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Preface to the Second Edition

During the last years catalysis has made a rapid progress, there can be observed
many new applications of catalysts. For obvious reasons catalysis is the key to the
success in developing new processes for various fields in industry. The use of suit-
able catalysts for new processes requires a basic knowledge of catalytic principles.

In this book, my main objective is to present an overview on catalysis, so that both
the student and the experienced practitioner can see the broad picture. It was the in-
tention to compile a text of about 500 pages surveying the whole area of catalysis,
that means homogeneous catalysis, heterogeneous catalysis, biocatalysis and special
topics of applied catalysis. It is felt that sufficient information is given here for a ra-
tional approach to be applied in a basic understanding of the phenomenon catalysis.

In the present edition some space is dedicated to special topics such as electro-
catalysis, photocatalysis, asymmetric catalysis, phase-transfer catalysis, environmen-
tal catalysis, and fine chemicals manufacture. On the basis of fundamental reaction
engineering equations, examples for calculation and modeling of catalysis reactors
are given with the easy-to-learn PC program POLYMATH. Well over 170 exercises
help the reader to test and consolidate the gained knowledge.

The book is based on my own lecture course for chemical engineers at the Univer-
sity of Applied Sciences Mannheim and several vocational training seminars for
chemists and engineers in industry. I hope this book will be useful both to students
who have studied chemistry or chemical engineering and to graduates and chemists
who work in or are interested in the chemical industry.

Grateful appreciation is given to the following companies which provided photo-
graphic material: Degussa AG, Hanau and Marl, HTE AG, Heidelberg, and Siid-
Chemie AG, Heufeld. I am particular grateful to Prof. V. M. Schmidt, Mannheim,
for his valuable advice in electrocatalysis and additional material. I also want to
thank the numerous students who followed my courses in Mannheim.

I thank the publishers, for their kind and competent support. I gratefully acknowl-
edge the help of Dr. Romy Kirsten, who directed the project, Claudia Grossl for pro-
duction, and Dr. Melanie Rohn for copy-editing. Special thanks and appreciation to
my wife Julia for her patience, understanding and the encouragement to stay with
this project to its completion.

Mannheim, October 2005 Jens Hagen
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Preface to the First Edition

Catalysts have been used in the chemical industry for hundreds of years, and many
large-scale industrial processes can only be carried out with the aid of catalysis.
However, it is only since the 1970s that catalysis has become familiar to the general
public, mainly because of developments in environmental protection, an example
being the well known and widely used catalytic converter for automobiles.

Catalysis is a multidisciplinary area of chemistry, in particular, industrial chemis-
try. Anyone who is involved with chemical reactions will eventually have something
to do with catalysts.

In spite of years of experience with catalysts and the vast number of publications
concerning catalytic processes, there is still no fundamental theory of catalysis. As
is often the case in chemistry, empirical concepts are used to explain experimental
results or to make predictions about new reactions, with greater or lesser degrees of
success.

To date there has been no standard book that deals equally with both hetero-
geneous and homogeneous catalysis, as well as industrial aspects thereof. The books
published up to now generally describe a particular area or special aspects of cataly-
sis and are therefore less suitable for teaching or studying on one’s own. For this
reason, it is not easy for those commencing their careers to become familiar with
the complex field of catalysis.

This book is based on my own lecture course for chemical engineers at the Fach-
hochschule Mannheim (Mannheim University of Applied Sciences M.U.A.S) and is
intended for students of chemistry, industrial chemistry, and process engineering, as
well as chemists, engineers, and technicians in industry who are involved with cata-
lysts. Largely dispensing with complex theoretical and mathematical treatments, the
book describes the fundamental principles of catalysis in an easy to understand fash-
ion. Numerous examples and exercises with solutions serve to consolidate the under-
standing of the material. The book is particularly well suited to studying on one’s
own.

It is assumed that the reader has a basic knowledge of chemistry, in particular, of
reaction kinetics and organometallic chemistry. Homogeneous transition metal cata-
lysis and heterogeneous catalysis are treated on the basis of the most important cata-
lyst concepts, and the applications of catalysts are discussed with many examples.
The book aids practically oriented readers in becoming familiar with the processes

Xl
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Preface to the First Edition

of catalyst development and testing and therefore deals with aspects of test planning,
optimization, and reactor simulation. Restricting the coverage to fundamental as-
pects made it necessary to treat certain areas that would be of interest to specialists
in concise form or to omit them completely.

