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XIII

The normal, intact immune system does not have equal probability of responding
to every potential part of a protein. It has been known for more than 50 years that
only parts of the protein that are “outside” are available for antibody binding. Yet,
with the advent of Western blotting techniques, antibodies that react with the inte-
rior of the protein have been routinely produced. Although not all epitopes are
equally easy to produce, or are equally protective in infection, nearly any structure
can be an antibody epitope.

In contrast to antibodies, T cells must recognize fragments of proteins bound to
MHCmolecules. In T-cell responses against viruses, very few epitopes are easily iden-
tified. In the case of LCMV, the immune response in BALB/c mice uses only a single
MHC class I protein: L. K and D are not used at all. This is not because there are no
suitable peptides that can bind K and D proteins, as BALB/cmice that lack Lmake an
excellent response to LCMV. Furthermore, only a single peptide from the LCMVgen-
ome accounts for more than 90% of the CD8 Tcells responding to infection. Because
LCMV has a coding size of approximately 3500 amino acids, the immune system fix-
ates 9 of 3500 amino acids, or about 0.2%of the coding capacity.

This fixation on a small part of the potential antigenic space is not unique to
LCMV in BALB/c mice. Most pathogens in inbred mice show similar immunodo-
minance. Even in response to bacteria, where the pathogen genome size is much
larger, dominance is observed. The CD8 T-cell response to Listeria monocytogenes
infection is dominated by very few epitopes in both C57Bl/6 and BALB/c mice.
With a genome size of almost three million base pairs, the majority of the
response is restricted to two or three epitopes. The immune system is choosing
only about 0.002% of the coding sequence to recognize.

Why is this so? Clearly, there are many mechanisms at work. In this volume we
cover topics including (1) the mechanisms of antigen processing, i.e., how patho-
gen molecules are converted to molecules that are targets for cell-mediated immu-
nity; (2) binding of processed peptides to MHC molecules, a critical step in their
expression on the cell surface; and (3) the role of the pathogen itself in modifying
the immune response by interfering with antigen processing and the downstream
immune responses.

Preface
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We have not yet completed the puzzle of immunodominance, but the chapters
here represent our current understanding of its pieces.

I thank Andreas Sendtko for encouragement and enthusiasm for this book.

Jeffrey A. Frelinger Chapel Hill, October 2005
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Color Plates

Figure 1.3 Production of peptide-loaded
class I MHC. Class I MHC heavy chain and
b2m are translocated separately into the ER.
Immediately when accessible, Asn86 of the
heavy chain is glycosylated, allowing for
recognition by the chaperone calnexin.
(1) Calnexin also recruits Erp57, which med-
iates disulfide bond formation in a3 and a2
of class I heavy chain. (2) Once the heavy
chain is folded and the disulfide bond in a3
is formed, soluble b2m binds to class I heavy
chain. While the MHC class I molecule is
being formed (cycling on and off calnexin),
newly translated tapasin associates with

calnexin and ERp57, both of which facilitate
its folding and disulfide bond formation.
Tapasin with calnexin–ERp57 then binds and
stabilizes the TAP1/2 dimer. (3) Upon bind-
ing of b2m, calnexin dissociates and is
replaced by calreticulin. The class I heavy
chain–b2m–calreticulin–ERp57 heterocom-
plex then associates with the tapasin–TAP–
calnexin–ERp57 heterocomplex. ERp57
remains part of the peptide-loading complex
(PLC) until peptide has been loaded, but it is
not known whether ERp57 comes with tapa-
sin or the class I molecule. (4) The PLC now
consists of TAP, tapasin, heavy chain, b2m,



XX Color Plates

Figure 1.3 (continued)

calreticulin, and ERp57. (5) Proteasomes in
the cytosol degrade substrates, generating
peptides of varying length. (6) Large protea-
somal products can be further cleaved in the
cytosol by aminopeptidases such as TPPII.
(7) Peptides with affinity for TAP will bind,
and ATP-induced conformational changes in
TAP will transport it through the ER mem-
brane. (8) ERAP1 performs amino-terminal
trimming in the ER. (9) These peptides may
go directly into the PLC, or they may be retro-
translocated back into the cytosol through
SEC61 and have to enter the ER again via

TAP. (10) If the amino acid motif of the pep-
tide matches the class I MHC molecule, it
will then bind in the peptide groove, indu-
cing a conformational change that stabilizes
peptide binding. ERp57 will mediate the dis-
ulfide formation in a2, “locking” the peptide
in. (11) If the correct conformational change
is induced, all chaperone molecules will dis-
sociate. (12) The trimer of class I heavy
chain–b2m–peptide is shuttled from the ER
to the Golgi apparatus and subsequently to
the plasma membrane of the cell.
(This figure also appears on page 20.)

