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Preface

This text book provides an introduction to the young and growing research area of statistical
mechanics of combinatorial optimization problems. This cross-disciplinary field is positioned
at the borderline between physics, computer science, and mathematics. Whereas most opti-
mization problems and the majority of available computer algorithms used for their solution
depend on computer science and mathematics, the main methods presented in this book are
related to statistical physics.

Combinatorial optimization problems originate in real-world applications. The head of the
local post office wants to distribute a lot of parcels in a city using the minimum of resources
such as the number of lorries, the amount of fuel and the number of personnel. The director
of a school wants to set up a schedule so that no teacher has classes in parallel while at the
same time minimizing their idle times. The participant of a scientific meeting wants to find a
fast train connection to the location of a meeting, which does not require too many changes
of trains. Optimization problems also occur very frequently in science, such as determining
the ground states of physical systems, identifying the native states of proteins, or looking
for similarities in ancient languages. Computer scientist have identified certain prototypes of
problems behind these real-world and science applications, like finding the shortest paths, the
shortest round trips, or satisfying the conditions of Boolean formulas.

For several decades, development in this field took place first of all in applied computer sci-
ence. The basic task was, and still is, to find algorithms which solve these problems as quickly
as possible. Also theoretical computer science, within algorithmic complexity theory, consid-
ered these problems, in order to classify them according to their “difficulty”. A major break-
through came in 1971, when Cook proved the NP-completeness of the satisfiability problem
(SAT), i. e., he was able to show that SAT is equivalent to all problems from the class NP,
which contains the most interesting, i. e., not easily solvable, problems. This breakthrough
allowed for a better classification of the problems and has fertilized the field. Since then, liter-
ally thousands of problems have been identified as being NP-complete as well. Nevertheless,
the notion of NP-completeness is related to the worst-case running time of an algorithm. For
all NP-complete problems, all known algorithms exhibit a worst-case running time which ex-
plodes exponentially with the problem size. However, to study real-world applications, one
would also like to develop a notion of typical-case complexity. For this purpose, computer
scientists started to study the behavior of algorithms defined on suitable parametrized ensem-
bles of random systems. Interestingly, threshold phenomena were found, which were related
to a drastic change in the structure of optimal solutions as well as in the typical running time
of algorithms. These phenomena show surprising similarities to phase transitions in physical
systems.



X Preface

Here statistical physics comes into play, because the consideration of the typical behavior
for systems of many particles is the fundamental problem in this field. Many tools have been
developed in statistical physics, which allow the study of phase transitions and glassy behavior,
which are two basic phenomena occurring in the study of the typical behavior of combinatorial
optimization problems. The transfer of knowledge from statistical physics to computer science
started in the mid 1980s, when the simulated annealing method was invented, which is a fast
yet simple algorithm allowing one to find heuristically, very good approximate solutions of
combinatorial optimization problems. The idea of this approach is to map the cost function
of the optimization problem on the energy function of an equivalent physical system. On the
basis of this type of mapping, from the mid 1990s on, concepts and methods from statistical
mechanics were applied to study the phase transitions occurring in optimization problems.
Since then, many new results have been found, which have not been accessible before by using
solely mathematical tools. Also other new algorithms have been developed on the foundation
of a physics perspective, e. g., the survey propagation approach which allows the treatment
of much larger problems, e. g., for SAT, than before. Given the large number of NP-complete
problems, the growing range of applications of combinatorial optimization and also the growth
of computer power, much progress in this direction can be expected in forthcoming years.

In this book, we introduce concepts and methods for the statistical mechanics of disordered
systems. We explain models exhibiting quenched disorder such as spin glasses and hard-core
gases. We introduce the most important analytical techniques in this field, namely the replica
approach and the cavity method. We also present stochastic algorithms like the Monte-Carlo
method or the survey propagation technique, both of which are based on a statistical mechanics
viewpoint. In this way the book serves also as an introduction to the statistical mechanics of
disordered systems, but with the special point of view of combinatorial optimization.

As in many interdisciplinary contexts, culturally different approaches and languages are
present in the different scientific communities. Whereas, e. g., mathematical research work
considers mathematical rigor as one of the fundamental building blocks, physical research
is usually much more “result oriented”. To understand complicated natural phenomena, it
is frequently necessary to work with approximations, or to use assumptions which are not
immediately justified mathematically.

