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Topology 587
S. P. Smith

Variational Methods 619
G. W. F. Drake

Index 657



vii

Preface

Mathematics is a central structure in our knowledge. The rigor of mathematical proof
places the subject in a very special position with enormous prestige. For the potential
user of mathematics this has both advantages as well as disadvantages. On the one
hand, one can use mathematics with confidence that in general the concepts, definitions,
procedures, and theorems have been thoroughly examined and tested, but the sheer
amount of mathematics is often very intimidating to the non-expert. Since the results
of mathematics once proved stay in the structure forever, the subject just gets larger
and larger, and we do not have the luxury of discarding older theories as obsolete.
So the quadratic formula and the Pythagorean theorem are still useful and valid even
though they are thousands of years old. Euclid’s Elements is still used as a text in some
classrooms today, and it continues to inspire readers as it did in the past although it
treats the mathematics from the time of Plato over 2300 years ago.

Despite the prestige of mathematical proof, most mathematics that we use today
arose without proof. The history of the development of calculus is a good example.
Neither Newton nor Leibniz gave definitions of limits, derivatives, or integrals that
would meet current standards. Even the real number system was not rigorously treated
until the second half of the nineteenth century. In the past, as in modern times, large
parts of mathematics were initiated and developed by scientists and engineers. The
distinction between mathematicians and scientists was often rather vague. Consider
for example, Newton, Euler, Lagrange, Gauss, Fourier, and Riemann. Although these
men did important work in mathematics, they were also deeply involved in the sciences
of their times. Toward the end of the nineteenth century a splitting occurred between
mathematics and the sciences. Some see it in the development of non-Euclidean
geometry and especially axiomatic methods reminiscent of Euclid.

At this time mathematics appeared to be taking its own path independent of the
sciences. Here are two cases that participated in this division. In the late nineteenth
century Oliver Heaviside developed the Operational Calculus to solve problems in
electrical engineering. Although this calculus gave solutions in agreement with
experiment, the mathematicians of Heaviside’s time could not justify or condone
his procedures. Physicists also found the Dirac delta function and Green’s functions
extremely useful and developed an appropriate calculus for their use, but the underlying
mathematical theory was not available. It was not until the early 1950’s that Laurent
Schwartz was able to give a rigorous mathematical foundation for these methods with
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his Theory of Distributions. Also, early in the twentieth century the relatively new
subject of Group Theory was seen as being of use in applications to chemistry and
physics, but the few texts available at the time were written in a rather abstract and
rigorous mathematical style that was not easily accessible to most non-mathematicians.
The subject was quickly labeled the ‘‘Gruppenpest’’ and ignored by many researchers.
Needless to say, today group theory with its applications to symmetry is a fundamental
tool in science.

With the complexity of each field in science and engineering growing so rapidly, a
researcher in these fields has little time to study mathematics for its own sake. Each field
has more material than can possibly be covered in a typical undergraduate program, and
even graduate students must quickly pick a sub-area of specialization. Often, however,
there is a sense that if we just knew more mathematics of the right sort, we could
get a better grasp of the subject at hand. So, if we are still in school, we may take a
mathematics course, or if not in school, we may look at some mathematical texts. Here
some questions arise: which course should we take, do we have the correct prerequisites,
what if our mathematics instructor has no knowledge of our field or any applications
that we are interested in, are we really in the right course? Furthermore, most texts in
mathematics are intended for classroom use. They are generally very proof oriented,
and although many now include some historical remarks and have a more user friendly
tone, they may not get to the point fast enough for the reader outside of a classroom.

This book is intended to help students and researchers with this problem. The
eighteen articles included here cover a very wide range of topics in mathematics in a
compact, user oriented way. These articles originally appeared in the Encyclopedia of
Applied Physics, a magnificent twenty-three volume set edited by George L. Trigg, with
associate editors Eduardo S. Vera and Walter Greulich and managing editor Edmund H.
Immergut. The full Encyclopedia was published in the 1990’s by VCH, a subsidiary of
John Wiley & Sons, New York. Each article in this volume covers a part of mathematics
especially relevant to applications in science and engineering. The articles are designed
to give a good overview of the subject in a relatively short space with indications
of applications in applied physics. Suggestions for further reading are provided with
extensive bibliographies and glossaries. Most importantly, these articles are accessible.
Each article seeks to give a quick review of a large area within mathematics without
lapsing into vagueness or overspecialization.

Of course not all of mathematics can be covered in this volume: choices must be made
in order to keep the size of the work within bounds. We can only proceed based on those
areas that have been most useful in the past. It is certainly possible that your favorite
question is not discussed here, and certainly the future will bring new mathematics and
applications to prominence, but we sincerely expect that the articles in this volume will
be valuable to most readers.

Stuart P. Smith
CSUH – January 2005
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Introduction

The use of mathematics by physicists, and
in particular of algebra, has increased in a
remarkable degree during the last 50 years,
both in the amount of space occupied
in journal articles and in the type and
abstractness of the methods employed.

Following N. Bourbaki, it is now con-
ventional to characterize as algebraic struc-
tures those parts of mathematics that em-
ploy operations, such as addition, which
act on a finite set of objects to produce a
unique corresponding object. Such oper-
ations are contrasted with ideas like limit
in calculus or closure in topology, which
associate a number or other mathemati-
cal object to an infinite set or sequence.
Thus, whereas the passage from (2, 3)
to 2 + 3 = 5 is an algebraic operation, to
go from the infinite sequence n → 1/n
(where n is any positive integer) to the
limit 0 is a topological operation. The
present section is concerned chiefly with
algebra.

In this brief article it is impossible
to describe all the many algebraic struc-
tures which occur in the literature of
applied physics. Therefore we have se-
lected those which are absolutely essential
for understanding the contemporary liter-
ature under the following rubrics: Groups;
Fields; Linear Algebra; Rings; Algebras
and Modules. As to style, we have at-
tempted to steer a course between that
which physicists would have liked 20
years ago and the austerity of contem-
porary pure mathematicians with which
all physicists will be happy 20 years

from now. This should leave all read-
ers equally unhappy! Our definitions are
seldom painstakingly detailed but rather
highlight the essential ideas leaving the
reader to use common sense to fill them
out. We shall assume that the reader is
familiar with elementary properties of vec-
tors and matrices. Recall that a square
matrix A is invertible or nonsingular if
there is a matrix B such that AB = BA = I,
where I is the identity matrix. In this
case A and B are inverses of each other
and we denote B by A−1. Although,
logically, rings should be discussed be-
fore fields, teaching experience suggests
that the reverse order is pedagogically
sounder.

NOTATION: We shall adopt the follow-
ing widely used symbolism: N: = the natu-
ral numbers, {1, 2, 3, . . .}; Z: = the positive
and negative integers and zero; R: = the
real numbers; C: = the complex numbers;
i: = √−1; Q: = the rational numbers. We
shall employ Einstein’s summation con-
vention in the restricted form that in any
monomial an index which is repeated as a
subscript and as a superscript will be in-
terpreted as summed over its range unless
the contrary is explicitly stated.

