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Preface

The world-wide demand for energy is growing exponentially. In the middle of the nineteenth
century mankind’s energy consumption was less than half a Q/century (1Q ∼ 1021 Joules), in
1851–1950 it had increased to 4Q/century, and in the half century 1951–2000 it was ∼ 15 Q.
Estimates of the world reserves of fossil fuels keep changing — perhaps these reserves are
∼ 100 Q, and even if this is a substantial underestimate, it is likely that they would be depleted
within a century, particularly when the rapidly increasing demand for energy from the recently
industrialized nations of the East is included in the reckoning. Reactors based on the fusion
of light elements may provide an almost unlimited supply of energy in the future.

There are other considerations that make the development of fusion reactors a worth-while
task. As remarked recently in the New Scientist, “Burning fossil fuels and using the atmo-
sphere as an open sewer has turned out to be a recipe for disaster. The Earth is warming and
the pace is quickening.” Fission reactors are likely to provide the short-term replacement for
oil and gas and the development of renewable energy sources, like wind and wave power is
progressing, but much too slowly. It seems unlikely that the latter will be sufficient in the long
run and the supply of U235 is even more limited than fossil fuels, not to mention the prob-
lems of storing radioactive waste and of proliferating bomb-making capacity. Fast-breeder
reactors, consuming the much more common U238, could provide a long-term solution, but
these reactors are potentially more vulnerable to accidents and would produce large amounts
of plutonium that could be used in nuclear weapon production.

The fusion of light nuclei such as deuterium and tritium offers an alternative energy supply
without the disadvantages of the fossil and fission sources. While a fusion reactor would
generate some radioactive waste, this is believed to be largely short-lived and manageable.
However, the serious problem with fusion is the enormous temperature required to overcome
the repulsive force between colliding charged particles. The nuclei have to clash together
with the speeds achieved at temperatures about 12 times hotter than the centre of the Sun,
which also operates on fusion, but at densities some 1012 times greater than reactor values. At
these enormous temperatures confining the gas long enough for appreciable fusion reactions to
occur is a major problem. Strong magnetic fields provide the only possible constraint over the
motions of such energetic particles, and the most successful device employing this principle
is known as a tokamak.

A tokamak (Toroidal Kamera Magnitnaya, invented in the Soviet Union in the late 1950s)
is a toroidal chamber carrying a strong toroidal magnetic field to trap a high temperature
plasma. For a tokamak containing deuterium and tritium in equal parts to become a fusion
reactor, temperatures exceeding 2×108 K are required. The Joint European Torus (JET) at
Culham Laboratory, Oxfordshire, UK, has reached more than half of the required tempera-
ture, but the triple product of the ion number density ni, the energy confinement time τE and
temperature T , still falls well short of the value 3×1021 s m−3 keV required for ignition; in
some D-T fusion experiments in JET a value of 8.7×1020 s m−3 keV has been attained.



XII Preface

A survey of the situation in the journal Nuclear Fusion, Vol. 39, no. 12, December, 1999,
commenced with the words:

“Magnetic fusion energy research has reached the point where a tokamak burning
plasma facility in which the thermonuclear heating balances (or is comparable to)
transport and radiation losses for periods of 1000 s or longer can be seriously con-
templated as an appropriate next step. Achieving this goal would be a major step
forward, both in science and in technology, towards the ultimate goal of magnetic
fusion generation of electric power with significant environmental advantages.”

This volume of Nuclear Fusion was entirely devoted to explaining the background sci-
ence and technology involved in the design of the International Thermonuclear Experimental
Reactor (ITER), of which there are two versions: Ignition ITER, which has a major radius
of 8.14 m and an estimated cost of 5870 million (1989) dollars and a less ambitious tokamak
called High-Q ITER, with a major radius of 6.2 m, costing 2755 million (1989) dollars and
for which ignition is not the main goal.