One aim of this book is helping to bridge the resulting language gap. The book is intended to
be accessible for readers with different backgrounds: physicists, who want to enter into this
new interdisciplinary area, mathematicians and theoretical computer scientists, who want to
understand the methods used by physicists, or applied computer scientists, who want to exploit
the insight gained using physics tools to develop new and more efficient algorithms. The level
of the book is targeted to graduate students of the different fields, who want to enlarge their
horizon beyond the specific borders of their subject of study.

To achieve this, we include various introductory chapters on algorithms, graph theory, com-
plexity theory, and on statistical mechanics. These chapters formulate the minimal basic
knowledge for the main part of the book. Readers educated in these fields may want to skip
some parts here.



Preface XI

In the central part of the book, we concentrate, for pedagogical reasons and internal coherence,
on one specific model, the vertex cover problem. We have selected this problem because, on
one hand, it shows the main phenomena discussed in the field. On the other hand, the ana-
lytical approaches are relatively easy to access compared, e. g., with the most famous combi-
natorial problem, the satisfiability problem. The details of the latter model are discussed in a
specific chapter towards the end of the book. We think that this pedagogical approach enables
the reader to understand more easily the vast original literature.

After having discussed in detail the application of statistical mechanics tools to computer-
science problems, we also include a chapter discussing the information transfer in the opposite
direction, which is historically more strongly developed. Many physical problems can be
understood as combinatorial optimization problems. Using various examples, we discuss how
computer-science algorithms can be applied to better understand the physical behavior of such
systems.

In preparing this book we benefited greatly from many collaborations and discussions with
many of our colleagues. We would like to thank Mikko Alava, Simon Alder, Carlo Amoruso,
Timo Aspelmeier, Alain Barrat, Wolfgang Barthel, Jürgen Bendisch, Giulio Biroli, Stefan
Boettcher, Alfredo Braunstein, Alan Bray, Kurt Borderix, Bernd Burghardt, Ian Campbell,
Adam Carter, Loredana Correale, Rodolfo Cuerno, Eytan Domany, Phil Duxbury, Andreas En-
gel, Martin Feix, Silvio Franz, Ulrich Geyer, Dieter Heermann, Guy Hed, Olaf Herbst, Heinz
Horner, Jérôme Houdayer, Michael Jünger, Helmut Katzgraber, Sigismund Kobe, Matthias
Koelbel, Werner Krauth, Reiner Kree, Florent Krzakala, Michele Leone, Klaus-Peter Lieb,
Frauke Liers, Andreas Linke, Olivier Martin, Alan Middleton, Remi Monasson, Michael
Moore, Alejandro Morales, Juan Moreno, Roberto Mulet, Javier Muñoz-García, Uli Nowak,
Matthias Otto, Andrea Pagnani, Matteo Palassini, Gerhard Reinelt, Alberto Rosso, Federico
Ricci-Tersenghi, Heiko Rieger, Guilhem Semerjian, Eira Seppälä, Dietrich Stauffer, Simon
Trebst, Matthias Troyer, Klaus Usadel, Alexei Vazquez, Emmanuel Yewande, Peter Young,
Riccardo Zecchina and Annette Zippelius.

This book was prepared at the University of Göttingen and the Institute for Scientific In-
terchange (ISI), Turin. We would like to acknowledge financial support from the Deutsche
Forschungsgemeinschaft (DFG), the VolkswagenStiftung and the European Science Founda-
tion (ESF).

Göttingen and Turin, January 2005

Alexander K. Hartmann and Martin Weigt





1 Introduction

Optimization problems appear in many situations in our daily life. If you, e. g., connect to
the web server of a train company or travel agency, you can search connections between far-
distant places for optimal travel times, ticket prices or number of changes, etc. In a more
general economic context, such problems appear whenever a process has to be arranged in
such a way that resources, money, or time are saved. Also in science optimization problems
are of central interest, e. g., in physics for understanding the low-temperature behavior of
model systems, or in biology for extracting information out of a huge amount of experimental
data.

