DNA Pharmaceuticals

Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy

Edited by Martin Schleef

WILEY-VCH Verlag GmbH & Co. KGaA

DNA Pharmaceuticals

Edited by Martin Schleef

Related Titles

Jörg Knäblein (Ed.)

Modern Biopharmaceuticals Design, Development and Optimization

4 Volumes 2005 ISBN 3-527-31184-X

Gerd Gellissen (Ed.)

Production of Recombinant Proteins

Novel Microbial and Eukaryotic Expression Systems

2005 ISBN 3-527-31036-3

Oliver Kayser, Rainer H. Müller (Eds.)

Pharmaceutical Biotechnology

Drug Discovery and Clinical Applications

2004 ISBN 3-527-30554-8

Rick Ng

Drugs From Discovery to Approval

2004 ISBN 0-471-60150-0 Rodney J. Y. Ho, Milo Gibaldi

Biotechnology and Biopharmaceuticals

Transforming Proteins and Genes into Drugs

2003 ISBN 0-471-20690-3

Michael Hoppert

Microscopic Techniques in Biotechnology

2003 ISBN 3-527-30198-4

Rolf D. Schmid, Ruth Hammelehle

Pocket Guide to Biotechnology and Genetic Engineering

2003 ISBN 3-527-30895-4

Gary Walsh (Ed.)

Biopharmaceuticals

Biochemistry and Biotechnology

2003 ISBN 0-470-84326-8

Martin Schleef (Ed.)

Plasmids for Therapy and Vaccination

2001 ISBN 3-527-30269-7

DNA Pharmaceuticals

Formulation and Delivery in Gene Therapy, DNA Vaccination and Immunotherapy

Edited by Martin Schleef

WILEY-VCH Verlag GmbH & Co. KGaA

Editor

Dr. Martin Schleef

PlasmidFactory GmbH & Co. KG Meisenstrasse 96 33607 Bielefeld Germany www.plasmidfactory.com All books published by Wiley-VCH are carefully produced. Nevertheless, editors, authors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

A catalogue record for this book is available from the British Library

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.ddb.de

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany Printed on acid-free paper

 Cover Design
 SCHULZ Grafik-Design,

 Fußgönheim
 Fu

 Composition
 Manuela Treindl, Laaber

 Printing
 betz-druck GmbH, Darmstadt

 Bookbinding
 J. Schäffer GmbH, Grünstadt

ISBN-13 978-3-527-31187-3 **ISBN-10** 3-527-31187-4

Preface

The difference between "pharmaceuticals" and "modern" or "innovative pharmaceuticals" like nucleic acids (e.g. plasmids, DNA fragments, RNA, viruses or viruslike-particles) is more or less open to interpretation of those developing these to improve safety, functionality, stability or economic aspects (in production and marketing). However, no doubt exists on the existence of a completely new class of active pharmaceutical ingredients (API) when the use of such genetic material for a preventive or curative application was discovered. On one side the need for new products with respect to patent situation and marketing is eminent and on the other side safety concerns for patient and environment are discussed. Furthermore questions like "why changing to a new type of product if the old one still works" are not rare and need to be addressed on the level of market supply costs (were DNA is not expensive) rather than comparing dose costs for existing pharmaceuticals with those for pre-clinical or phase I and II clinical material.

Earlier (in Schleef: "Plasmids for therapy and vaccination", Wiley-VCH 2001) we presented the vector type and clinical approaches of plasmid vectors. This new book extends those subjects into the next step after design and manufacturing of plasmid DNA pharmaceuticals: The focus is on the route of administration, quality control and regulatory aspects.

After a short overview on DNA vaccination (Chapter 1) and a comprehensive summary of regulatory aspects for this class of pharmaceuticals (Chapter 2), the new aspects of improving functionality (e.g. targeting) and purity (ccc-form of plasmid DNA vs. other topologies and contaminants as well as production technology; Chapter 3) or minimizing the vector system (Chapter 4; further progress is expected shortly) are presented.

A special overview on formulation and delivery is presented with Chapters 5 and 6 is a successful example for large animal veterinary DNA vaccine development.

Chapters 6 to 16 indicate the important (different) ways of introducing the vector to the tissue (and cell compartment) of interest. Due to a recently increased interest in electro gene transfer we decided to have two chapters (Chapters 11 and 12) on this subject included. The use of plasmid based siRNA technology was found to be of interest and an example is presented within Chapter 13.