I wish to thank all those who supported me in producing this book. Special thanks
are due to Dr. R. Eis for all the hard work and care he invested in preparing the fig-
ures and for his helpful contributions and suggestions. I am grateful to the following
companies for providing photographic material: BASF, Ludwigshafen, Germany;
Degussa, Hanau, Germany; Hoffmann-LaRoche, Kaiseraugst, Switzerland; Doduco,
Sinsheim, Germany; and VINCI Technologies, Rueil-Malmaison, France. Interesting
examples of catalyst development were taken from the Diploma theses of Fach-
hochschule graduates, of whom K. Kromm and T. Zwick are especially worthy of
mention.

I was pleased to accept the publisher’s offer to produce an English version of the
book. The introduction of international study courses leading to a Bachelor’s or
Master’s degree in Germany and other countries makes it necessary to provide stu-
dents with books in English. I am particularly grateful to Dr. S. Hawkins for his
competent translation of the German text with valuable advice and additional mate-
rial.

I thank the publishers, Wiley-VCH Weinheim, for their kind support. Thanks are
due to Dr. B. Bock, who directed the project, C. Grossl for production, and S. Pauker
for the cover graphics.

Mannheim, January 1999 Jens Hagen
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A* adsorbed (activated) molecules of component A
a catalyst activity

as area per mass [m?/kg]

A electron acceptor

ADH alcohol dehydrogenase enzyme
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PEMFC proton exchange membrane fuel cell
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PTC phase-transfer catalysis
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Di partial pressure of component i [bar]
Py pyridine

R ideal gas law constant [J mol ™' K]
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1
Introduction

1.1
The Phenomenon Catalysis

Catalysis is the key to chemical transformations. Most industrial syntheses and
nearly all biological reactions require catalysts. Furthermore, catalysis is the most
important technology in environmental protection, i.e., the prevention of emissions.
A well-known example is the catalytic converter for automobiles.

Catalytic reactions were already used in antiquity, although the underlying principle
of catalysis was not recognized at the time. For example, the fermentation of sugar to
ethanol and the conversion of ethanol to acetic acid are catalyzed by enzymes (biocata-
lysts). However, the systematic scientific development of catalysis only began about
200 years ago, and its importance has grown up to the present day [2].

The term “catalysis” was introduced as early as 1836 by Berzelius in order to ex-
plain various decomposition and transformation reactions. He assumed that catalysts
possess special powers that can influence the affinity of chemical substances.

A definition that is still valid today is due to Ostwald (1895): “a catalyst acceler-
ates a chemical reaction without affecting the position of the equilibrium.” Ostwald
recognized catalysis as a ubiquitous phenomenon that was to be explained in terms
of the laws of physical chemistry.

While it was formerly assumed that the catalyst remained unchanged in the course
of the reaction, it is now known that the catalyst is involved in chemical bonding
with the reactants during the catalytic process. Thus catalysis is a cyclic process:
the reactants are bound to one form of the catalyst, and the products are released
from another, regenerating the initial state.

In simple terms, the catalytic cycle can be described as shown in Figure 1-1 [T9].
The intermediate catalyst complexes are in most cases highly reactive and difficult
to detect.

In theory, an ideal catalyst would not be consumed, but this is not the case in
practice. Owing to competing reactions, the catalyst undergoes chemical changes,
and its activity becomes lower (catalyst deactivation). Thus catalysts must be regen-
erated or eventually replaced.
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R (Reactant)

Cat. Cat.—R

P (Product) Fig. 1-1 Catalytic cycle

Apart from accelerating reactions, catalysts have another important property: they
can influence the selectivity of chemical reactions. This means that completely dif-
ferent products can be obtained from a given starting material by using different cat-
alyst systems. Industrially, this targeted reaction control is often even more impor-
tant than the catalytic activity [6].

