged molecule or, if possible, a salt thereof (Chapter 12). In general, salt for-
mation will be possible if the molecule contains acidic or basic groups, which is
the case for most active molecules. Since making a salt will normally involve an
additional step in the synthesis and since the molecular weight of a salt will al-
ways be higher than that of the neutral molecule, salts will only be chosen if
they promise to have clear advantages compared with the free acid/base. As a
rule, a salt is chosen if the free acid/base has at least one of the following unde-
sirable properties:

� very low solubility in water;
� apparently not crystallizable;
� low melting point (typical cutoff 80 �C [35]);
� high hygroscopicity;
� low chemical stability, etc.;
� IP issues.

Low water solubility is relative and always has to be assessed in the context of
dose and permeability (Section 1.3). A very low water solubility may mean a
high lipophilicity, enabling efficient passage through membranes, or a very
large binding constant with the receptor, allowing a low dose. Also, the amor-
phous state of a neutral molecule may be the best option to get high oral bio-
availability, provided the amorphous form can be kinetically stabilized over a
reasonable time scale. Therefore, the decision to develop a salt should be based
on a head-to-head broad comparison, taking into consideration both in vivo per-
formance and physicochemical properties. If the decision has been made to de-
velop a salt, it is obviously important to carry out a broad salt screening and salt
selection process to identify the optimal salt. Potential counterions are chosen
based on pKa differences, counterion toxicity (preferably GRAS status [18, 36]),
etc. (Chapter 12). Desirable properties of the salts include crystallinity, high
water solubility, low hygroscopicity, good chemical stability, and high melting
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