We are aware of the fact that these 13 chapters only represent a small part of the ongoing development in this highly dynamic field. The economic and social relevance of the innovative class of these pharmaceuticals is clearly visible.

۱v

VI Preface

For all those who like to further discuss these aspects I look forward to do so at any time (martin.schleef@plasmidfactor.com). My thank is directed to all authors and co-authors of this book and all others making it possible.

Special thanks go to all volunteers of clinical trials with DNA pharmaceuticals.

Bielefeld, August 2005

Martin Schleef

Contents

Preface V

List of Contributors XV

Abbreviations XIX

1 DNA Vaccines – An Overview 1 Britta Wahren and Margaret Liu

- 1.1 Rationale for DNA Vaccines 1
- 1.2 Preclinical Proof of Concept 2
- 1.3 Clinical Trials 3
- 1.4 Second-Generation Vaccines 4
- 1.5 Conclusions 5 References 5
- 2 DNA as a Pharmaceutical Regulatory Aspects 7 Carsten Kneuer
- 2.1 Introduction 7
- 2.2 Quality Requirements for DNA used as a Gene Therapy Product 9
- 2.2.1 Introduction 9
- 2.2.2 Production and Purification 9
- 2.2.2.1 Raw Materials 9
- 2.2.2.2 Antibiotics 10
- 2.2.2.3 Solvents 10
- 2.2.2.4 Fermentation 10
- 2.2.2.5 Purification 11
- 2.2.3 Cell Banking System Procedures 11
- 2.2.3.1 Generation and Characterization of Master and Working Cell Banks 11
- 2.2.4 Product Characterization and Quality Criteria 12
- 2.2.4.1 Identity 13
- 2.2.4.2 Purity 13

VIII Contents

- 2.2.4.3 Adventitious Agents 13
- 2.2.4.4 Potency 13
- 2.3 Safety Studies for Clinical Trials 14
- 2.3.1 General Considerations 14
- 2.3.2 Conduct of Preclinical Safety Studies 15
- 2.3.2.1 Regulations 15
- 2.3.2.2 Design of an Appropriate Toxicology Program 16
- 2.3.2.3 Single- and Repeat-Dose Toxicity Studies 16
- 2.3.2.4 Safety of the Formulated Plasmid DNA 16
- 2.3.2.5 Specific Safety Considerations 17
- 2.3.2.6 Choice of Animal Model 17
- 2.4 Special Issues 18
- 2.4.1 Comparability of Plasmid Gene Therapy Products 18
- 2.4.2 Mixed Plasmid Preparations 18
- 2.4.3 Plasmid Molecular Structure 19
- 2.5 Biosafety Issues and Environmental Risk Assessment 19 References 20
- 3 From Bulk to Delivery: Plasmid Manufacturing and Storage 23 Carsten Voß, Torsten Schmidt, and Martin Schleef
- 3.1 Introduction 23
- 3.1.1 Gene Therapy 23
- 3.1.2 DNA Vaccination 24
- 3.2 Manufacturing of Plasmid DNA 24
- 3.2.1 Bacterial Cultivation 24
- 3.2.2 Plasmid DNA Purification 26
- 3.2.3 Innovative Aspects in Plasmid Manufacturing 28
- 3.3 Quality Control of Plasmid DNA Vectors 30
- 3.3.1 Proteins, Ribonucleic Acid, and Lipopolysaccharides 31
- 3.3.2 Chromosomal DNA 31
- 3.3.3 Plasmid Identity 32
- 3.3.4 Plasmid Topology (Structural Homogeneity) 32
- 3.4 Plasmid Stability during Storage and Application 33
- 3.4.1 Long-Term Stability of Plasmid DNA 33
- 3.4.2 Lyophilization for Long-Term Storage 36
- 3.4.3 Stability during Application 37
- 3.5 Future Developments 37 References 38