Catalysts can be gases, liquids, or solids. Most industrial catalysts are liquids or
solids, whereby the latter react only via their surface. The importance of catalysis in
the chemical industry is shown by the fact that 75 % of all chemicals are produced
with the aid of catalysts; in newly developed processes, the figure is over 90 %. Nu-
merous organic intermediate products, required for the production of plastics, syn-
thetic fibers, pharmaceuticals, dyes, crop-protection agents, resins, and pigments,
can only be produced by catalytic processes.

Most of the processes involved in crude-oil processing and petrochemistry, such
as purification stages, refining, and chemical transformations, require catalysts. En-
vironmental protection measures such as automobile exhaust control and purifica-
tion of off-gases from power stations and industrial plant would be inconceivable
without catalysts [5].

Catalysts have been successfully used in the chemical industry for more than 100
years, examples being the synthesis of sulfuric acid, the conversion of ammonia to
nitric acid, and catalytic hydrogenation. Later developments include new highly se-
lective multicomponent oxide and metallic catalysts, zeolites, and the introduction
of homogeneous transition metal complexes in the chemical industry. This was sup-
plemented by new high-performance techniques for probing catalysts and elucidat-
ing the mechanisms of heterogeneous and homogenous catalysis.

The brief historical survey given in Table 1-1 shows just how the closely the de-
velopment of catalysis is linked to the history of industrial chemistry [4].



Table 1-1 History of the catalysis of industrial processes [4]
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Catalytic reaction Catalyst Discoverer or company/year

Sulfuric acid (lead-chamber process) NO, Désormes, Clement, 1806

Chlorine production by CuSOy4 Deacon, 1867

HCI oxidation

Sulfuric acid (contact process) Pt, V,05 Winkler, 1875; Knietsch, 1888
(BASF)

Nitric acid by NH; oxidation Pt/Rh nets Ostwald, 1906

Fat hardening Ni Normann, 1907

Ammonia synthesis from N,, H, Fe Mittasch, Haber, Bosch, 1908;
Production, 1913 (BASF)

Hydrogenation of coal to hydrocarbons Fe, Mo, Sn Bergius, 1913; Pier, 1927

Oxidation of benzene, naphthalene V,05 Weiss, Downs, 1920

to MSA or PSA

Methanol synthesis from CO/H, ZnO/Cr,05 Mittasch, 1923

Hydrocarbons from CO/H, Fe, Co, Ni Fischer, Tropsch, 1925

(motor fuels)

Oxidation of ethylene to ethylene oxide  Ag Lefort, 1930

Alkylation of olefins with isobutane AlCl; Ipatieff, Pines, 1932

to gasoline

Cracking of hydrocarbons Al,05/Si0, Houdry, 1937

Hydroformylation of ethylene to Co Roelen, 1938 (Ruhrchemie)

propanal

Cracking in a fluidized bed

Ethylene polymerization,
low-pressure

Oxidation of ethylene to acetaldehyde

Ammoxidation of propene to
acrylonitrile

Olefin metathesis

Hydrogenation, isomerization,
hydroformylation

Asymmetric hydrogenation

Three-way catalyst

Methanol conversion to
hydrocarbons

a-olefines from ethylene

aluminosilicates

Ti compounds

Pd/Cu chlorides
Bi/Mo

Re, W, Mo

Rh-, Ru complexes

Rh/chiral
phosphine

Pt, Rh/monolith

Zeolites

Ni/chelate
phosphine

Lewis, Gilliland, 1939
(Standard Oil)

Ziegler, Natta, 1954

Hafner, Smidt (Wacker)
Idol, 1959 (SOHIO process)

Banks, Bailey, 1964
Wilkinson, 1964

Knowles, 1974; L-Dopa
(Monsanto)

General Motors, Ford, 1974
Mobil Chemical Co., 1975

Shell (SHOP process) 1977
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Table 1-1 (continued)

Catalytic reaction Catalyst Discoverer or company/year
Sharpless oxidation, epoxidation Ti/ROOH/tartrate  May & Baker, Upjohn, ARCO,
1981
Selective oxidations with H,O, titanium zeolite Enichem, 1983
(TS-1)
Hydroformylation Rh/phosphine/ Rhone-Poulenc/Ruhrchemie,
aqueous 1984
Polymerization of olefines zirconocene/MAO  Sinn, Kaminsky, 1985
Selective catalytic reduction V, W, Ti oxides/ ~1986
SCR (power plants) monolith
Acetic acid Ir/T /Ru ,,Cativa“-process, BP Chemicals,
1996
1.2

Mode of Action of Catalysts

The suitability of a catalyst for an industrial process depends mainly on the follow-
ing three properties:

— Activity
— Selectivity
— Stability (deactivation behavior)

The question which of these functions is the most important is generally difficult to
answer because the demands made on the catalyst are different for each process.
First, let us define the above terms [6, 7].