On 28th June, 2005, it was announced that High-Q ITER would be constructed at
Cadarache in the south of France; it has the aim of achieving an extended burn, with a ratio
of fusion power to auxiliary heating power of at least 10, and it is expected to begin operating
by 2015. The parties involved are China, the European Union, Japan, the Russian Federation,
South Korea, and the United States. The group emphasized “the importance of exploring the
long-term potential of fusion energy as a virtually limitless, environmentally acceptable and
economically competitive source of energy" and said they advocated “wide international co-
operation in developing this source of energy for all mankind". It is forecast that terrestrial
fusion energy is likely to become a practical energy source by ∼2045. Presently, there are
more than 44 experimental tokamaks in laboratories around the globe, so the theory of these
machines is of continuing interest and seems likely to remain so for some decades.

Whether or not the project is practicable is difficult to judge at this stage, but in view of the
impending long-term energy crisis, it is important to continue the research and development,
which dates from the early 1950s. Also, apart from their likely relevance to the looming energy
crisis, tokamaks are useful apparatuses for a variety of experiments involving high energy
phenomena, radiation, and for obtaining a better understanding of the behaviour of plasmas,
which constitute more than 95% of the universe. One obvious gap in the tokamak literature
concerns the economics of fusion reactors, not merely their cost in relation to competitive
energy sources, but more importantly the energy investment required in their construction and
the time over which a reactor would need to operate to recover this investment. When the
basic physics and technology are better understood, this gap will need to be filled.

The last 100 pages of my text on the Principles of Magnetoplasma Dynamics (Clarendon
Press, Oxford, 1987) were devoted to the theory of tokamak machines and since then a number
of books have appeared on the subject, most notably the treatise entitled Tokamaks (Clarendon
Press, Oxford, 3rd ed, 2004) by John Wesson and some of his colleagues working at Culham
Laboratory. My aim here is to present an improved and enlarged version of my original
treatment of tokamak theory, to make more comparisons of the theory with observations and to
give explanations of some recently discovered phenomena. Although my theoretical approach
is quite different from the accepted treatments, it has the merit of yielding good agreement
with a wide range of observations and of being a ‘complete’ theory, in that the empirical input
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is negligible. When and why it departs from received tokamak theory, as set out for example
in Wesson’s treatise, is noted appropriately in the text, which is mainly concerned with the
complexities of thermal and particle transport in toroidal geometry; for an introduction to
the more straightforward MHD calculations of stability, etc., and some of the technical issues
involved, besides Wesson’s text there is the volume of Nuclear Fusion cited above, and a work
by Miyamoto entitled Fundamentals of Plasma Physics and Controlled Fusion, (Iwanami
Book Service Center, Tokyo, 1997).

The physical principle that underlies most of the theory in this text is as follows. By
Fourier’s law the heat flux vector q is related to the temperature gradient by q = −κ∇T ,
where κ is the thermal conductivity. If the gradient ∇T is orthogonal to the magnetic field
B = bB, then κ is proportional to 1/(ωcτ )2 = 1/(QBτ/m)2, where Q is the particle charge,
m is the particle mass, and (τ)−1 is the particle collision frequency. In tokamaks it is found
that electrons are mainly responsible for the energy loss and the electron parameter, 1/(ωceτe),
is typically 10−7; thus the heat flux vector across the magnetic field, q⊥, is a mere 1/1014

times its value in the absence of a magnetic field, a circumstance that should have allowed
thermonuclear temperatures to have been easily reached with ohmic or other forms of heating.