- 4.1 Introduction 43
- 4.2 The Mammalian Immune System as a Barrier to Nonviral Gene Delivery 44
- 4.3 Strategies to Minimize DNA Vectors 45
- 4.3.1 Excision of a DNA Fragment Containing a Transgene Expression Cassette from Plasmid DNA 46
- 4.3.2 Intramolecular Site-Specific Recombination Within a Bacterial Plasmid 46
- 4.3.3 Synthesis of Minimized DNA Vectors by PCR 48
- 4.3.4 Improvement of Minimized DNA Vector Yield and Purity 49
- 4.4 Depletion of CpG Dinucleotides in the Bacterial Vector Backbone 50
- 4.5 Methylation of CpG Dinucleotides in Plasmid DNA 50
- 4.6 Towards an Ideal Nonviral Vector 51
- 4.7 Conclusion 52 References 52
- **5 Localized Nucleic Acid Delivery: A Discussion of Selected Methods** 55 *Christian Plank, Franz Scherer, and Carsten Rudolph*
- 5.1 Foreword 55
- 5.2 Nucleic Acid Delivery What For? 55
- 5.3 Nucleic Acid Delivery How? 57
- 5.3.1 Nucleic Acid Compaction 58
- 5.3.2 Receptor–Ligand Interactions 59
- 5.3.3 Endocytosis and Endosomal Escape 59
- 5.3.4 Nuclear Transport 61
- 5.3.5 Genome Organization 61
- 5.3.6 Biocompatibility 62
- 5.4 Why is Localization of Drug and Nucleic Acid Delivery Important? 63
- 5.5 Hierarchies of Localization (Targeting) 65
- 5.5.1 Methods of Localization and of Local Control 66
- 5.5.2 Nuclear Transport of Macromolecules in Living Cells 68
- 5.5.3 Nuclear Localization Signals and Gene Transfer 70
- 5.5.4 Localization Hierarchies I and II Establishing Target Cell Contact 73
- 5.5.5 Vector Localization by Magnetic Force (Magnetofection) 75
- 5.5.6 Hydrodynamic Methods of Nucleic Acid Delivery 80
- 5.5.7 Local Vector Implantation. Carrier-Mediated Nucleic Acid Delivery 81
- 5.5.8 Injectable Implants for Localized Nucleic Acid Delivery 87
- 5.5.9 Aerosol Application of Nucleic Acids 88
- 5.5.10 Use of Ultrasound to Trigger Localized Delivery 90
- 5.6 Concluding Remarks 92 References 93

- X Contents
 - DNA Needle Injection 117 6 Matthias Giese 6.1 From Mouse to Human 117 6.1.1 DNA Vaccines 117 6.1.2 Successful Strategy for Vaccination 119 6.2 Intramuscular Injection 120 6.2.1 Biology of Muscle Fibers 120 6.2.1.1 Resting Stem Cells 120 6.2.2 Uptake of Plasmid DNA 121 6.2.3 Activation of the Immune System 121 6.2.3.1 Receptors and other Signals 122 6.2.3.2 Antigen Presentation 122 6.2.4 Cross-Priming 123 6.2.5 124 Safety Aspects 6.2.5.1 Uptake of the DNA by Muscle Cells 124 6.2.5.2 Antigen Processing 124 6.2.5.3 Antigen Presentation 125 6.2.6 DNA Vaccination of Horses against Infection with Equine Arteritis Virus I 126 6.3 Intradermal Injection 128 6.3.1 Skin-Associated Lymphoid Tissue (SALT) 128 6.3.2 DNA Vaccination of Horses Against Infection with Equine Arteritis Virus II 129 6.4 Concluding Remarks 131 References 131 7 Needleless let Injection of Naked DNA for Nonviral in vivo Gene Transfer 133 Wolfgang Walther and Ulrike Stein 7.1 Introduction 133 7.2 In vivo Application of Jet Injection 136 7.2.1 Intratumoral Jet Injection of Naked Plasmid DNA 7.2.2 Analysis of Reporter Gene Expression in Jet-Injected Tumors Analysis of the Stability of Jet-Injected Naked DNA 7.2.3 7.3 Conclusions 139 References 140 8 Plasmid Inhalation: Delivery to the Airways 145 Lee A. Davies, Stephen C. Hyde, and Deborah R. Gill Introduction 8.1 145 8.2 Delivery Methods 146 8.2.1 Lung Delivery by Instillation 146

136

138

137

8.2.2 Delivery by Aerosol 147

- 8.2.3 Aerosol Deposition 148
- 8.2.4 Aerosolization Devices 148
- 8.2.4.1 Metered Dose Inhalers 149
- 8.2.4.2 Dry Powder Inhalers 150
- 8.2.4.3 Nebulizers 150
- 8.2.5 Aerosolization of Plasmid DNA 152
- 8.2.6 Plasmid DNA/Lipid Complexes 153
- 8.2.6.1 Optimization of Aerosol Formulation 153
- 8.2.6.2 Aerosol Delivery of Lipid/pDNA to Human Lung 154
- 8.2.7 Plasmid Delivery with Cationic Polymers 155
- 8.3 Future Directions 157
- 8.4 Conclusions 158 *References* 159