1.2.1
Activity

Activity is a measure of how fast one or more reactions proceed in the presence of
the catalyst. Activity can be defined in terms of kinetics or from a more practically
oriented viewpoint. In a formal kinetic treatment, it is appropriate to measure reac-
tion rates in the temperature and concentration ranges that will be present in the
reactor.

The reaction rate r is calculated as the rate of change of the amount of substance
na of reactant A with time relative to the reaction volume or the mass of catalyst:

converted amount of substance of a reactant
r= - (molL™'h™" or molkg ™' h™")
volume or catalyst mass - time
(1-1
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Kinetic activities are derived from the fundamental rate laws, for example, that
for a simple irreversible reaction A — P:

d
% = ka(CA) (1_2)

k = rate constant

f(ca) is a concentration term that can exhibit a first- or higher order dependence on
adsorption equilibria (see Section 5.2).

The temperature dependence of rate constants is given by the Arrhenius equation:

k= ky e E/RD (1-3)

E, = activation energy of the reaction
ko = pre-exponential factor
R = gas constant

As Equations 1-2 and 1-3 show, there are three possibilities for expressing catalyst
activity, i.e., as:

— Reaction rate
— Rate constant k
— Activation energy E,

Empirical rate equations are obtained by measuring reaction rates at various concen-
trations and temperatures. If, however, different catalysts are to be compared for a
given reaction, the use of constant concentration and temperature conditions is often
difficult because each catalyst requires it own optimal conditions. In this case it is
appropriate to use the initial reaction rates r, obtained by extrapolation to the start
of the reaction.

Another measure of catalyst activity is the turnover number TON, which origi-
nates from the field of enzymatic catalysis.

In the case of homogeneous catalysis, in which well-defined catalyst molecules
are generally present in solution, the TON can be directly determined. For heteroge-
neous catalysts, this is generally difficult, because the activity depends on the size
of the catalyst surface, which, however, does not have a uniform structure. For ex-
ample, the activity of a supported metal catalyst is due to active metal atoms dis-
persed over the surface.

The number of active centers per unit mass or volume of catalyst can be deter-
mined indirectly by means of chemisorption experiments, but such measurements
require great care, and the results are often not applicable to process conditions.
Although the TON appears attractive due to its molecular simplicity, it should be
used prudently in special cases.

In practice, readily determined measures of activity are often sufficient. For com-
paritive measurements, such as catalyst screening, determination of process para-
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meters, optimization of catalyst production conditions, and deactivation studies, the
following activity measures can be used:

— Conversion under constant reaction conditions
— Space velocity for a given, constant conversion
— Space-time yield

— Temperature required for a given conversion

Catalysts are often investigated in continuously operated test reactors, in which the
conversions attained at constant space velocity are compared [6]
The space velocity is the volume flow rate ¥, relative to the catalyst mass mgy:
. Vi
Space velocity = —¢
cat

(m3 kg™! s’l) (1-4)

The conversion Xy is the ratio of the amount of reactant A that has reacted to the
amount that was introduced into the reactor. For a batch reactor:

Xp = fa0 ~ A (mol/mol or %) (1-5)
N0

If we replace the catalyst mass in Equation 1-4 with the catalyst volume, then we
see that the space velocity is proportional to the reciprocal of the residence time.

Figure 1-2 compares two catalysts of differing activity with one another, and
shows that for a given space velocity, catalyst A is better than catalyst B.

Of course, such measurements must be made under constant conditions of starting
material ratio, temperature, and pressure.