1
Groups

A group is a set, G, say, together with
a binary operation which we temporarily
denote by ‘‘∗’’, which satisfies certain
definite rules. A binary operation is one
which combines two elements of G to
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obtain an element of G. Perhaps our first
encounter with a group occurs when as
babies we push our blocks around on
the floor using the translation group in
two dimensions! Later in grade school
we learn the properties of the integers.
Under addition the integers Z exemplify
the axioms of a group:

(i) A group (G,∗) is a set, G, together
with an operation, ∗, which to any two
elements x and y of G associates an
element z = x ∗ y of G. For example,
in (Z, +), 2 + 3 = 5, 5 + (−3) = 2.
This property is described by saying
that G is closed under the binary
operation ∗.
However, for the structure (G,∗) to
be dignified with the title ‘‘group,’’ it
must satisfy the additional properties:

(ii) The operation is associative, that is
for any x, y, z in G, (x ∗ y) ∗ z =
x ∗ (y ∗ z).

(iii) There is a unique neutral or identity
element, n, such that x ∗ n = n ∗ x =
x for all x in G.

(iv) For any element x in G there is a
unique element y in G such that
x ∗ y = n. In this case, x and y are
said to be inverses of each other.

Thus while (N, +) satisfies (i) and (ii) it
is not a group because (iii) and (iv) fail.
However, (Z, +) is a group when we take
n: = 0.

If G has a finite number of elements, the
group is a finite group and the number of
elements is called the order of the group.
If x ∗ y = y ∗ x for all x, y ∈ G, the group
is Abelian or commutative.

The set of symmetries of any mathe-
matical or physical structure constitutes
a group under composition of symme-
tries. Such groups play a major role in
physics for analyzing the properties of

space-time, understanding crystal struc-
ture, and classifying the energy levels of
atoms, molecules, and nuclei. Indeed, the
role of groups is so important in physics
that an article of the Encyclopedia is devoted
to them. We therefore shall not explicitly
pursue the detailed properties of groups
further, even though they will occur as
substructures in rings and fields.

2
Fields

Whereas a group consists of a set together
with a single binary operation, a field
consists of a set together with two binary
operations linked together by a distributive
law. The two operations are usually called
addition and multiplication. The familiar
fields are the real numbers, R; the complex
numbers, C; and the rational numbers, Q.
We shall use the symbol F for an arbitrary
field. Strictly speaking, we should employ
a notation such as (F, +, ×) to denote a
field; however, the relevant operations are
generally obvious from context in which
case it is sufficient to use F alone.

(F, +, ×) is a field if:

(i) (F, +) is a commutative or Abelian
group. That is, x + y = y + x for any
x and y in F.

(ii) The elements of F other than zero
form a group under multiplication.

(iii) Multiplication distributes over addi-
tion. That is, if a, b, c, belong to F

then a × (b + c) = a × b + a × c, and
(b + c) × a = b × a + c × a.

These properties are, of course, familiar
for the reals, complexes, and rationals, but
there are fields, such as the quaternions,
for which multiplication is not commuta-
tive. There are also fields with only a finite
number of elements.
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A field always has at least two elements,
0 and 1.

2.1
The Characteristic of �

Since a field is closed under addition,
F contains 1 + 1, which cannot equal 1
since this would imply that 1 = 0, which
we excluded. But 1 + 1 might equal 0 in
which case (1 + 1) + 1 = 1 and one can
easily check that F = {0, 1} can serve as
the set of a field of two elements. This
is the smallest possible field and is both
famous and useful since it plays a key role
in the design of electric circuits, such as
those which occur in computers.

More generally, if p is a prime number,
we can obtain a field containing p elements
in which the sums of j 1’s are numbers
which are distinct if 0 ≤ j < p and equal
to 0 if j = p. When this occurs in any
field F we say that p is the characteristic
of F and that F has finite characteristic.
When there is no such p we say that F has
characteristic zero. A field of characteristic
zero has an infinite number of elements.
If F has only a finite number of elements it
will contain pn elements, where p is a prime
and n is a positive integer. If n > 1, F will
contain a subfield of the above type with p
elements. The fields with pn elements are
called Galois fields. They are important
in coding and communication theory. A
finite field is necessarily commutative.

2.2
Algebraically Closed Fields

We know that the square of a real number
is positive, so there is no real number
x such that x2 = −1. In other words,
in R there is no element x satisfying
the equation x2 + 1 = 0. If F has the
property that for every equation of the form

ajx j = 0, 0 ≤ j ≤ n, where the aj belong to
F, there is an element of F which satisfies
the equation, we say that F is algebraically
closed. Otherwise, it is not algebraically
closed. Clearly R is not algebraically closed.
If we assume that there is a ‘‘number’’ i
such that i2 + 1 = 0, then, as we know, the
field containing R and i is the complex
numbers, C. It was proved by Gauss that
C is algebraically closed.

Notice that if σ is a 1 : 1 map of C

onto itself, such that σ(x + iy) = x − iy
for all x, y ∈ R, then σ preserves all the
properties of a field and is therefore
an automorphism of C. Recall that an
isomorphism of two algebraic structures is
a bijective (or one-to-one) correspondence
between their sets, which preserves all
the relations among their elements, and
that an automorphism is an isomorphism
of an algebraic structure onto itself. Note
that σ(x) = x if x ∈ R and that σ(i) = −i,
which is the root other than i of the
equation x2 + 1 = 0. An automorphism
of C must send 0 into 0 and thus must
either leave i fixed (and so everything in
C is fixed) or, like σ , send i to −i. The
set consisting of σ and the identity map
is a group of order two under composition
of mappings. It is the Galois group of C

over R. Alternatively, it is also called the
Galois group of the equation x2 + 1 = 0
with respect to the reals. For more detail
about fields, their algebraic extensions, and
their Galois groups, the reader is referred
to Jacobson (1964) or any of the multitude
of algebra texts at the same level.

Are there fields containing R other than
C which are at most finite dimensional
over R? The answer was given by Frobe-
nius. There is one and only one, the
quaternions, but in this field multiplica-
tion is not commutative. We shall see
below that the quaternions can be realized
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as linear combinations with real coeffi-
cients of the Pauli matrices and the 2 × 2
identity matrix. The significance of the
field of quaternions is dramatized by the
observation that if it did not exist there
would be no spin in physics, therefore
no sigma and pi bonds in chemistry, and
therefore no life on planet earth if, indeed,
there were any stars or planets!

2.3
Rational Functions

If we adjoin a symbol x to any field F

and form all possible sums, differences,
products, and quotients involving x and
the elements of F, the result is a set which
is closed under any finite sequence of these
operations and forms a field, denoted by
F(x), which we might describe as the field
of rational functions in x over F. There is
a subset, denoted by F[x], of polynomials
of the form ajx j where j is summed from
0 to some n ∈ N, where n is arbitrary and
the aj ∈ F. If an is not zero we say that
the polynomial has degree n. As we shall
remark below, the polynomials constitute
a ring. As usual x0: = 1, by definition,
so when n = 0 the preceding polynomial
reduces to a0. Thus F is contained in
F[x]. The field F(x) consists of all possible
quotients of elements of F[x].