9 Hydrodynamic Gene Delivery 165 John W. Fabre

- 9.1 Definition 165
- 9.2 Initial Discovery of the Technique 165
- 9.3 The Systemic Hydrodynamic Approach 166
- 9.4 The Regional Hydrodynamic Approach to the Liver 167
- 9.5 Gene Delivery to the Liver in Large Animals 167
- 9.6 Hydrodynamic Gene Delivery to Tissues other than Liver 168
- 9.6.1 Skeletal Muscle 168
- 9.6.2 Kidney 169
- 9.7 Mechanisms of Gene Delivery 170
- 9.8 Safety and Clinical Applicability 170 References 171
- **10 DNA Pharmaceuticals for Skin Diseases** 173 Vitali Alexeev and Jouni Uitto
- 10.1 Introduction 173
- 10.2 Recombinant DNA-Based Skin Gene Therapy 174
- 10.2.1 Correction of Genetic Disorders 174
- 10.2.2 "Suicide" Gene Therapy 176
- 10.2.3 Genetic Pharmacology 176
- 10.3 DNA Vaccines 176
- 10.3.1 DNA Vaccination Through Skin 178
- 10.3.2 DNA Vaccines Against Skin Cancers 179
- 10.4 Physical Methods of DNA Delivery 180
- 10.4.1 Delivery of DNA to the Skin by Particle Bombardment 181
- 10.4.2 Microparticles for DNA Delivery 182
- 10.4.3 Genetic Immunization by Jet Injection 182
- 10.4.4 Epidermal Powder Immunization 183 References 184

XII Contents

11	Electrotransfection – An Overview 189
	Capucine Trollet, Pascal Bigey, and Daniel Scherman
11.1	Theory and Mechanisms 190
11.1.1	
11.1.1 11.1.2	Mechanism of in vitro Electrotransfection at the Scale of a
	Single Cell 190
11.1.2.1	Permeabilization 190
11.1.2.2	Uptake of DNA 192
11.1.3	Mechanism of in vivo DNA Electrotransfer 192
11.2	In vivo DNA Electrotransfer in Practice 194
11.2.1	Device and Electrical Parameters 195
11.2.2	DNA Electrotransfer and Toxicity 197
11.2.3	Plasmid Biodistribution 197
11.3	Targeted Tissues 199
11.3.1	Skeletal Muscle 199
11.3.2	
11.3.3	Skin 201
11.3.4	Liver 201
	Lung 202
11.3.6	Vasculature 202
11.3.7	Eye 202 Embryos 203
11.3.8	Embryos 203
11.3.9	Cartilage 203
	Gonads 203
11.4	Therapeutic Applications 204
11.4.1	Intramuscular Electrotransfer 204
11.4.1.1	Ectopic Secretion of Proteins 204
	Muscle Disease Therapy 205
11.4.2	Vaccination 205
	Cancer Gene Therapy 206
	Strengthening Antitumor Response 207
11.4.3.2	Suicide Genes 207
11.4.3.3	Apoptosis-Inducing Genes 207
11.4.3.4	Inhibition of Tumor Angiogenesis 208
	Other Strategies 208
	Electrotransfer as a Tool 208
11.5	Conclusion 209
	References 210

- **12 Electrogenetransfer in Clinical Applications** 219 Lluis M. Mir
- 12.1 Summary of the Basis of Electrogenetherapy 219
- 12.1.1 Tissue Electropermeabilization 219
- 12.1.2 DNA Electrophoresis 220
- 12.1.3 The Interest of Electrogenetherapy 220
- 12.2 The Road to Clinical Electrogenetherapy 221
- 12.2.1 Basic Difficulties and Requirements 221
- 12.2.1.1 Electrogenetherapy is a Local Treatment 221
- 12.2.1.2 DNA Injection 222
- 12.2.1.3 Need for Appropriate Electrodes 222
- 12.2.1.4 Need for Appropriate Electrical Pulse Generators 222
- 12.2.1.5 Electrogenetherapy and Public and Professional Perceptions of the Biomedical Use of Electricity 222
- 12.2.2 The Cliniporator Project 223
- 12.2.3 The ESOPE Project 223
- 12.2.4 Future Perspectives 224 References 225
- 13 Cancer Inhibition in Mice After Systemic Application of Plasmid-Driven Expression of Small Interfering RNAs 227 Birgit Spänkuch and Klaus Strebhardt
- 13.1 Introduction 227
- 13.2 Plasmid-Expressed siRNA 228
- 13.2.1 PLK1 shRNA-Mediated Inhibition of PLK1 Expression 228
- 13.2.2 Nuclease Inhibitor ATA and Stability of Plasmid DNA in Mammalian Blood 230
- 13.2.3 Antitumor Activity of PLK1 shRNA in vivo 232
- 13.2.4 Vector-Induced Decreased Expression of PLK1 and Antitumor Activity 234
- 13.3 Conclusion and Future Directions 237 References 238