However, in a strong magnetic field there is a transverse heat flux, q∧ = −κ∧b×∇T ,
in which κ∧ ∝ 1/(ωceτe), making |q∧| about 107 times larger than |q⊥|. But this heat, being
at right angles to the temperature gradient, normally circulates around the minor axis of the
tokamak torus and makes no difference to energy confinement within the tokamak, and all
would be well except for the presence of fluid shear. Shear is well-known to deflect any heat
flux vector through a small angle and to create what is called a second-order heat flux at right
angles to the primary, or first-order heat flux. The ‘order’ here refers to the Knudsen number
kN , which in the tokamak application is τe|∇ve|, where ve is the electron fluid velocity and
the gradient |∇ve| is a measure of its shear. Validity of macroscopic transport theory requires
that kN � 1, and in tokamaks kN is typically ∼ 0.01. On comparing the first-order heat flux
|q⊥| ∝ kN/(ωceτe)2 with the deflected second-order heat flux |q∧

d| ∝ k2
N
/(ωceτe), we see

that the combination of shear and transverse diffusion removes energy from tokamaks at a
rate ∼ 105 times more rapidly than the early expectations, which were based on the first-order
theory. Curiously, this dominant process is still ignored in the tokamak literature, despite the
passage of more than twenty years since its discovery.

The deflected second-order heat flux will be directed either up or down the temperature
gradient depending on whether the radial gradient of the toroidal current density, jϕ, is anti-
parallel or parallel to the temperature gradient. The knowledge that there are circumstances in
which heat can flow up the temperature gradient, allows many strange tokamak observations
to be understood. Incidentally, it is very likely that this phenomenon is responsible for the
extremely hot solar corona, explaining how it is possible for thermal energy to flow up plasma
loops from the relatively cool ∼ 6 000 K photosphere to the ∼ 2×106 K corona. Although the
primary concern of this book is with fusion reactors, most of the transport theory developed
in the earlier chapters has applications to solar physics, for example to plasma loops, spicules,
flares and corona heating.

A similar treatment of the viscous force acting in tokamak magnetoplasmas enables the
radial flow velocity vr to be determined from the second-order formula for this force, and
hence the rate at which plasma is lost to the tokamak walls can be calculated. The resulting
toroidal electric field, Eϕ ≈ −vrBθ , where Bθ is the poloidal component of the magnetic
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field, drives a non-inductive current — called a Lorentz current in the text — that is addi-
tional to the induced current; substantial non-inductive currents in agreement with the Lorentz
current prediction have been observed and are important for the stability and heating of the
plasma.

For tokamaks there is a modified first-order theory called “neoclassical" transport, which
by allowing for non-local particle excursions over large ‘banana’ orbits, increases q⊥ by a
factor of several hundred, but this adjustment is still far too small to explain the observa-
tions. The usual approach is to speculate that turbulence is responsible for the unexpectedly
large thermal transport, and the experimental results from many tokamaks operating in a va-
riety of conditions are assembled into best-fit, empirical curves, which, while practicable for
interpolation, provide no understanding of the physical mechanisms involved. The design
calculations for ITER are based on a single, straight-line extrapolation by a factor of more
than two beyond the highest points on the empirical curve for the energy confinement time
τE. However, the presumption that turbulence is responsible for thermal transport is wrong,
as is easily inferred from the observation that the voltage drop around the torus is close to its
classical (non-turbulent) value.

Plasma physics is an exceedingly complex branch of macroscopic physics, especially
when applied in the domain of tokamak toroidal geometry. In this situation it is too easy
to allow formal equations to dominate and to impede a physical grasp of the convective and
diffusive mechanisms of transport upon which the success or failure of the tokamak enter-
prize depends. There is no single master equation from which deductive analysis will yield
good estimates of the losses of plasma energy from tokamaks. For example, the ‘sheared-
transverse-diffusion’ transport described above and which is the basis of much of this book,
cannot be deduced from Boltzmann’s famous kinetic equation, which is generally supposed to
cover all transport possibilities. As Eddington once remarked in a lecture at a stage where he
was stressing the importance of a proper background to the analysis he was about to present:

“I regard the introductory part of the theory as the more difficult, because we have
to use our brains all the time. . . . Afterwards we can use mathematics instead.”

In tokamak physics the situation is particularly demanding, for excepting some stretches
of straightforward deductive analysis, physical modelling is required as an essential guide
throughout.