Suppose that the rational function
R(x) = P(x)/Q(x), where P and Q are
polynomials. Suppose further that Q(x) =
Q1(x)Q2(x), where Q1 and Q2 are polyno-
mials with no common factor. Since we
could have used long division to ensure
that R is the sum of a polynomial and a
rational function, the numerator of which
has degree strictly less than the degree
of Q, we may assume that deg(P) – the
degree of P – is less than deg(Q). It is
relatively easy to show that it is then pos-
sible to find polynomials P1 and P2 with

deg(Pi) < deg(Qi) such that

P

Q
= P1

Q1
+ P2

Q2
.

This is the fundamental theorem of the
so-called method of partial fractions, by
repeated application of which it follows
that any rational function can be expressed
as a sum of a polynomial and rational
functions whose denominators have no
nontrivial factors.

In particular, if F is algebraically closed
(e.g., F = C), then Q is a product of
factors such as (x − a)m, where a ∈ F. A
summand in R(x) of the form g(x)/(x −
a)m with deg(g) < m can, by Taylor’s
theorem applied to g(x), be expressed as
the sum cj(x − a)−j, where 1 ≤ j < m and
cj = g(m−j)(a)/(m − j)!. Here g(k) is the kth
order derivative of g.

The method of partial fractions is quite
useful for finding integrals of rational
functions. Books on calculus explain
helpful tricks for obtaining the partial
fraction decomposition of a given rational
function.

3
Linear Spaces

The theory of linear space with its re-
lated concepts of linear transformation,
eigenvector, matrix, determinant, and Jor-
dan canonical form is certainly one of the
most important and most useful part of
mathematics. The abstract concept of lin-
ear space is frequently approached by a
long discussion of the problem of solv-
ing systems of linear equations. We take a
direct approach defining a linear space
as consisting of a field F whose ele-
ments are called scalars, a set V, called
vectors, and two operations called vector
addition and scalar multiplication together
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with a set of rules governing the relation
among these various entities. The vectors
under addition form an additive Abelian
group (V, +). Under multiplication by
scalars the set V is closed. Thus, v ∈ V
and a ∈ F imply that av ∈ V . Another im-
portant property is that multiplication by
scalars distributes over addition of vectors.
That is a(v1 + v2) = av1 + av2 for all a ∈ F

and vi ∈ V .

3.1
Independence of Vectors

This seems to be the most difficult idea
in teaching elementary courses in linear
algebra – possibly, the only difficult idea!
Two nonzero vectors v1 and v2 are linearly
dependent if there are scalars a1 and a2,
not both zero, such that a1v1 + a2v2 = 0,
where, of course, by 0 we mean the zero
vector. It is clear that neither a1 nor a2

is zero, and thus each vector is a scalar
multiple of the other. More generally, if,
given n vectors vi, 1 ≤ i ≤ n, there exist
scalars ai such that aivi = 0, where all
vi �= 0 and not all ai = 0; then we say that
the n vectors are linearly dependent. If no
such relation holds, the vectors are linearly
independent. For example, for n ∈ N there
are no numbers an other than 0 such
that �nan × cos(nϑ) = 0 for all ϑ . Thus
the functions ϑ → cos(nϑ) are linearly
independent.

If n vectors vi are such that any vector v
can be written as v = aivi for some choice
of scalars ai, we say that the set {vi} spans V.
If the vi are also linearly independent then
the coefficients ai are unique. We then
say that B = {vi} is a basis of V, that the
linear space V has dimension n, and that
ai are the components of v with respect
to B. A basic theorem assures us that the
dimension depends only on the space V
and not on the choice of basis. If a linear

space does not have a finite basis it is
infinite dimensional.

3.2
Change of Basis

How do the components of a given vector
change if the basis is changed? This was
a key question which led to the theory
of invariants in the mid-19th century and
opened up the development of much of
contemporary algebra. It also led to the
emergence of the tensor calculus which
was essential for Einstein’s exposition of
General Relativity Theory.

Suppose V is a linear space and that
B = {vi} and B′ = {v′

i} are two different

bases for V. Then there is a matrix, P
j
i

called the transition matrix from B to B′
such that v′

i = P
j
ivj. Thus if the vector

x = x jvj = x′iv′
i = x′iPj

ivj, it follows that

x j = P
j
ix

′ i. If in the usual matrix notation
we regard x j as the jth component of a

column vector x, and P
j
i as the element in

the jth row and ith column of the transition
matrix, P, from the old base B to the new
base B′, the preceding equation takes the
form

x = Px′ or x′ = P−1x.

There is an even more convenient
notation. Define P(B′, B): = P; then the
preceding equations imply that P−1 =
P(B, B′). Subsequently we shall need the
formulas

x = P(B′, B)x′ and x′ = P(B, B′)x.

To understand tensor notation it will prove
important to note that, whereas P sends
the old to the new basis, it sends the
new coordinates to the old ones. This
observation underlies duality in homolog-
ical algebra and the distinction between
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covariant and contravariant tensors, which
we define below.

3.3
Linear Maps and Their Associated Matrices

Suppose that V and U are linear spaces of
dimension n and m with bases Bv = {vi}
and Bu = {uj}, respectively. A transforma-
tion, function, or map from V to U sends
each vector x ∈ V to a vector, say, y of
U, which we denote by Ax: = y. If A has
the property that for any two vectors x
and x′ ∈ V and arbitrary scalars a and
a′ ∈ F, A(ax + a′x′) = aAx + a′Ax′, we
say that A is linear. The condition that a
map be linear is very restrictive. Nonethe-
less, linear maps play a big role in the
application of mathematics to physics (as
well as statistics, economics, biology, etc.)
for the same reason that the derivative is
important in analysis. For example, if f (x)
is a real-valued function of the real variable
x, such that f (0) = 0, then f ′(0)x is the lin-
ear function of x which is the best possible
linear approximation to f (x) near 0.

A linear map or transformation, A: V →
U, can be completely described by an

m × n matrix A
j
i, such that Avi = A

j
iuj,

which we describe as the matrix associated
to the linear transformation or map A with
respect to the bases Bu and Bv. It has m
rows and n columns. If we denote this
matrix by A(u,v) then if the bases in V and
U are changed to B′

v and B′
u, respectively,

A(u′, v′) = P(B′
u, Bu)A(u, v)P(Bv′ , B′

v),

where we use the notation of Sec. 3.2.
In terms of coordinates, if y = Ax, then

yj = A
j
ix

i, where, as follows from the
context, 1 ≤ j ≤ m and 1 ≤ i ≤ n.

In the particular case that V = U of
dimension n, with Bu = Bv, A(u, u) is an
n × n matrix which we denote by A(u). We

deduce that for a change of basis

A(u′) = P(B′
u, Bu)A(u)P(Bu, B′

u).

We thus associate to any linear transfor-
mation a matrix which is unique, once bases
are chosen for the domain and codomain of
the transformation. But conversely, if the
bases are given, then there is a unique
linear transformation associated with a
given matrix of the appropriate shape.
Thus there is a bijection (i.e., a one-to-one
correspondence) between m × n matrices
with entries in F and linear maps from a
linear space of dimension n into one of
dimension m. We have found how the bi-
jection changes when the bases are altered.
It is this bijection which gives meaning to
the familiar addition and multiplication of
matrices.