Subject Index 241

List of Contributors

Vitali Alexeev

Department of Dermatology and Cutaneous Biology Jefferson Medical College 233 South 10th Street Suite 326 BLSB Philadelphia, PA 19107 USA

Pascal Bigey

Laboratoire de Pharmacologie Chimique et Génétique INSERM U640 – CNRS UMR8151 Université René Descartes – ENSCP Faculté de Pharmacie 4, Avenue de l'Observatoire 75270 Paris Cédex 06 France

Brian Bigger

Stem Cell Research Group John Radcliffe Hospital University of Oxford Oxford OX3 9BQ United Kingdom

Charles Coutelle

Gene Therapy Research Group Imperial College Exhibition Road London SW7 2AZ United Kingdom

Lee A. Davies

Gene Medicine Group John Radcliffe Hospital University of Oxford Oxford OX3 9DU United Kingdom

John Fabre

Department of Clinical Science The Rayne Institute Guy's, King's and St. Thomas' School of Medicine 123 Coldharbour Lane London SE5 9NU United Kingdom

Matthias Giese

Im Schaffner 24 69123 Heidelberg Germany

Deborah Gill

Gene Medicine Group John Radcliffe Hospital University of Oxford Oxford OX3 9DU United Kingdom

Richard Harbottle

Gene Therapy Research Group Imperial College Exhibition Road London SW7 2AZ United Kingdom XVI List of Contributors

Stephen C. Hyde

Gene Medicine Group John Radcliffe Hospital University of Oxford Oxford OX3 9DU United Kingdom

Carsten Kneuer

Institute for Pharmacology, Pharmacy and Toxicology University of Leipzig An den Tierkliniken 15 04103 Leipzig Germany

Margaret Liu

3656 Happy Valley Road Lafayette, CA 94549 USA and 11, Rue de Molsheim 67082 Strasbourg France

Lluis M. Mir

Laboratory of Vectorology and Gene Transfer UMR 8121 CNRS – Institut Gustave-Roussy 39, Rue C. Desmoulins 94805 Villejuif Cédex France

Christian Plank

Department for Experimental Oncology (IEOT) Munich Technical University Ismaninger Strasse 22 81675 Munich Germany

Carsten Rudolph

Department of Molecular Pneumology Dr. von Hauner Children's Hospital Ludwig-Maximilians-University Lindwurmstrasse 4 80337 Munich Germany

Franz Scherer

Department for Experimental Oncology (IEOT) Munich Technical University Ismaninger Strasse 22 81675 Munich Germany

Daniel Scherman

Chemical and Genetic Pharmacology INSERM U266 – CNRS FRE 2463 Université René Descartes 4, Avenue de l'Observatoire 75270 Paris Cédex 06 France

Martin Schleef

PlasmidFactory GmbH & Co. KG Meisenstrasse 96 33607 Bielefeld Germany

Torsten Schmidt

PlasmidFactory GmbH & Co. KG Meisenstrasse 96 33607 Bielefeld Germany

Birgit Spänkuch

Department of Gynecology and Obstetrics School of Medicine University of Frankfurt Theodor-Stern-Kai 7 60590 Frankfurt Germany

Ulrike Stein

Max-Delbrück-Center for Molecular Medicine Robert-Rössle-Strasse 10 13092 Berlin Germany

Klaus Strebhardt

Department of Gynecology and Obstetrics School of Medicine University of Frankfurt Theodor-Stern-Kai 7 60590 Frankfurt Germany

Oleg Tolmachov

Gene Therapy Research Group Imperial College Exhibition Road London SW7 2AZ United Kingdom

Capucine Trollet

Chemical and Genetic Pharmacology INSERM U640 – CNRS UMR 8151 Université René Descartes 4, Avenue de l'Observatoire 75270 Paris Cédex 06 France

Jouni Uitto

Department of Dermatology and Cutaneous Biology Jefferson Institute of Molecular Medicine 233 South 10th Street, Suite 450 Philadelphia, PA 19107 USA

Carsten Voß

Technology Department University of Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany

Britta Wahren

Department of Virology Swedish Institute for Infectious Disease Control Karolinska Institute 17182 Solna Sweden

Wolfgang Walther

Max-Delbrück-Center for Molecular Medicine Robert-Rössle-Strasse 10 13092 Berlin Germany

Abbreviations

$\begin{array}{l} \Delta \Psi_i \\ \Delta \Psi_0 \\ \Delta \Psi_t \end{array}$	induced cell transmembrane potential resting cell transmembrane potential threshold cell transmembrane value
AAT AAV ADA AGE APC APIs ATA	 α-1-antitrypsin adeno-associated virus adenosine deaminase deficiency agarose gel electrophoresis antigen-presenting cell active pharmaceutical ingredients aurintricarboxylic acid
BÄK	"Bundesärztekammer" (Germany)
BCA	bicinchoninic acid
BMP-4	bone morphogenetic protein 4
CAR	coxsackie and adenovirus receptor
CAT	chloramphenicol acetyl transferase
CBER	Center for Biologics Evaluation and Research (USA)
CCC	covalently closed circular
CCCD	conductively connect charge-coupled device
CF	cystic fibrosis
CFTR	cystic fibrosis transmembrane conductance regulator
CGE	capillary gel electrophoresis
CIA	collagen induced arthritis
CMV	cyto megalo virus
COPROG	copolymer-protected gene vector
CpG	CpG dinucleotide
CTL	cytotoxic T lymphocyte
CTLA-4	cytotoxic T lymphocyte antigen 4
DC	dendritic cell
DC-Chol	3 beta (N(N',N-dimethylaminoethane)carbamoyl) cholesterol
DEAE	diethylaminoethyl-

XX Abbreviations

DH	Department of Health (UK)
DMF	drug master file
DMPE	dimyristoyl phosphatidylethanolamine-
DMRIE	1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethylammonium
	bromide
DOPE	dioleoylphosphatidylethanolamine
DOTAP	1,2-dioleoyl-3-trimethylammonium-propane
DOTMA	N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
	chloride
DPI	dry powder inhaler
EAV	equine arteritis virus
ECT	electrochemotherapy
EGF	epidermal growth factor
EGT	electrogenetherapy
EHD	electrohydrodynamic
ELISA	Enzyme-linked immunosorbent assay
EMEA	European Agency for the Evaluation of Medicinal Products
EPI	epidermal powder immunization
EPO	erythro poietin
eqIL-2	equine interleukin 2
ESOPE	European Standard Operating Procedures for
ESOPE	
	Electrochemotherapy and Electrogenetherapy
FDA	Food and Drug Administration (USA)
FDA	Food and Drug Administration (USA)
FDA GAM	
	gene activated matrix
GAM GCV	gene activated matrix ganciclovir
GAM GCV GeMCRIS	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System
GAM GCV GeMCRIS GFP	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein
GAM GCV GeMCRIS GFP GM-CSF	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor
GAM GCV GeMCRIS GFP GM-CSF GTAC	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA)	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP GTA	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice gene transfer agent
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP GTA GTA GT-MP	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice gene transfer agent gene therapy medicinal product
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP GTA GT-MP HA-2	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice gene transfer agent gene therapy medicinal product
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP GTA GTA GT-MP HA-2 HCG	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice gene transfer agent gene therapy medicinal product hemagglutinin subunit 2 Human Genetic Commission
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP GTA GTA GT-MP HA-2 HCG hFIX	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice gene transfer agent gene therapy medicinal product hemagglutinin subunit 2 Human Genetic Commission human factor IX
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP GTA GTA GT-MP HA-2 HCG	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice gene transfer agent gene therapy medicinal product hemagglutinin subunit 2 Human Genetic Commission human factor IX human growth factor
GAM GCV GeMCRIS GFP GM-CSF GTAC GTEG (EMEA) GLP GMO GMP GTA GTA GT-MP HA-2 HCG hFIX	gene activated matrix ganciclovir Genetic Modification Clinical Research Information System green fluorescence protein Granulocyte-macrophage colony stimulating factor Gene Therapy Advisory Committee Gene Therapy Expert Group good laboratory practice genetically modified organism good manufacturing practice gene transfer agent gene therapy medicinal product hemagglutinin subunit 2 Human Genetic Commission human factor IX