To make the account nearly self-contained for graduate students with some experience
in continuum physics, most of the background knowledge required in plasma physics, kinetic
theory and thermodynamics is either provided in the text or collected as ‘plasma physics notes’
in the Appendix.

I am grateful to Mr D. E. T. F. Ashby, ex-Culham Laboratory, for his constructive criticism
and generous help in the drafting of this book and to Dr Grant Deane of Scripps Institution of
Oceanography, who took time from his research to revisit his tokamak background to give me
many helpful comments.

Finally, I record with pleasure my appreciation of the help and ready support given me by
the officers of the Wiley-VCH Press.

L. C. Woods

Oxford, 20 July, 2005



Lists of physical constants, plasma parameters and
frequently used symbols

In SI units, the constants required in plasma theory are:

Physical Quantity Symbol Value units

Electron mass me 9.1095×10−31 kg
Proton mass mp 1.6726×10−27 kg
Electron charge e 1.6022×10−19 C
Boltzmann constant kB 1.3807×10−23 J K−1

Permittivity (Free Space) ε0 8.8542×10−12 F m−1

Permeability (Free Space) μ0 4π×10−7 H m−1

Speed of light (Vacuum) c 2.9979×108 m s−1

Proton/electron mass ratio mp/me 1.8362×103

Temperature at 1 eV e/kB 1.1605×104 K
Planck constant h 6.6262×10−34 J s
Stefan-Boltzmann constant σ 5.6703×10−8 W m−2 K−4

Gas constant R 8.3144 J K−1 mol−1

The important plasma parameters are:

Parameter Symbol Formula page

Resistivity η αme/(e2neτe) 180
Cyclotron frequency (electrons) ωce eB/me 185
Thermal speed C

√
2kBT/m 185

Larmor radius rL C/ωc 185
Coulomb logarithm ln Λ 182
Collision intervals τe , τi 124
Thermal conductivity (B = 0) κ γkBpτ/m 61
Magnetic diffusivity ξ η/μ0 199
Magnetic Reynolds number Rm UL/ξ –
Plasma frequency ωpe

√
nee2/ε0me 179

Collisionless skin-depth δe c/ωpe –
Debye length λD

√
ε0kBTe/nee2 179



XVI Lists of physical constants, plasma parameters and frequently used symbols

Frequently used Tokamak symbols

Symbol Definition page Symbol Definition page

a minor radius 4 B magnetic field (induction) 3
b = B/|B| Bθ poloidal field 1
Bϕ toroidal field 1 c peculiar velocity 181
D convective derivative 182 e rate of strain tensor 192
E electric field 179 fT trapped fraction 41
g passing particle fraction 43 h specific enthalpy 11
H velocity gradient 45 Ip plasma current 1
j current density 179 L radiation rate 183
M magnetic moment 38 ne, ni number densities 2, 3
pe, pi pressures 12 q safety factor 8
q0, qa central & surface q 8 Q particle charge
Qr radial heat flux 11 R0, R major radius 4, 94
S = Bθ/Bϕ 8 T temperature
u internal energy 11 v fluid velocity 11
V� loop voltage drop 107 VL Lorentz voltage 132
y = (r/a)2 87 Zeff Z-effective 9

α profile parameter 88 αE profile parameter 89
β plasma beta 7 βt toroidal beta 8
βp poloidal beta 8 βN normalized beta 8
γ profile parameter 89 δ profile parameter 89
ε = r/R 8 κ thermal conductivity 61
η resistivity 182 η‖, η⊥ parallel & perpendicular 182, 183
ξ magnetic diffusivity 199 viscosity tensor 184
� density 11 σ electrical conductivity 183
τE energy confinement time 11 τ∗E energy replacement time 11
τe, τi collision times 124 τϕ momentum confinement time 14
χ thermal diffusivity 61 ωc cyclotron frequency 185

We shall often deviate from SI units with temperature, number density and plasma current
thus:

Temperature: T K = 1.1605×107T̂ , T̂ in keV,
Number density: n m−3 = 1019n19 , n19 in 1019 units per m−3,
Electric current: Ip = 106 Îp, Îp in MA.