A linear map between two spaces over
the same field F has the property of
preserving the linear structure and is said
to be a homomorphism (i.e., a structure-
preserving map), so it is common to
denote by Hom(V1, V2) the set of all
linear maps between linear spaces V1 and
V2 where both have the same field. If
A ∈ Hom(V1, V2) then V1 is the domain of
A and V2 is the codomain of A. The kernel
of A, frequently denoted by ker(A), is the
set of all elements in the domain which
are mapped onto 0 by A. The range of A
consists of all elements of the codomain
of the form Ax for some x in the domain.
Of course these last four definitions are
valid for any function, not merely linear
maps. However, when A is linear it can be
easily proved that both the kernel and the
range are linear subspaces of their ambient
spaces. This is probably the secret of the
power and relative simplicity of the theory
of linear spaces. When V1 = V2 = V , we
denote Hom(V,V) by Hom(V).

If G is a map from V1 to V2 and F one
from V2 to V3, we denote the composition
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of these two maps by FG and, having fixed
bases in the spaces, we define the matrix
corresponding to FG as the product of the
matrices corresponding to F and G. This
‘‘explains’’ the usual rule for matrices that
(FG)

j
i = F

j
kGk

i , where i, k, and j range from
1 to the dimensions of V1, V2, and V3,
respectively.

The composition (or product) of two
maps can be well-defined if the range of
the first is in the domain of the second. The
sum of two maps is only meaningful if the
codomain is an additive group in order for
the sum of Fx and Gx to be meaningful. In
this case it is possible to let F + G denote
the map such that (F + G)x = Fx + Gx for
all x in the intersection of the domains of
F and G. When the domain and codomain
are fixed linear spaces over the same
field F we can do even better and give
Hom(V1, V2) the structure of a linear
space over F. This implies that the set
of all m × n matrices with entries from F

is a linear space of dimension mn over F.
The dimension of the range of a linear

operator is called the rank of the operator
and also the rank of any matrix associated
with the operator by a particular choice of
bases. The dimension of the kernel of a
linear transformation is called the nullity
of the transformation and of its associated
matrices. It follows from this definition
that the various matrices obtained from
one another by a change of basis all have
the same rank and nullity. The rank of a
product of operators or matrices is not
greater than the minimum rank of its
factors.

3.4
Determinants

If F is a commutative field, to any square
matrix, it is possible to assign a number
in F which is expressible as a polynomial

in the elements of the matrix and which
vanishes only if the matrix is not invertible.
To two square matrices which are related
as in Sec. 3.3 by a change of basis, we
assign the same number, and therefore it
is meaningful to also assign this number
to the associated linear transformation
belonging to Hom(V). The function, det,
from Hom(V) into F, has the following
properties: (i) det(AB) = det(A)det(B); (ii)
det(fI) = f n, where n is the dimension of
V, I is the identity map, and f is any
element of F. The usual definition of the
determinant follows from these properties
(MacDuffee, 1943). In particular since,
for a fixed basis, the equation Ax = y
is equivalent to the system of equations

A
j
ix

i = y j, Cramèr’s rule implies

det(A)xi = det(Yi),

where Yi is the matrix obtained from (A
j
i)

by replacing its ith column by the column
vector (yk) where i, j, k run from 1 to
n. Thus if det(A) �= 0 there is a unique
x for every y so A is invertible; whereas if
det(A) = 0, there is an x only for particular
y satisfying the n conditions det(Yk) = 0.
Thus for a finite dimensional linear space
V, A ∈ Hom(V) is invertible if and only if
det(A) �= 0.

The theory of Hom(V1, V2) is really
equivalent to the theory of systems of
linear equations in several variables. This
topic occurs in articles of this book
devoted to NUMERICAL METHODS and to
MATHEMATICAL MODELING and in at least
one hundred elementary textbooks; so we
shall not pursue it here.

3.5
Eigenvectors and Eigenvalues

If A ∈ Hom(V) then for any x ∈ V, Ax ∈
V . In general we shall not expect Ax to



Algebraic Methods 9

equal x or indeed, even, that Ax be parallel
to x. However, in the latter case Ax would
be a multiple of x, say, λx. The equation
Ax = λx is equivalent to (λI − A)x = 0. By
the preceding section, if the determinant
of λI − A is different from zero, the only
possible solution of this equation is x = 0,
which is of no great interest. When there
is a nontrivial solution of this equation it
will be somewhat unusual and is called an
eigenvector of A and can occur only for
special values of λ. Such a value of λ is
the eigenvalue of A corresponding to the
particular eigenvector x. The eigenvalue,
λ, will satisfy the nth degree algebraic
equation

f (z; A): = det(zI − A) = 0.

The nth degree polynomial f (z;A) is called
the characteristic function of A, and the
preceding equation is the characteristic
equation of A. Any eigenvalue of A satisfies
its characteristic equation. For each zero of
the characteristic equation there is at least
one nontrivial eigenvector.

There is a one-to-one correspondence
between the operators in Hom(V) and the
set of n × n matrices over F, and this set
spans a linear space over F of dimen-
sion n2. If we interpret A0 as the identity
operator, I, it follows that the operators
Ak for 0 ≤ k ≤ n2 are linearly dependent.
That is, there are cj ∈ F such that cjA j = 0,
where not all cj are zero. Thus there exists
at least one polynomial, p(z), such that
p(A) = 0. From the algorithm for long
division it easily follows that there is a
unique monic polynomial (i.e., a polyno-
mial with highest coefficient 1) of minimal
degree with this property. We shall de-
note this so-called minimal polynomial
of A by m(z;A). A famous theorem of
Hamilton asserts that A satisfies its char-
acteristic equation. That is, f (A;A) = 0.
Since deg(f ) = n, deg[m(z;A)] ≤ n. Since

m(z;A) divides any polynomial p(z) such
that p(A) = 0, it follows that m(z;A) divides
f (z;A).

The form of m(z;A) provides information
about A.

(i) m(z : A) = zp implies that Ap = 0 but
that Ap−1 �= 0. Such an operator is
called nilpotent, with nilpotency index
p.

(ii) m(z;A) = (z − 1)p implies that A − I
is nilpotent with index p. Thus in this
case A = I + N, where N is nilpotent.
An operator of this form is called
unipotent.

(iii) Suppose the minimal polynomial of
A has no multiple zeros, which is
equivalent to saying that m and its
derivative have no common factors.
Then there is a basis of V consisting
of eigenvectors of A. Equivalently,
among the matrices associated with
A there is one which is diagonal.
In this case we say that A and its
associated matrices are diagonalizable
or semisimple.

(iv) If m(z;A) = (z − λ)p, then, of course,
p ≤ n. A basis can be chosen so
that the matrix corresponding to A
has zero entries except along the
diagonal where there are so-called
Jordan blocks, which in case n = 4,
for example, would be


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


 .

That is ni × ni matrices with λ on
the diagonal and 1’s on the first
superdiagonal, �ni = n, 1 ≤ ni ≤ p,
and for at least one value of i, ni = p.