Often the performance of a reactor is given relative to the catalyst mass or vol-
ume, so that reactors of different size or construction can be compared with one an-
other. This quantity is known as the space—time yield S77Y:

__ Desired product quantity

STY = 1L h! 1-6
Catalyst volume - time (mo ) (1-6)

Cat. A

Cat. B

Space velocity VO/ Mg Fig. 1-2 Comparison of catalyst activities
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Determination of the temperature required for a given conversion is another
method of comparing catalysts. The best catalyst is the one that gives the desired
conversion at a lower temperature. This method can not, however, be recommended
since the kinetics are often different at higher temperature, making misinterpreta-
tions likely. This method is better suited to carrying out deactivation measurements
on catalysts in pilot plants.

1.2.1.1  Turnover Frequency TOF

The turnover frequency TOF (the term was borrowed from enzyme catalysis) quanti-
fies the specific activity of a catalytic center for a special reaction under defined re-
action conditions by the number of molecular reactions or catalytic cycles occuring
at the center per unit time. For heterogeneous catalysts the number of active centers
is derived usually from sorption methods (Eq. 1-7).

volumetric rate of reaction moles volume .
TOF = = - = time ™! 1-7)
number of centers/volume  volume - time moles
For most relevant industrial applications the TOF is in the range 1072~10% s™' (en-

zymes 10°—107 s71).

Examples :

TOF values for the hydrogenation of cyclohexene at 25 °C and 1 bar (supported cat-
alysts, structure insensitive reaction; Table 1-2):

Table 1-2 TOF values for the hydrogenation of cyclohexene [T 46]

Metal TOF (s7™)
Gas phase Liquid phase
Ni 2.0 0.45
Rh 6.1 13
Pd 32 1.5
Pt 2.8 0.6

1.2.1.2  Turnover Number TON [T 46]

The turnover number specifies the maximum use that can be made of a catalyst for
a special reaction under defined conditions by a number of molecular reactions or
reaction cycles occuring at the reactive center up to the decay of activity. The rela-
tionschip between TOF and TON is (Eq. 1-8):

TON = TOF [time™'] - lifetime of the catalyst [time] [] (1-8)

For industrial applications the TON is in the range 10°—10’.
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1.2.2
Selectivity

The selectivity S, of a reaction is the fraction of the starting material that is con-
verted to the desired product P. It is expressed by the ratio of the amount of desired
product to the reacted quantity of a reaction partner A and therefore gives informa-
tion about the course of the reaction. In addition to the desired reaction, parallel and
sequential reactions can also occur (Scheme 1-1).

N El Desired

product
N Parallel
A > R Side reactions
products
_:> Pz
A—> |E| — R Sequlemial Scheme 1-1 Parallel and sequential
reaction reactions

Since this quantity compares starting materials and products, the stoichiometric
coefficients v; of the reactants must be taken into account, which gives rise to the
following equation [6]:

I’lp/l/p _ np|1/A|
(nAAo - ”A)/|VA| (ﬂA,o - ”A)VP

Sp = (mol/mol or %) (1-9)

In comparative selectivity studies, the reaction conditions of temperature and con-
version or space velocity must, of course, be kept constant.

If the reaction is independent of the stoichiometry, then the selectivity S, = 1. The
selectivity is of great importance in industrial catalysis, as demonstrated by the ex-
ample of synthesis gas chemistry, in which, depending on the catalyst used, comple-
tely different reaction products are obtained (Scheme 1-2) [2].

Selectivity problems are of particular relevance to oxidation reactions.

N CH, + HO Methanization

Cu/Cr/Zn oxide

CH,OH Methanol synthesis
CO/H, ——
Fe, Co Fischer—Tropsch
—_—
CoHanem + H0 synthesis
| Rhcluster ?Hg—ﬁ?Hg Glycol (Union Carbide)
OH OH

Scheme 1-2 Reactions of synthesis gas
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1.2.3
Stability

The chemical, thermal, and mechanical stability of a catalyst determines its lifetime
in industrial reactors. Catalyst stability is influenced by numerous factors, including
decomposition, coking, and poisoning. Catalyst deactivation can be followed by
measuring activity or selectivity as a function of time.

Catalysts that lose activity during a process can often be regenerated before they
ultimately have to be replaced. The total catalyst lifetime is of crucial importance
for the economics of a process.