To reference particular equations forming part of a group, we shall adopt the notation
(a.b)(n) to indicate the n-th equation of the set (a.b).



1 The quest for fusion power

This chapter introduces the basic physics and associated variables. Except for those variables
cited at the foot of page XVI, SI units are almost always adopted. Pages XV and XVI have
lists of physical constants, plasma parameters and frequently used symbols.

1.1 Tokamak machines

1.1.1 Topology and ignition

A tokamak is a toroidal chamber which uses a strong toroidal magnetic field, Bϕ, to contain a
high temperature plasma within the torus. Charged particles cannot easily move across strong
magnetic fields and if the fields are closed into nested surfaces, then deuterium and tritium ions
trapped in this way and colliding with sufficient energy to overcome their repulsive Coulomb
potential, will fuse and liberate energy. The toroidal field is produced by external electric
currents flowing in coils wound around the torus, as shown in Fig. 1.1. Superimposed on the
toroidal field is a much weaker poloidal field, Bθ, generated by an electric current Ip flowing
in the plasma around the torus. The plasma forms the secondary circuit of a transformer,
so that Ip is induced by changing the magnetic flux BT passing through the torus, which is
usually carried by an iron core as indicated in the figure.

I I

iron core

(b)

BI

BT
B

B

plasma

(a)

external poloidal
current producing
         field

p

p p

Figure 1.1: Tokamak currents and fields: (a) toroidal plasma current induced by transformer,
(b) primary winding
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In a plasma consisting of deuterium, or deuterium mixed with tritium, the fusion reactions

D2 + D2 →
{

He3 + n1 + 3.27 MeV

T3 + H1 + 4.03 MeV

and

D2 + He3 → He4 + H1 + 18.3 MeV

D2 + T3 → He4 + n1 + 17.6 MeV

will occur frequently if the ion temperature, Ti, and the ion number density, ni, are large
enough. Furthermore, in a fusion reactor these high values of Ti and ni must be maintained
long enough for the energy liberated by fusion to more than balance the energy losses due
to radiation, conduction, convection and neutron flux. Let τE be the time it takes these loss
processes to remove all the energy from the system, then for a given value of niτE there
is a minimum temperature at which the plasma is said to ignite, i.e. at which the liberated
fusion energy is just adequate to balance all losses. As D-D plasmas require considerably
higher temperatures to achieve ignition, almost all reactor proposals have concentrated on
D-T fusion.

Figure 1.2: Ignition curve for a D-T plasma

Figure 1.2 shows the ignition curve for a D-T plasma. It has a minimum at a temperature
of about 30 keV, where for ignition we need niτE > 1.5×1020 m−3s. A slightly lower bound
(niτE > 6×1019 m−3s) known as Lawson’s criterion (Lawson 1957) is obtained if a con-
tinuous power supply from outside the system is used to compensate transport and radiation
losses. Combining the neτE value with T̂ ∼ 10 keV, we obtain

τEniT̂ > 3×1021 s m−3 keV , (1.1)
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which is based on the assumption that the number density and temperature profiles across the
minor radius are flat. When allowance is made for typical profile shapes, and the constraint is
applied to the peak values, T0 and ni0 of the temperature and number density profiles, (1.1) is
replaced by

τEni0T̂0 > 5×1021 s m−3 keV .

Observations show that electron energy loses are dominant and in a pure D-T plasma, by
charge neutrality, ni = ne, and so to a good approximation the left-hand side of (1.1) can be
replaced by τEeneT̂e.