In the preceding we have assumed
that the entries of the matrix A could
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be arbitrary. However, if they are real
and nonnegative the remarkable Perron-
Frobenius theorem (Senata, 1973) about
the eigenvalues and eigenvectors of A
gives information which is useful in
many contexts; we thus state it here.
A matrix M = (mij) is connected or
indecomposable if for any two indices
i and j there is a sequence rk, 1 ≤
k ≤ s, such that the continued product
mir1 mr1r2 mr2r3 . . . mrsj �= 0. We write M >

0 if all mij > 0, and M ≥ 0 if all mij ≥ 0.
Then, if M ≥ 0 is a real connected matrix,
it has a largest simple positive eigenvalue,
r(M) = r, and an associated column vector
x > 0, such that Mx = rx where r > 0; any
other eigenvalue λ of M has absolute value
less than or equal to r. Further, if N ≥ 0 is
another real matrix of the same dimension,
such that M − N ≥ 0, then r(N) ≤ r(M)

with equality only if N = M. This theorem
can be used to quickly give the basic
classification of Kac-Moody algebras.

3.6
Canonical Form of Matrices

In Sec. 3.3 we noticed that distinct matri-
ces were associated with the same linear
operator, so there is a sense in which such
matrices are ‘‘equivalent.’’ Recall that by
an equivalence relation a set is partitioned
into distinct mutually exclusive subsets
which exhaust the given set. One method
of partitioning a set is into the orbits of
a group which acts on the set. Thus if g
belongs to a group G which is acting on
a set S and we denote by gs the element
of S into which g sends s, the orbit of s
is the set Ms = {gs|g ∈ G}. It follows that
x ∈ Ms implies that Mx = Ms. Given an
equivalence relation on a set of matrices,
the problem considered in this section is
that of choosing a canonical or ‘‘simplest’’
matrix in each equivalence class. There are

different canonical forms depending on
the types of matrices we consider and the
different group actions contemplated.

Possibly the basic and most general sit-
uation is that considered by H. J. S. Smith
in 1861. It is that of Sec. 3.3 where the
equation A(u′, v′) = PA(u, v)Q occurs in
slightly different notation. There P and Q
are arbitrary invertible m × m and n × n
matrices, respectively. By choosing B′

u so
that the last elements of the basis span
the kernel of A and the first ones span a
subspace which is complementary to the
kernel, while the first elements of Bu span
the range of A, one can arrive at Smith’s
canonical matrix which has 1’s in the (i, i)
positions for 1 ≤ i ≤ r where r is the rank
of A, and zero everywhere else. It would be
difficult to demand anything ‘‘simpler.’’ It
follows that with this meaning of equiva-
lence there are p + 1 equivalence classes of
m × n matrices where p is the minimum
of {m, n}.

At first one is surprised that there are so
few classes. However, on second thought,
one notices that we have been acting on
a space of matrices of dimension mn by
the group Gl(n, F) × Gl(m, F) (= G, say),
which has n2 + m2 ≥ 2mn parameters;
there is plenty of redundancy unless one
of m and n is 1 and the other is 1 or 2.

If we consider an action on the set of
n × n matrices by a smaller group we
shall expect more equivalence classes. For
(P, Q) ∈ G, subgroups of G can be defined
by imposing restrictions on P and Q.

Recall the following definitions. If A is a
square matrix the transpose of A, denoted
by At, is obtained from A by interchanging
rows and columns or by reflecting across
the main diagonal. The operation of
taking the transpose is an involution,
that is (At)t = A. If At = A, then we
say A is symmetric. If At = −A, then
A is antisymmetric or skew-symmetric.
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An important property of transposition
is (AB)t = BtAt. It is worth noting that
once the basis of V has been fixed,
the mapping defined by transposition
of matrices can be transferred to the
associated linear transformations, thus
defining an involution on Hom(V).

If σ is an automorphism of F, we
can define an operation on the matrix
A by replacing each of its elements by
its conjugate under the automorphism,
and denote the new matrix by Aσ .
If the field is commutative (AB)σ =
Aσ Bσ . In particular, when F = C, complex
conjugation is an automorphism of period
two. We follow a common custom and
denote the complex conjugate of A by A,
so AB = A B.

The Hermitian conjugate of A is denoted
by A∗ = A

t
and satisfies (AB) = B∗A∗. A

matrix A is Hermitian if A∗ = A and anti-
Hermitian if A∗ = −A.

The approach of this section is based
on that of Turnbull and Aitken (1932),
a superb book which goes far beyond
our brief summary. They distinguish five
subgroups of G.

(i) The Collinearity Group is character-
ized by PQ = I. It arises in Sec. 3.3
when v = u and v′ = u′. Under the
action of this group, a square matrix,
A, can be reduced to Jordan canoni-
cal form, that is to a sum of diagonal
blocks, each of which has the form
λI + N, where λ is an eigenvalue of
A and N is a nilpotent matrix, all
of whose entries are zero except for
1’s along the first superdiagonal. A
particular eigenvalue occurs on the di-
agonal of the canonical form as many
times as its multiplicity in the charac-
teristic equation. For any eigenvalue
the dimension of the largest Jordan
block is equal to the multiplicity of the

eigenvalue in the minimal polynomial
m(z;A). Thus if the zeros of m(z;A) are
simple, A is diagonalizable.

(ii) The Congruent Subgroup is defined
by the condition Pt = Q . Under this
group, symmetry or antisymmetry of
A is invariant. A symmetric matrix can
be diagonalized. If F is closed under
taking square-roots, we can choose as
the canonical element of an equiva-
lence class a diagonal matrix which
has only 0’s or 1’s on the diagonal. If
F = R, the diagonal could also con-
tain −1. In the real case, Sylvester’s
Law of Inertia asserts that the num-
ber of 1’s and the number of −1’s
are invariants. A nonsingular anti-
symmetric matrix has even rank r and
there is a canonical form under the
congruent group which contains ze-
ros everywhere except for r/2 blocks
of 2 × 2 antisymmetric matrices down
the diagonal; each has 1 and −1 off
the diagonal and 0 on the diagonal.

(iii) The Conjunctive Subgroup is defined
by the condition P = Q∗. It changes
Hermitian matrices into Hermitian
matrices. For real matrices, the con-
junctive and the congruent transfor-
mations are the same. For any F,
one may choose a diagonal matrix
as canonical. If F = C, the diagonal
can consist of 1’s and 0’s.

(iv) The Orthogonal Group is defined by
PQ = I and P = Qt and is thus a
subgroup of the groups (i) and (ii).
It will preserve symmetry or anti-
symmetry of a matrix. A symmetric
matrix will be equivalent to a diagonal
matrix whose diagonal elements are
eigenvalues of the original matrix. An
antisymmetric matrix will be equiv-
alent to one with zeros everywhere
except for 2 × 2 blocks on the diago-
nal, the determinants of these blocks
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being equal to the negatives of the
squares of eigenvalues of the original
matrix.

(v) The Unitary Subgroup is defined
by PQ = I and P = Q∗, and is
thus a subgroup of (i) and (iii). It
preserves the property of a matrix
being Hermitian or anti-Hermitian.
If F = R, groups (v) and (iv) are the
same. Under this group, a Hermitian
matrix is equivalent to a diagonal
matrix whose nonzero elements are
eigenvalues of the original matrix. An
anti-Hermitian matrix is equivalent
to one with 2-dimensional blocks
on the diagonal whose determinants
are the negatives of the squares of
eigenvalues of the original matrix.