hSeAP	human secreted alkaline phosphatase
HSV-TK/HSVtk	herpes simplex thymidine kinase
HV	high voltage
ICH	International Conference on Harmonisation
i.d.	intradermal
IFN-γ	gamma interferone
IgG1	immunoglobuline G1
i.m.	intramuscular
IND	investigational new drug
IPC	in-process control
KSG	Kommission Somatische Gentherapie (Germany)
LAL	<i>Limulus amebocyte</i> lysate
LIF	laser-induced fluorescence
LPD	lipid/polycation/DNA
LPS	lipopolysaccharide
LV	low voltage
MAR	matrix attached region
MART-1	melanoma antigens recognized by T cells 1
MC	muscle cell
MCB	master cells bank
MDI	metered dose inhaler
mEpo	murine erythropoietin
MHC	major histocompatibility complex
MMP-3	matrix metalloproteinase-3 gene
MTC	magnetic targeted carrier
NFκB	anti-apoptosis mediator
NIH	(US) National Institute of Health
NLS	nuclear localization sequence
NLS (Both Ch 5)	nuclear localization signal
NOAEL	no-observed-adverse-effect level
NPC	nuclear pore complex
nt	nucleotide
NT	neutralization test
OBA	Office of Biotechnology Activities
oc	open circular
ORF2	open reading frame 2
ori	origin of replication

XXII Abbreviations

PCR	polymerase chain reaction
PDE	permitted daily exposure
pDNA	plasmid DNA
PEG ₅₀₀₀	polyethylene glycol ₅₀₀₀
PEI	polyethylenimine
PLGA	poly(lactide-co-glycolid)
PLK1	polo-like kinase 1
RAC	Recombinant DNA Advisory Committee
SALT	skin-associated lymphoid tissue
SCA1	spinocerebellar ataxia type 1
SCID (mice)	severe combined immune deficiency
shRNA	short hairpin RNA
siRNA	small interfering RNA
SOP	standard operating procedure
SV40	simian virus 40
TCR	T cell receptor
T _E cell	effector T cell
T _H cells	helper T cell
Th-1/2	T helper 1/2
TNF-α	tumor necrosis factor (α)
TLR	Toll-like receptor
TSE	transmisible spongiform encephalopathy
VEGF	vascular endothelial growth factor
WCB	working cells bank

1 DNA Vaccines – An Overview

Britta Wahren and Margaret Liu

1.1 Rationale for DNA Vaccines

Administration of genes via DNA or RNA may be considered the next-generation of scientific development following the use of recombinant proteins for prophylactic vaccines or for therapy. The use of DNA vaccines for the generation of immune responses arose from efforts to find immunogens that would be able to overcome some of the limitations of other modalities of vaccination. With the discovery of the potential widespread applications of DNA plasmids came appreciation of certain of the characteristics of DNA as a product: namely, its advantages, relative to other biologicals, for manufacturing (Chapter 3), product characterization, storage (Chapter 3), and delivery (Chapters 5–12).

From the standpoints both of therapeutics and of vaccines, the use of DNA arose from the desire to have a protein be produced *in situ*. For a variety of applications, ranging from cytokine administration to gene therapy for metabolic and inherited disorders, it was clear that administration of the gene rather than the protein could have multiple advantages: proteins synthesized *in situ* from DNA could potentially persist locally or systemically for longer periods of time without the toxicities associated with the high levels of intravenously administered proteins, certain proteins such as cytokines could be administered to the desired site (i.e., intratumorally) (Chapter 7) more readily when administered as genes, and a protein synthesized from the gene would have mammalian posttranslational modifications, thus avoiding one of the significant challenges that can arise when making recombinant proteins in nonmammalian hosts.

Although vaccines have been considered perhaps the greatest human health achievement, being successful even to the point of eliminating an entire wild-type disease from the planet (smallpox), certain diseases have remained unconquered by vaccination. Two key reasons for this are that the traditional approaches have either simply not worked, or have been considered potentially too risky for a disease such as HIV. As an example, although live attenuated virus vaccines have been extremely effective against a variety of diseases, they have at least the theoretical

2 1 DNA Vaccines – An Overview

risk of reversion to wild type, which in the case of HIV would render the vaccinee infected with a virus that causes what today is still a fatal infection.