Figure 2.1 General pathway of exogenous
antigen processing. Depicted is the general
pathway of exogenous antigen processing
and presentation. Numbered yellow circles
indicate steps of the pathway at which varia-
tions can occur that will alter the hierarchy of
peptide–class II complexes expressed by the
APC (see text for details). (1) Relative levels
of Ii isoforms (i.e., p31Ii vs. p41Ii, Section
2.2.1); (2) Effects of cell signaling (Sections
2.2.2 and 2.3); (3) Receptor-mediated antigen
internalization and intracellular trafficking

(Section 2.3); (4) Proteolytic processing of
internalized antigen (Section 2.4.1); (5) Role
of DM and DO in class II peptide loading
(Section 2.4.2), (6) Intravesicular distribution
of processing proteins (Section 2.4.2.4); (7)
Exosomes and the cell-surface delivery of pep-
tide–class II complexes (Section 2.4.3) (8)
MHC class II signaling and partitioning of
peptide–class II complexes into membrane
microdomains (Section 2.4.3.2). PM: plasma
membrane; EE: early endosome
(This figure also appears on page 32.).
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Figure 3.1 Possible mechanisms involved in
immunodomination (a) Preemption of critical
elements of the synapse by the dominant T
cell. (b) Engagement of inhibitory receptors
by the submissive T cell. (c) Lack of adequate
directed secretion of APC factors. TD = domi-

nant T cell; TS = submissive T cell TCR/MHC
molecules are shown in red, costimulator
ligands and receptors in blue, inhibitory
receptors in orange, APC factors in white.
(This figure also appears on page 20.)
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Figure 6.6 Shifts in repertoire and immuno-
dominance following primary and secondary
exposures to antigen. As primary immune
responses are initiated, antigen-specific T
cells become activated and expand in number.
This results in a discernable shift in the T-cell
repertoire as antigen-specific cells, indicated
here in red, green, and blue, increase in fre-
quency. A contraction phase ensues, following
clearance of the inducing antigen; however,
this downsizing is typically proportional. Con-
sequently, the skewing of the repertoire and -

the hierarchy of immunodominance that
develops during the expansion phase are
imprinted on the memory pool. This phenom-
enon is sometimes referred to as immunolo-
gical scarring. Although the repertoire and
hierarchies of the primary effector and mem-
ory pools are usually similar, marked differ-
ences can arise following rechallenges. In this
illustration, the red responders become most
dominant. (This figure also appears on page
120.)

Figure 6.8 Continuous antigenic stimulation
can drive responding CD8 T cells to deletion.
Certain foreign antigens are not rapidly
removed by the actions of the host’s immune
response. This is perhaps best exemplified by
persistent viral infections. In these instances
an initial response becomes detectable,
resulting in repertoire shifts and the develop-
ment of immunodominance. If the infection
is not cleared by the overall immune

response, then the responding cells may be
subject to repetitive antigenic stimulation.
Under these conditions certain clones and
specificities of CD8 T cells may succumb to
deletion, resulting in further changes in reper-
toire and epitope hierarchies. Notably, the
deletion of CD8 T cells is exacerbated by the
absence of CD4 T-cell help.
(This figure also appears on page 128.)
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Figure 9.1 Antigen specificity in the lung air-
ways following influenza virus infection.
Three dominant epitopes and seven subdomi-
nant epitopes account for approximately 78%
of the total CD8+ T-cell response to influenza
virus infection in the lung airways. The
remaining 22% of the CD8+ T-cell response is
undetermined at this time. Two dominant
and at least seven subdominant epitopes

account for approximately 60% of the total
CD4+ T-cell response to influenza virus infec-
tion in the lung airways. The remaining 40%
of the CD4+ T-cell response is undetermined
at this time. Some of the CD4+ T-cell epitopes
are listed as putative because detailed charac-
terization of the epitopes has not yet been
performed. (This figure also appears on page
192.)
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3 Figure 10.4 Identification of HLA-B*3501-
restricted HIV-1 CTL epitopes by a method
using reverse immunogenetics. (1) HLA-
B*3501 molecules are isolated from HLA-
negative cell lines transfected with the HLA-
B*3501 gene. Peptides are eluted from iso-
lated HLA-B*3501 molecules, and then the
eluted peptides are sequenced to determine
Immunodominant HIV-1 Epitopes Presented
by HLA Allelesthe motif of HLA-B*3501-bind-
ing peptides. HLA-B*3501-binding peptide
possessed Pro at position 2 and hydrophobic
residues Tyr, Phe, Met, Leu, and Ile at the C-
terminus. (2) 8-mer to 11-mer HIV-1
sequences carrying the HLA-B*3501 anchor
residues at position 2 and the C-terminus are
selected and synthesized. (3) Synthesized
HIV-1 peptides are tested for binding to HLA-
B*3501 by a peptide-binding assay such as
the HLA class I stabilization assay. (4) HLA-
B*3501-binding peptides are further used to
induce peptide-specific CTLs from PBMCs of
HLA-B*3501-positive, HIV-1-infected indivi-
duals. The PBMCs are stimulated with each

HLA-B*3501-binding peptide or cocktails of
the peptides. Peptide-stimulated PBMCs are
cultured for approximately 14 days. Peptide-
specific CTLs or CD8+ T cells are identified by
measuring the cytotoxic activity of cultured
PBMCs toward peptide-pulsed cells or by
measuring the production of IFN-c by CD8+ T
cells in cultured PBMCs stimulated with pep-
tide-pulsed cells. The peptides showing a
positive response are considered epitope can-
didates. (5) To clarify whether the peptides
are recognized as naturally occurring peptides
by specific CTLs or CD8+ T cells, cells infected
with HIV-1 or HIV-1 recombinant vaccinia
virus are used to stimulate IFN-c production
or for CTL activity. When peptide-specific T-
cell clones or lines kill target cells infected
with HIV-1 or HIV-1 recombinant vaccinia
virus or produce IFN-c after being stimulated
with cells infected with HIV-1 or HIV-1 recom-
binant vaccinia virus, the peptides that these
T cells recognize are concluded to be naturally
occurring HIV-1 epitope peptides.
(This figure also appears on page 214.)
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