3.7
Dual Space

We have already noted that Hom(V,U),
where V and U are linear spaces of
dimension n and m, respectively, over a
common field F, can be given a structure of
a linear space of dimension nm over F. We
can, of course consider F as a linear space
of dimension 1 over F. Thus, Hom(V, F)

is a linear space of dimension n over F

and therefore isomorphic to Fn and hence
also to V. It is called the dual space of V
and usually denoted by V∗. This use of
the asterisk can be distinguished from its
use to indicate Hermitian conjugation by
the context. The elements of V∗ are linear
functions on V with values in F. We shall
denote them by lower case Greek letters.
Recall that the Kronecker symbol δi

j takes
the value 1 if i = j and 0 otherwise.

If α ∈ V∗ and x = x jvj is an arbitrary
vector in V expressed in terms of the basis
Bv, then α(x) = x jα(vj) = ajx j, where aj =
α(vj). It is possible to define various bases
for V∗. The basis which is said to be dual

to Bv, and may be denoted by B∗
v , is defined

as follows. Recall that a linear function on
V is completely determined by the values
it assumes for the elements of a basis of V.

Let αi be a linear function such that
αi(vj) = δi

j for all j, 1 ≤ j ≤ n. Then αi(x) =
xi. Thus αi is the ith coordinate function.
It easily follows that αi are linearly
independent and that α = ajα

j, where
aj = α(vj). Thus any element of V∗ is
a linear combination of the n elements
αj, 1 ≤ j ≤ n, so that B∗

v = {αj} is a basis
for V. Just as the xi are coordinates of an
arbitrary element of V with respect to Bv, so
ai are coordinates of an arbitrary element
of V∗. Since ai = α(vi), when the basis
of V is changed, ai changes by the same
transformation as, or cogrediently with,
the basis. As we noted at the end of Sec. 3.2,
the xi transform contragrediently to the
basis. This distinction reflects the fact that
the definition of the linear function α: x →
α(x) is independent of the coordinate
system used to describe it. A geometrical
or physical entity which is described
by a sequence of n numbers which
transform like (ai) is called a covariant
vector. Similarly, an entity described by a
sequence of n numbers which transform
like (xi) when the basis is changed is called
a contravariant vector.

3.8
Tensors

Possibly it was algebraic geometers in the
middle of the nineteenth century who first
focused attention on the behavior of the
coordinates of geometrical objects when
the frame of reference is changed. But the
first time this issue really impinged on
physics was with the advent of Einstein’s
General Relativity Theory (GRT). The
basic metric of GRT, gijdxidx j, is clearly
independent of the coordinate system but
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since dxi is a contravariant vector, gij will
have to vary covariantly in both subscripts
i and j. Then the n2 symbols gij must be
describing something (in fact, according
to Einstein, the gravitational field!) which
is a doubly covariant tensor.

The curvature of space-time, which
allegedly explains black holes and how
planets circle around the sun, is described
by the Riemann-Christoffel tensor, Ri

jkl,
which is contravariant in the index i and
covariant in the other three.

The great advantage of the indicial
notation, as it evolved in the writings
of Eddington, Weyl, Synge, and other
mathematical physicists between 1920 and
1940, is that it immediately indicates the
behavior of the tensor when the underlying
basis, or frame of reference, is changed.
Thus if aij is a double covariant tensor and
bi is a contravariant vector (or first order
tensor), then aijbk is a third order tensor
covariant in two indices and contravariant
in one. If we now contract on the indices j
and k, we see immediately that ci = aijbj is
a covariant vector.

An algebraist would say that aij are the
components of an element of V∗ ⊗ V∗, the
tensor product of the dual space of V with
itself. Similarly, aib

j
k are the components

of an element in the tensor product V ⊗
V ⊗ V∗. In general, the tensor product (see
Sec. 4) of two linear spaces of dimension
n and m is a linear space of dimension
nm. In particular, V∗ ⊗ U is isomorphic
to Hom(V,U) and is spanned by a basis
consisting of elements noted as αi ⊗ uj,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

4
Creating Algebraic Structures

What experimental apparatus is for the
physicist, the Cartesian product and

quotient structures are for the algebraist.
These are the principal tools with which
he makes new mathematical structures.

If A and B are two sets, the Cartesian
product of A and B is denoted by A × B
and defined as the set {(x, y)|x ∈ A, y ∈ B}.
Thus it is a new set consisting of ordered
pairs with the first element of the pair
belonging to A and the second to B. If
A �= B, A × B �= B × A, since by definition
two ordered pairs (a, b) and (c, d) are equal
only if a = c and b = d.

Things become more interesting when A
and B have some algebraic structure which
can be used to impose structure on the
Cartesian product. For example, suppose
that A = B = Z. We define the addition
of pairs ∈ Z × Z by (x, y) + (u, v): = (x +
u, y + v). Notice that the plus signs on
the right and left have quite different
meanings. One acts on pairs of integers;
the others on integers. If we think of +3 as
a translation by 3 units along the number
line, we can call (Z, +) a translation group
in one dimension. We could then think of
(Z × Z, +) as the translation group of a
two-dimensional lattice. Another familiar
example is the idea due to Gauss of
imposing the structure of the complex
numbers on R × R.

The direct sum of two vector spaces pro-
vides us with another important example
of this construction. Suppose X and V
are two linear spaces over the same field
F with bases {ei}, 1 ≤ i ≤ n, and {fj}, 1 ≤
j ≤ m respectively. For x, y ∈ X, u, v ∈ V ,
and α ∈ F, define (i) (x, u) + (y, v): = (x +
y, u + v); (ii) α(x, u): = (αx, αu). By these
definitions we have imposed on X × V the
structure of a linear space for which the
n + m elements {(ei, 0), (0, fj)} form a ba-
sis. This new linear space is called the
direct sum of the linear spaces X and V,
and has dimension n + m, and is denoted
by X ⊕ V .
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An apparently minor variation on the
preceding definition leads us to an
important but quite different object – the
tensor product of X and V which is de-
noted by X ⊗ V . This is a linear space
which has a basis of elements belong-
ing to the Cartesian product X × V , but
addition and scalar multiplication are dif-
ferent. (i) (x1 + x2, v1 + v2) = (x1, v1) +
(x1, v2) + (x2, v1) + (x2, v2); (ii) α(x, v) =
(αx, v) = (x, αv). These conditions imply
that X ⊗ V is a vector space over F of
dimension mn, with {(ei, fj)} as a basis.

Recall that an equivalence relation ρ on a
set S partitions S into mutually exhaustive
subsets which we call equivalence classes.
A binary relation ρ on a set is an
equivalence relation if it has the following
three properties: (i) reflexive, xρx for all
x ∈ S, (ii) symmetric, xρy implies yρx,
(iii) transitive, xρy and yρz imply xρz. A
subset of the partition of S contains exactly
all the elements of S which are related by
ρ to any one member of the subset. For
example, the nails in a hardware store can
be partitioned by length. Thus xρy means
length(x) = length(y).