Today the efficient use of raw materials and energy is of major importance, and it
is preferable to optimize existing processes than to develop new ones. For various
reasons, the target quantities should be given the following order of priority:

Selectivity > Stability > Activity

1.3
Classification of Catalysts

The numerous catalysts known today can be classified according to various criteria:
structure, composition, area of application, or state of aggregation.

Here we shall classify the catalysts according to the state of aggregation in which
they act. There are two large groups: heterogeneous catalysts (solid-state catalysts)
and homogeneous catalysts (Scheme 1-3). There are also intermediate forms such as
homogeneous catalysts attached to solids (supported catalysts), also known as immo-
bilized catalysts [4].

In supported catalysts the catalytically active substance is applied to a support
material that has a large surface area and is usually porous. By far the most impor-
tant catalysts are the heterogeneous catalysts. The market share of homogeneous cat-
alysts is estimated to be only ca. 10—15 % [5, 6]. In the following, we shall briefly
discuss the individual groups of catalysts.

Catalysts

Homogeneous Heterogenized Heterogeneous
catalysts homogeneous catalysts
catalysts
Acid/base Bulk
catalysts Biocatalysts catalysts
(enzymes)
Tratnsl,ltlon Supported
meta catalysts
compounds

Scheme 1-3 Classification of catalysts
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Catalytic processes that take place in a uniform gas or liquid phase are classified
as homogeneous catalysis. Homogeneous catalysts are generally well-defined chemi-
cal compounds or coordination complexes, which, together with the reactants, are
molecularly dispersed in the reaction medium. Examples of homogeneous catalysts
include mineral acids and transition metal compounds (e. g., thodium carbonyl com-
plexes in oxo synthesis).

Heterogeneous catalysis takes place between several phases. Generally the catalyst
is a solid, and the reactants are gases or liquids. Examples of heterogeneous cata-
lysts are Pt/Rh nets for the oxidation of ammonia to nitrous gases (Ostwald process),
supported catalysts such as nickel on kieselguhr for fat hardening [1], and amor-
phous or crystalline aluminosilicates for cracking petroleum fractions.

Of increasing importance are the so-called biocatalysts (enzymes). Enzymes are
protein molecules of colloidal size [e.g., poly(amino acids)]. Some of them act in
dissolved form in cells, while others are chemically bound to to cell membranes or
on surfaces. Enzymes can be classified somewhere between molecular homogeneous
catalysts and macroscopic heterogeneous catalysts.

Enzymes are the driving force for biological reactions [4]. They exhibit remark-
able activities and selectivities. For example, the enzyme catalase decomposes hy-
drogen peroxide 10° times faster than inorganic catalysts. The enzymes are organic
molecules that almost always have a metal as the active center. Often the only differ-
ence to the industrial homogeneous catalysts is that the metal center is ligated by
one or more proteins, resulting in a relatively high molecular mass.

Apart from high selectivity, the major advantage of enzymes is that they function
under mild conditions, generally at room temperature in aqueous solution at pH va-
lues near 7. Their disadvantage is that they are sensitive, unstable molecules which
are destroyed by extreme reaction conditions. They generally function well only at
physiological pH values in very dilute solutions of the substrate.

Enzymes are expensive and difficult to obtain in pure form. Only recently have
enzymes, often in immobilized form, been increasingly used for reactions of non-
biological substances. With the increasing importance of biotechnological processes,
enzymes will also grow in importance.

It would seem reasonable to treat homogeneous catalysis, heterogeneous catalysis,
and enzymatic catalysis as separate disciplines.

1.4
Comparison of Homogeneous and Heterogeneous Catalysis

Whereas for heterogeneous catalysts, phase boundaries are always present between the
catalyst and the reactants, in homogeneous catalysis, catalyst, starting materials, and
products are present in the same phase. Homogeneous catalysts have a higher degree of
dispersion than heterogeneous catalysts since in theory each individual atom can be
catalytically active. In heterogeneous catalysts only the surface atoms are active [3].
Due to their high degree of dispersion, homogeneous catalysts exhibit a higher ac-
tivity per unit mass of metal than heterogeneous catalysts. The high mobility of the