Let B denote the strength of the magnetic field1, then for a reason explained in the first of
the plasma physics notes in the Appendix, B2/2μ0 is called the magnetic pressure, where μ0

is the free-space permeability. An important parameter in plasma physics is the ratio of the
plasma pressure p to the magnetic pressure, which is known as the plasma beta,

β ≡ 2μ0p

B2
. (1.2)

The power output for a given magnetic field and plasma assembly is proportional to the square
of beta, and for an adequate return on an energy investment in magnetic fields, it has been
estimated that in a reactor β should exceed 0.1.

Figure 1.3: The Joint European Torus (JET)

1Strictly the magnetic induction, but the misnomer ‘field’ is commonly adopted in plasma physics.
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1.1.2 Some early tokamaks

The advantage of the Russian tokamak machine over similar toroidal devices that were being
developed in the United States and Great Britain at the same time, lay in the better stability
obtained by using much stronger toroidal magnetic fields. ‘Stability’ in this context means
no more than the persistence of the magnetic fields and electric currents — at least in the
earlier machines — for times of the order of milliseconds. The British ZETA machine, which
received much publicity in the 1950s, was so-called ‘stable’ for less than about 5 milliseconds,
whereas the discharge in comparable tokamaks lasted over ten times longer.

In his review of the history of tokamak research from 1955 to 1980, Rutherford (1980)
noted that this confinement device was responsible for more than half the articles published
in the specialist journal Nuclear Fusion. The first substantial tokamak was T-3, built at the
Kurchatov Institute, Moscow in the 1960s. It had a minor radius of 15 cm, a major radius of
100 cm, a toroidal magnetic field of 15 kG, and carried a plasma current of 100−250 kA. In the
standard notation (see Fig. 1.4), a = 0.15 m, R0 = 1 m, Bϕ = 1.5 T, Îp = 0.1 − 0.25 MA.

Some twenty years later the Joint European Torus (JET) was constructed at a cost of
around £200 M on the Culham site at Abingdon, England, and this is currently the largest
tokamak in the world. The cross-section of the torus in JET is D-shaped, with a (horizon-
tal) width of 2.4 m and a height of 4.2 m. Its parameters are: a = 1.2 × 2.1 m, R0 = 3 m,
Bϕ = 3.5 T, Îp = 5 MA. Whereas T-3 reached electron temperatures ∼ 0.4 − 1.0 keV and
ion temperatures ∼ 0.2 keV at average electron number densities of n̄e ∼ 2×1019 m−3 and
energy confinement times of only a few milliseconds, by 1986 JET had achieved Te ∼ 6 keV,
Ti ∼ 12 keV, n̄e ∼ 3.5×1019 m−3 and τE ∼ 0.9 s, although not simultaneously. However,
from (1.1) increases by factors of 3 in Ti and 5 in niτE were still required for ignition.

Wesson (2004) gives details of forty-four tokamaks built up to 1985 in England, France,
Germany, Italy, Japan, USA, and USSR; Table 1.1 lists those built since 1975. Notice that
under the column of the minor radius, DOUBLET III and JET have two lengths written as
a × b where b is the half-height of the plasma and a is the minor radius, or half-width of the
plasma; these lengths serve as a rough specification of D-shaped cross sections (e.g. JET’s

Table 1.1: Typical values of tokamak parameters (not simultaneous)

Machine year R0 a Bϕ Îp n̄e T̂e0 T̂i0 τE

(m) (m) (T) (MA) 10−19m−3 (keV) (keV) (ms)

DITE 1975 1.17 0.26 2.7 0.2 5 0.7 0.6 14
PLT 1975 1.3 0.40 3.5 0.6 5 3 3 40
T-10 1975 1.5 0.37 4.5 0.5 4 1.4 0.7 50
DOUBLET III 1979 1.43 0.44 × 0.75 2.4 0.9 10 4 4 100
TFTR 1982 2.4 0.80 5.0 2.2 4 2 8 200
JET 1983 3.0 1.2 × 2.1 3.5 5.0 3.5 6 8 500
TEXTOR 1983 1.75 0.46 2.0 0.4 3 1.2 0.8 40
JT-60 1985 3.0 0.9 4.5 2.0 7 3 5 100
DIII-D 1986 1.67 0.67 2.1 5.0 8 26 20 160
ASDEC (upgrade) 1991 1.65 0.50 3.9 1.4 11
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vacuum vessel shown in Fig. 1.3). The elongation of the cross-section follows from a solution
of the MHD equilibrium equations, which determine the magnetic field structure appropriate
for a given choice of pressure and current profiles (Section 2.1). However, in this text to
simplify the analysis with relatively little impact on general conclusions concerning transport,
the ‘elongation’ variable, κ = b/a, will be taken to be unity.