Now consider the equivalence relation ρ

on Z × Z such that (a, b)ρ(u, v) if and only
if av = bu. We have used only properties
of the integers to partition Z × Z into
equivalence classes. But the condition we
used is identical with the equality of the
rational numbers a/b and u/v. We have
thus established a bijection, or one-to-
one correspondence, between Q and the
equivalence classes of Z × Z under the
relation ρ.

For any set S with equivalence relation
ρ, the new set whose elements are
equivalence classes of S is denoted by
S/ρ and called the quotient set of S by

the relation ρ. Starting from Z we have
just created the rationals Q as (Z × Z)/ρ.
The notion of quotient structure frequently
arises in physics when we have a group G
acting on some set S.

Suppose that G acts transitively on S,
that is if Q is a fixed point, and P is any
point, there is at least one transformation
in G which sends Q to P. The set of all
transformations which leave Q fixed is a
subgroup H of G – the so-called stabilizer
of Q. For any two elements f and g of G we
shall say that they are in the relation ρ, that
is f ρg, if fg−1 ∈ H. We easily prove that ρ is
an equivalence relation and that the points
of S are in one-to-one correspondence with
the elements of G/ρ. Thus the physics
of S can be transferred to G/ρ and the
symmetries of the physical situation may
become more transparent.

When the relation is defined by a
subgroup H as above, G/ρ is usually
denoted by G/H. Suppose we denote the
equivalence class containing g by π(g), if
g is any element of G. That is π is a
mapping from G to G/H, the so-called
canonical map. We could ask whether it
is possible to impose on G/H a structure
of a group in such a way that for any
f , g ∈ G, π(fg) = π( f )π(g). The answer is
yes – if and only if H is a normal subgroup
of G. A normal subgroup is not only a
group but has the additional property that
for all g ∈ G, gHg−1 = H. Further H =
{g ∈ G|π(g) = e} where e is the neutral
element of the new group G/H. When the
subgroup H is not normal, G/H is not a
group but is called a homogeneous space
on which G acts transitively.

We shall meet below other examples of
the use of quotienting as a method of
creating new structures.
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5
Rings

A ring like a field consists of a set, R, to-
gether with two binary operations which
are usually called addition and multiplica-
tion. (R, +, ×) is a ring if

(i) (R, +) is a commutative additive
group with zero;

(ii) (R, ×) is closed under multiplication
and may or may not have a unit;

(iii) multiplication distributes over addi-
tion, i.e., a(x + y) = ax + ay for all
a, x, and y in R.

We do not require that nonzero elements
of R have reciprocals in R, nor that mul-
tiplication be commutative or associative,
but we do not exclude these properties.
Thus a field is a ring but not all rings are
fields.

5.1
Examples of Rings

We now list five rings and one ‘‘almost
ring’’ which occur frequently in the physics
literature.

(a) The Integers Z. Perhaps it was this
example which led to the emergence
of the concept of ring. The integers
form a group under addition and are
therefore closed under addition and
subtraction. They are also closed under
multiplication, which distributes over
addition. However, the solution, x, of
the equation mx = n, where m, n ∈ Z,
is not, in general, an element of Z. In
contrast with some other rings there
are no divisors of zero in the integers.
That is you cannot find two integers,

neither of which is zero, whose product
is zero.

(b) Square Matrices. Suppose A = (
ai

j

)
, B =(

bi
j

)
, and C = (ci

j) are n × n matrices
with entries in a field F; then we
define A + B and AB or A × B to
be n × n matrices whose entries in
the ith row and jth column are,
respectively, ai

j + bi
j and ai

kbk
j . (Recall

the summation convention in the
Introduction.) Here 1 ≤ i, j, k ≤ n. Let
Mn(F) = Mn denote the set of all
n × n matrices with entries in the
commutative field F. Then one can
verify that (Mn, +, ×) is an associative
ring which is noncommutative if n ≥ 2.
The zero element of the ring is
the matrix all of whose entries are
0, whereas the unit or identity for
multiplication is the matrix (δi

j ) which
has 1 on the diagonal and 0 elsewhere.
Notice that if n = 2,[

0 1
0 0

] [
3 7
0 0

]
=

[
0 0
0 0

]
;

thus the ring of square matrices
possesses zero divisors.

(c) Quaternions were invented by Sir
William Rowan Hamilton in order to
give a convenient description of rota-
tions in 3-space.
In this section we shall use j, k, s, t as
indices with their ranges restricted as
follows: 1 ≤ j, k ≤ 3, and 0 ≤ s, t ≤ 3.
The quaternions, H, form an associa-
tive ring with multiplicative identity,
I = e0, and contain three elements ej

satisfying the conditions ejek + ekej =
−2δjke0, so e2

j = −e0. Further, ejek = em

where (j, k, m) is an even permutation
of (1, 2, 3). As a ring, H will contain
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e0 + e0: = 2e0, etc., so that H contains
Ze0. More generally if R denotes any
commutative ring, we could assume
that H contains Re0 and note this ex-
plicitly by denoting the quaternions as
H(R). Hamilton considered only the
possibility that R = R, the real num-
bers, since his concern was rotations
in the 3-dimensional space of Newto-
nian physics – not some esoteric space
of super string theory! Over R we can
define H by

H = {xses|xs ∈ R}.
Then it follows that H is closed
under addition and multiplication. If
we demand that the associative and
distributive properties hold, we obtain a
noncommutative associative ring. That
it is consistent to demand the preceding
properties follows from the fact that
they are satisfied by 2 × 2 matrices with
entries in R if we represent e0 by the
identity matrix and ej by −iσj, where σj

are the three Pauli matrices:

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
,

σ3 =
[

1 0
0 −1

]
.

Thus, if we set E0 = I and Ej = −iσj,
we find that

X = xsES =
[

x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

]
,

and that if x0 = 0, then det(X) =
δjkx jxk, which equals the square of
the Euclidean length of the vector with
components x j.
If T is any invertible 2 × 2 matrix and
Y = TXT−1, then trace of Y = tr(Y) =
tr(X) and the determinant det(Y) =
det(X). Since tr(X) = x0, it follows
that x0 = 0 implies y0 = 0. Further,

δjkx jxk = δjkyjyk, that is, Euclidean dis-
tance is preserved so the transforma-
tion from (x1, x2, x3) to (y1, y2, y3)

is orthogonal. In particular if T =
exp(ϑσ3)=cos ϑI +sin ϑσ3, this trans-
formation is a rotation though an angle
2ϑ about the x3 axis.
If R is a finite commutative ring with
m elements, H(R) would be a noncom-
mutative ring with m4 elements.
When is H(R) a field? Define X ′ by
X = x0I + X ′ and X by X = x0I − X ′. It
then follows that XX = δstxsxtI. If R =
R, this vanishes only if X = 0. Thus
X divided by δstxsxt is the reciprocal
of X. It is not difficult to verify that
H(R) satisfies the requirements of an
anticommutative or skew field. This
is the field discovered by Hamilton to
which we alluded in Sec. 2.2.

