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Preface

The difference between “pharmaceuticals” and “modern“ or „innovative pharma-
ceuticals” like nucleic acids (e.g. plasmids, DNA fragments, RNA, viruses or virus-
like-particles) is more or less open to interpretation of those developing these to
improve safety, functionality, stability or economic aspects (in production and
marketing). However, no doubt exists on the existence of a completely new class of
active pharmaceutical ingredients (API) when the use of such genetic material for
a preventive or curative application was discovered. On one side the need for new
products with respect to patent situation and marketing is eminent and on the
other side safety concerns for patient and environment are discussed. Furthermore
questions like “why changing to a new type of product if the old one still works” are
not rare and need to be addressed on the level of market supply costs (were DNA is
not expensive) rather than comparing dose costs for existing pharmaceuticals with
those for pre-clinical or phase I and II clinical material.

Earlier (in Schleef: “Plasmids for therapy and vaccination”, Wiley-VCH 2001) we
presented the vector type and clinical approaches of plasmid vectors. This new
book extends those subjects into the next step after design and manufacturing of
plasmid DNA pharmaceuticals: The focus is on the route of administration, quality
control and regulatory aspects.

After a short overview on DNA vaccination (Chapter 1) and a comprehensive
summary of regulatory aspects for this class of pharmaceuticals (Chapter 2), the
new aspects of improving functionality (e.g. targeting) and purity (ccc-form of
plasmid DNA vs. other topologies and contaminants as well as production
technology; Chapter 3) or minimizing the vector system (Chapter 4; further progress
is expected shortly) are presented.

A special overview on formulation and delivery is presented with Chapters 5 and
6 is a successful example for large animal veterinary DNA vaccine development.

Chapters 6 to 16 indicate the important (different) ways of introducing the vector
to the tissue (and cell compartment) of interest. Due to a recently increased interest
in electro gene transfer we decided to have two chapters (Chapters 11 and 12) on
this subject included. The use of plasmid based siRNA technology was found to be
of interest and an example is presented within Chapter 13.

We are aware of the fact that these 13 chapters only represent a small part of the
ongoing development in this highly dynamic field. The economic and social
relevance of the innovative class of these pharmaceuticals is clearly visible.



VI Preface

For all those who like to further discuss these aspects I look forward to do so at
any time (martin.schleef@plasmidfactor.com). My thank is directed to all authors
and co-authors of this book and all others making it possible.

Special thanks go to all volunteers of clinical trials with DNA pharmaceuticals.

Bielefeld, August 2005 Martin Schleef
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1

DNA Vaccines – An Overview

Britta Wahren and Margaret Liu

1.1

Rationale for DNA Vaccines

Administration of genes via DNA or RNA may be considered the next-generation
of scientific development following the use of recombinant proteins for prophy-
lactic vaccines or for therapy. The use of DNA vaccines for the generation of
immune responses arose from efforts to find immunogens that would be able to
overcome some of the limitations of other modalities of vaccination. With the
discovery of the potential widespread applications of DNA plasmids came apprecia-
tion of certain of the characteristics of DNA as a product: namely, its advantages,
relative to other biologicals, for manufacturing (Chapter 3), product characteriza-
tion, storage (Chapter 3), and delivery (Chapters 5–12).

From the standpoints both of therapeutics and of vaccines, the use of DNA arose
from the desire to have a protein be produced in situ. For a variety of applications,
ranging from cytokine administration to gene therapy for metabolic and inherited
disorders, it was clear that administration of the gene rather than the protein could
have multiple advantages: proteins synthesized in situ from DNA could potentially
persist locally or systemically for longer periods of time without the toxicities
associated with the high levels of intravenously administered proteins, certain
proteins such as cytokines could be administered to the desired site (i.e., intra-
tumorally) (Chapter 7) more readily when administered as genes, and a protein
synthesized from the gene would have mammalian posttranslational modifications,
thus avoiding one of the significant challenges that can arise when making
recombinant proteins in nonmammalian hosts.

Although vaccines have been considered perhaps the greatest human health
achievement, being successful even to the point of eliminating an entire wild-type
disease from the planet (smallpox), certain diseases have remained unconquered
by vaccination. Two key reasons for this are that the traditional approaches have
either simply not worked, or have been considered potentially too risky for a disease
such as HIV. As an example, although live attenuated virus vaccines have been
extremely effective against a variety of diseases, they have at least the theoretical
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risk of reversion to wild type, which in the case of HIV would render the vaccinee
infected with a virus that causes what today is still a fatal infection.