1.1.3 Toroidal current

There is one evident disadvantage in the tokamak design as illustrated in Fig. 1.1, namely that
its operation is necessarily pulsed because resistivity will gradually dissipate the inductive
current and switch off the discharge. Quite apart from its role in heating the plasma through
ohmic dissipation, a toroidal current is essential to maintain an elongated toroidal system in
equilibrium, for without the Bθ field that it generates, there is a vertical instability that causes
the plasma to drift in the direction of elongation. The force driving this instability results from
the interaction of the poloidal field coil currents (see Fig. 1.1) and the plasma current. In some
cases feedback control circuitry is necessary to maintain the plasma’s position (see Wesson,
2004, p. 342).

Early tokamaks, which relied entirely on inductive currents for both heating and stabi-
lization, were therefore designed for pulsed operation in the hope that the pulse time could
be made sufficiently long for fusion to be effective; but these times are measured in seconds
rather than minutes and are too short for reactor operation.

Finding other ways of continuously heating the plasma and of maintaining the stabilizing
toroidal current, has been an important quest in recent tokamak research. Steady currents can
be driven around the torus with radio-frequency (RF) waves and also with neutral beam injec-
tion (NBI), but there are limits to this type of ‘current drive’ that make it unable to generate
all of the current required for a stable reactor. One such constraint, called the ‘Greenwald’
limit, is concerned with the avoidance of major disruptions (Section 6.2.1). For a survey of
NBI current drive the reader is referred to ITER team (1999, p. 2527).

However, there is another mechanism that generates non-inductive toroidal currents. It is
widely believed that a large current of this type, termed a ‘bootstrap’ current, can be generated
simply by the existence of radial gradients in the plasma density and temperature. Observa-
tions certainly support the presence of a non-inductive current, but its origin is not the boot-
strap phenomenon, for as shown in Section 3.4.3, such a current does not satisfy Ampère’s
law and cannot exist. In Section 5.3.2 we show that the observed non-inductive current is a
result of the toroidal electric field generated by the radial flow of the plasma across the Bθ

magnetic field.

Let vD be the radial velocity of the plasma flowing across the tokamak magnetic field, then
the toroidal electric field, say ELR

ϕ , driving the non-inductive current is proportional to the
product vDBθ , so the ‘price’ of this potentially steady current is the continual loss of plasma
from the torus. Regular refueling by beam injection near the minor axis is therefore required
to maintain the current, a process with its own limitations (see Section 1.4.2).
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Figure 1.4: Cylindrical and local coordinates for a tokamak machine

1.2 Basic tokamak variables

1.2.1 Aspect ratio

Figure 1.4 shows the coordinate systems for a tokamak of circular cross-section. The local
radial dimension lies in the range 0 < r < a, where a is the maximum radius of the plasma. In
order to prevent the plasma reaching the vacuum vessel, either a material limiter or a magnetic
divertor is used, as shown in Fig. 1.5. Most tokamaks have limiters, but divertors have the
merit of reducing the influx of ionized impurities into the interior of the plasma by diverting
them into an outer “scrape-off” layer.

The tokamak aspect ratio, R0/a, usually lies between 3 and 5 and as we shall see later, it
has an important role in plasma energy confinement.

Figure 1.5: Separation of plasma from wall by (a) a limiter, (b) a divertor