(d) Boolean ‘‘Ring’’. In studying what
he called ‘‘The Laws of Thought’’,
George Boole was led to introduce an
algebraic structure on the subsets of
any fixed set in which union, ∪, and
intersection, ∩, are analogs of addition
and multiplication, respectively. The
original set acts as the identity for
multiplication, and the empty set
serves as the zero for addition. The
reader can verify that most of the
properties of a commutative ring are
satisfied by Boole’s structure, but a
given subset does not have an additive
inverse so that P (S), the set of subsets
of S, is not an additive group under the
binary operation ∪.

(e) Lie Rings. Let (L, +, ◦) be a set L to-
gether with two binary operators such
that (L, +) is an additive commuta-
tive group such that the operation ◦
distributes over addition, so that

x◦(y + z) = x◦y + x◦z.
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However, the Lie product is neither
commutative nor associative but satis-
fies the properties:

x◦y + y◦x = 0

and

x◦(y◦z) + y◦(z◦x) + z◦(x◦y) = 0.

Because of the first of these conditions,
we say that the Lie product is anticom-
mutative. The second, which replaces
the associativity property of the famil-
iar rings, is referred to as the Jacobi
identity. Lie groups are discussed in
other articles of this work so we do not
go into details here. We merely remark
that the elements of a finite dimen-
sional Lie group can be parametrized
by continuous real variables and that
Sophus Lie associated to such groups
what he called an infinitesimal group
which is a particular case of a Lie ring.
Associativity of multiplication in the
group implies the validity of the Jacobi
identity in the corresponding Lie ring.
The Jacobi identity can be rewritten in
the form

z◦(x◦y) = (z◦x)◦y + x◦(z◦y),

which is the same as

D(x◦y) = (Dx)◦y + x◦(Dy),

if we set Dw = z◦w, for fixed z and
all w ∈ L. This last equation reminds
us of the product rule in calculus, so
we say that the linear map D: w → z◦w
is a derivation of L. The concept of Lie
ring, which apparently (Witt, 1937) was
first defined by Wilhelm Magnus in
1936, is a generalization of the concept
of Lie algebra introduced under the
name ‘‘infinitesimal group’’ by Lie and
Killing independently before 1880.

(f ) Grassmann Ring. As a final example of
the concept of ring we briefly describe
an algebraic structure invented by Her-
mann Grassmann about 1840 which is
basic to the theory of fermions as well
as the geometry of many dimensions.
Given a field, F, and a finite vec-
tor space (V, F, +) of dimension n,
it is possible to define a new vector
space, V∧, of dimension 2n over F

and a binary operation, denoted by ∧,
called the wedge or Grassmann prod-
uct, which distributes over addition.
(V∧, F, +, ∧) will be the Grassmann
or exterior algebra. In order to define
the product ∧, which is the same as
that for fermion creation operators in
second quantization, we proceed by in-
duction on the grade of homogeneous
elements of the algebra. Recall that in
the ring F[x, y] of all polynomials in
x and y there are special subspaces
such as ax + by, or ax2 + bxy + cy2,
or ax3 + bx2y + cxy2 + dy3, of homo-
geneous elements of dimension 2, 3,
4, respectively. Any polynomial can be
expressed as a sum of homogeneous
polynomials, and the summands are
unique. It turns out, analogously, that
if dim(V) = n, V∧ contains n + 1 sub-
spaces Vp, 0 ≤ p ≤ n, such that any
element x of V∧ can be expressed in
precisely one way as x = �n

0 xp, where
xp ∈ Vp. An element of Vp is said to
be homogeneous of grade p. If x and
y are homogeneous of grades p and q,
respectively, then x ∧ y = (−1)pqy ∧ x
is of grade p + q. In particular, V0 = F

and V1 = V by definition. It follows
that if x and y are of grade 1, that is be-
long to V, x ∧ y = −y ∧ x. So if F has
characteristic other than 2 it follows
that x ∈ V implies that x ∧ x = 0.
If {vi} is a basis of V, the n(n − 1)/2
elements vi ∧ vj for i < j are linearly
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independent and span the subspace V2

of V∧. Similarly V3 is spanned by vi ∧
vj ∧ vk: = (vi ∧ vj) ∧ vk = vi ∧ (vj ∧ vk)

with i < j < k between 1 and n. The
dim(V3) = n(n − 1) (n − 2)/6. Pro-
ceeding in this way we define all the
n + 1 homogeneous subspaces. As is
known, the sum of the coefficients
of the nth power of a binomial is
(1 + 1)n = 2n, so V∧ has dimension 2n.
The preceding terse abstract definition
does not immediately suggest that
the Grassmann ring is significant
for fermion physics. However, this
becomes plausible when one realizes
that the above basis elements of grade
p correspond to the Slater determinants
for a system of p electrons which can
be formed from a basis set of n linearly
independent spin-orbitals.

5.2
Polynomial Rings

For everyday applications there is little
doubt that the integers Z constitute the
most important ring which is not also a
field. Perhaps the next most important
is the ring of polynomials involving one
or more variables. Suppose R is any
ring; then we consider all expressions of
the form P(x) = asxs, where 0 ≤ s ≤ n, xs

denotes the sth power of the variable x,
and as ∈ R. If an �= 0 we say that P(x)
is a polynomial of degree n in x. The
set of all such polynomials of arbitrary
finite degree will be denoted by R[x]. (Note
the square bracket which distinguishes
the ring from the field R(x) of rational
functions.) Assume that the powers of
x commute with the elements of R
and define addition and multiplication
in the obvious way. Then (R[x], +, ×)

is a ring which is commutative if and
only if R is commutative. For example, if

R = Z, R[x] is the ring of all polynomials
with integer coefficients. If R is the ring
of 2 × 2 matrices with complex entries,
R[x] consists of all 2 × 2 matrices whose
entries are polynomials in x with complex
coefficients. In this case the variable is
often called λ. The theory of this particular
ring is discussed by Turnbull and Aitken
(1932), for example, under the title λ-
matrices.

An obvious extension of the preceding is
to adjoin two or more variables to R. Thus
R[x, y] denotes the set of polynomials in x
and y with coefficients in R. A term such
as 3x2y5, formed by multiplication without
addition, is called a monomial. The sum
of the powers of x and y is called the
degree of the monomial. Thus the degree
of the preceding monomial is 2 + 5 = 7.
Clearly there are 8 different monomials of
degree 7 in two variables. Any sum of these
with coefficients in R is a homogeneous
polynomial in x and y of degree 7. When
R is a field we see that the homogeneous
polynomials of degree 7 form a linear space
of dimension 8.

More generally, it is of considerable
interest to determine how many distinct
monomials of degree n can be obtained
from r variables. It is not difficult to see that
the possible such monomials occur as the
coefficients of tn in the expansion of the r-
fold product 	(1 − xit)−1, where 1 ≤ i ≤ r
and xi are distinct variables. Setting all
xi = 1, we see that the required number is
the binomial coefficient

(r+n−1
n

)
.

This is an opportune point at which to
explain the concept of a graded ring which
appeared in Sec. 5.1(f ) and has recently
entered quantum physics in connection
with super-symmetry. It is clear that any
element of R[x, y] is a unique sum of
homogeneous terms and that the product
of two homogeneous terms of degree p and