As understanding of immune responses to disease increased, it became clear
that the use of vaccines that induced primarily antibody responses might not be
able successfully to target diseases that required a strong CD8+ T cell responses.
Proteins that enter the cellular processing pathway resulting in the generation of
CD8+ T cell responses generally have to be endogenously synthesized within a
cell. Means to deliver the gene for an antigen, rather than the antigen itself, directly
into cells were therefore sought, as the latter would generally result in the exogenous
protein being taken into the endolysosomal processing pathway, with the resultant
generation of MHC Class II-restricted CD4+ T cells rather than CD8+ T cells. The
observation that plasmid DNA could directly transfect cells in vivo [1] came as a
surprise given the complexity of viral structures that are designed for infecting
cells. The process of DNA transfection is very inefficient and, moreover, the best
transfected cell type is the muscle cell. Myocytes lack the immune accessory surface
molecules needed to activate immune-responding cells appropriately, so it was a
surprise to find that direct transfection of myocytes by immunization with
unformulated plasmid DNA could indeed result in the generation of CD8+ T cells
and protection against a lethal viral challenge [2].

DNA vaccines had further appeal as a product, in additional to their immunologic
rationale. The manufacturing process promised to be fairly generic in comparison
with those for other biologicals. Traditional live virus vaccines require years of
challenging work to attenuate the pathogen properly and to design a cellular
production system. Even recombinant proteins can be challenging, because of the
need to find the correct producer cell able to make the antigen in the correct form
(such as with the correct folding or posttranslational modifications). Because DNA
vaccines are bacterial plasmids, the production is quite similar for different vaccines
because they differ only in the gene sequence encoding the antigen. The majority
of the plasmid, such as the backbone, can be identical or similar. Moreover, DNA
vaccines at their simplest, being just plasmids, are potentially more stable
(Chapter 3) than live viruses, an attribute that should facilitate their use in resource-
poor settings.

1.2

Preclinical Proof of Concept

The initial demonstration that direct immunization with a simple plasmid of DNA
encoding a protein from a pathogen could not only result in the generation of both
arms of the immune response (cytotoxic T lymphocytes as well as antibodies), but
could also protect from an otherwise lethal challenge [2] opened up the field of
DNA vaccines. The ability to protect animals from a strain of virus different from
the strain from which the gene was cloned generated considerable interest because
it offered a potential means to make vaccines for diseases that have multiple strains,
such as influenza or HIV. The influenza vaccine, for example, has to contain antigens
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for three strains and needs to be reformulated each year as new strains arise. Not
only is this a cumbersome process making the adequate yearly supply of vaccines
problematic, but such a vaccine does not protect against the epidemic strains
differing from the strain in the vaccine that occasionally arise mid-season. Of even
more concern is the fact that such a vaccine will not protect against novel pandemic
strains of influenza that periodically may arise, most notably in the 1919 Spanish
influenza that killed millions of people worldwide. The demonstration that a DNA
vaccine made from the genetic sequence of one strain was able to protect against
challenge not just with a slightly different drifted strain, but against a different
subtype, raised hopes for the ability of DNA vaccines to be effective against a variety
of diseases.

From those initial studies, the scientific literature rapidly grew to thousands of
publications demonstrating the ability of DNA vaccines to induce immune
responses and protective and therapeutic benefits in a variety of preclinical disease
models. These models not only included various infectious diseases, including
those caused by viruses, bacteria, and parasites, but also encompassed other types
of disease, such as cancer, allergy, and autoimmunity (reviewed in [3, 4]). Additional
applications for autoimmune diseases and allergies are based upon the ability of
the DNA to alter the type of generated T cell help specifically for the particular
protein antigen. Autoimmune responses are thought to be due to the inappropriate
overproduction of either T helper 1- or T helper 2-type responses. In animal models,
DNA vaccines have been shown to be able to alter the form of T cell help, and DNA
vaccines have thus been able to prevent or ameliorate the disease in preclinical
models of asthma [5] and diabetes [6].

It soon became evident, however, that DNA vaccines, while robust in small animal
models, were less immunogenic in nonhuman primates and humans (reviewed in
[3, 4]). This has given rise to a variety of approaches for making DNA vaccines of
increased potency, as is explored below.

1.3

Clinical Trials

Clinical trials have been performed for DNA vaccines encoding antigens from
pathogens and tumors. In addition, however, trials have been performed with DNA
encoding therapeutic proteins where not an immune response, but rather expression
of the therapeutic protein, is desired. Such studies have included the therapeutic
administration of a gene encoding a normal growth factor such as Fibroblastic
Growth Factor, or other growth factors, the intent being not to replace a defective
or missing protein, but rather to administer a supraphysiologic amount of the
growth factor to a local site for a period of time more prolonged than would be
achievable by administration of the recombinant protein [7, 8]. The factor then
induces the growth of new blood vessels to ameliorate the ischemic condition of
the limb or myocardium. DNA has also been used for what is more traditionally
considered to be the purview of gene therapy: DNA encoding a form of the muscle