As understanding of immune responses to disease increased, it became clear that the use of vaccines that induced primarily antibody responses might not be able successfully to target diseases that required a strong CD8+ T cell responses. Proteins that enter the cellular processing pathway resulting in the generation of CD8+ T cell responses generally have to be endogenously synthesized within a cell. Means to deliver the gene for an antigen, rather than the antigen itself, directly into cells were therefore sought, as the latter would generally result in the exogenous protein being taken into the endolysosomal processing pathway, with the resultant generation of MHC Class II-restricted CD4+ T cells rather than CD8+ T cells. The observation that plasmid DNA could directly transfect cells in vivo [1] came as a surprise given the complexity of viral structures that are designed for infecting cells. The process of DNA transfection is very inefficient and, moreover, the best transfected cell type is the muscle cell. Myocytes lack the immune accessory surface molecules needed to activate immune-responding cells appropriately, so it was a surprise to find that direct transfection of myocytes by immunization with unformulated plasmid DNA could indeed result in the generation of CD8+ T cells and protection against a lethal viral challenge [2].

DNA vaccines had further appeal as a product, in additional to their immunologic rationale. The manufacturing process promised to be fairly generic in comparison with those for other biologicals. Traditional live virus vaccines require years of challenging work to attenuate the pathogen properly and to design a cellular production system. Even recombinant proteins can be challenging, because of the need to find the correct producer cell able to make the antigen in the correct form (such as with the correct folding or posttranslational modifications). Because DNA vaccines are bacterial plasmids, the production is quite similar for different vaccines because they differ only in the gene sequence encoding the antigen. The majority of the plasmid, such as the backbone, can be identical or similar. Moreover, DNA vaccines at their simplest, being just plasmids, are potentially more stable (Chapter 3) than live viruses, an attribute that should facilitate their use in resource-poor settings.

1.2 Preclinical Proof of Concept

The initial demonstration that direct immunization with a simple plasmid of DNA encoding a protein from a pathogen could not only result in the generation of both arms of the immune response (cytotoxic T lymphocytes as well as antibodies), but could also protect from an otherwise lethal challenge [2] opened up the field of DNA vaccines. The ability to protect animals from a strain of virus different from the strain from which the gene was cloned generated considerable interest because it offered a potential means to make vaccines for diseases that have multiple strains, such as influenza or HIV. The influenza vaccine, for example, has to contain antigens

for three strains and needs to be reformulated each year as new strains arise. Not only is this a cumbersome process making the adequate yearly supply of vaccines problematic, but such a vaccine does not protect against the epidemic strains differing from the strain in the vaccine that occasionally arise mid-season. Of even more concern is the fact that such a vaccine will not protect against novel pandemic strains of influenza that periodically may arise, most notably in the 1919 Spanish influenza that killed millions of people worldwide. The demonstration that a DNA vaccine made from the genetic sequence of one strain was able to protect against challenge not just with a slightly different drifted strain, but against a different subtype, raised hopes for the ability of DNA vaccines to be effective against a variety of diseases.

From those initial studies, the scientific literature rapidly grew to thousands of publications demonstrating the ability of DNA vaccines to induce immune responses and protective and therapeutic benefits in a variety of preclinical disease models. These models not only included various infectious diseases, including those caused by viruses, bacteria, and parasites, but also encompassed other types of disease, such as cancer, allergy, and autoimmunity (reviewed in [3, 4]). Additional applications for autoimmune diseases and allergies are based upon the ability of the DNA to alter the type of generated T cell help specifically for the particular protein antigen. Autoimmune responses are thought to be due to the inappropriate overproduction of either T helper 1- or T helper 2-type responses. In animal models, DNA vaccines have been shown to be able to alter the form of T cell help, and DNA vaccines have thus been able to prevent or ameliorate the disease in preclinical models of asthma [5] and diabetes [6].

It soon became evident, however, that DNA vaccines, while robust in small animal models, were less immunogenic in nonhuman primates and humans (reviewed in [3, 4]). This has given rise to a variety of approaches for making DNA vaccines of increased potency, as is explored below.

1.3 Clinical Trials

Clinical trials have been performed for DNA vaccines encoding antigens from pathogens and tumors. In addition, however, trials have been performed with DNA encoding therapeutic proteins where not an immune response, but rather expression of the therapeutic protein, is desired. Such studies have included the therapeutic administration of a gene encoding a normal growth factor such as Fibroblastic Growth Factor, or other growth factors, the intent being not to replace a defective or missing protein, but rather to administer a supraphysiologic amount of the growth factor to a local site for a period of time more prolonged than would be achievable by administration of the recombinant protein [7, 8]. The factor then induces the growth of new blood vessels to ameliorate the ischemic condition of the limb or myocardium. DNA has also been used for what is more traditionally considered to be the purview of gene therapy: DNA encoding a form of the muscle