Probably you first encountered optimization in school: In mathematics courses one-
dimensional functions over the space of real variables are analyzed, including the deter-
mination of minima and maxima. Such problems are in general easily solvable – at least

f(x)

x

Figure 1.1: Extremal points of a function defined over a one-dimensional continuous space.

on a computer. In this book we are going to discuss so-called combinatorial optimization
problems. These are in practice much harder to solve. First, the function to be minimized
is in general high-dimensional; second, the variables are of discrete nature, and methods of
continuous analysis such as taking derivatives do not work.

In this introductory chapter, we will present two examples which give you a flavor of combina-
torial optimization. Furthermore, we will explain why optimization problems are interesting
for physicists and how statistical mechanics can contribute to the understanding and solution
of them. Finally, we recommend and discuss some basic textbooks related to the field.



2 1 Introduction

1.1 Two examples of combinatorial optimization

Let us start by briefly formalizing the above explanation of combinatorial optimization prob-
lems. In general they are defined over some high-dimensional space, we will consider multi-
component variables σ = (σ1, . . . , σn) ∈ Xn with n � 1. In addition, the problem is
characterized by some cost function H : Xn → R which assigns some cost to each σ. This
cost has to be minimized, leading to the following definition:

Definition: minimization problem

Given an n-dimensional space Xn and a cost function H : Xn → R.
The minimization problem reads as follows:

Find σ(0) ∈ Xn, such that H(σ) ≥ H(σ(0)) for all σ ∈ Xn

The vector σ(0) is called a solution of the minimization problem.

Finding a maximum is as easy or as hard as finding a minimum, since max H = −min(−H).
In addition we speak of combinatorial problems if the components of σ are of discrete nature,
frequently used examples are X = {−1, 1} (Ising spins), X = {true, false} (Boolean
variables) or X = Z (integer numbers).

Combinatorial optimization problems can be additionally complicated by the presence of con-
straints. The constraints reduce the size of the search space. At first glance this seems to facil-
itate the search for an optimal solution. The opposite is, however, frequently the case: Many
optimization problems which can be solved efficiently on a computer without constraints,
become extremely computer-time consuming if constraints are added.

To illustrate these rather abstract concepts, we will present two examples. The first one is a
classical optimization problem in computer science, originating in economics.

Example: Traveling Salesman Problem (TSP)

Consider n towns distributed in a plane, numbered by 1, . . . , n. A salesman wants
to visit all these towns, and at the end of his travels he wants to come back to his
home town. He is confronted with the following minimization task: He has to
find the shortest round-tour visiting every town exactly once. The problem is thus
described by

X = {1, 2, . . . , n}

H(σ) =
n∑

i=1

d(σi, σi+1) (1.1)

where d(σi, σj) is the distance between the two towns σi and σj , and σn+1 ≡ σ1

are identified with each other. The constraint that every town is visited once and
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only once can be realized by constraining the vector σ to be a permutation of the
sequence (1, 2, . . . , n).

Figure 1.2: 15 cities in a plane.

As an example, 15 towns in a plane are given in Fig. 1.2; and one can try to find the
shortest tour. For the general TSP the cities are not necessarily placed in a plane,
but an arbitrary distance matrix d is given. �

The TSP is a so-called hard optimization problem. In this context, hardness is measured by
the time a computer needs to solve this problem numerically, and a problem is considered to
be hard if this time grows exponentially (or even faster) with the number n of components of
the variable σ. In TSP, one out of (n − 1)! round-tours has to be selected, and so far no good
general selection criterion exists. Note that TSP has attracted not only computer scientists, but
also physicists [1–6].

For an arbitrary algorithm, to describe the dependence between a suitably chosen measure n
of the problem size and the running time T , the O notation is used.

Definition: O notation

Let T, g : N → R be two real-valued functions.
We write T (n) = O(g(n)), iff there exists a positive number c > 0, such that T (n) ≤ cg(n)
is valid for all n > 0. We say, T (n) is of order at most g(n).

Since constants are ignored when using the O notation, one speaks of the asymptotic running
time or time complexity. In theoretical computer since, usually on states an upper bound
over all possible inputs of size n, i. e., the worst-case running time. In this book, we will also
study typical running times regarding a given ensemble of instances, see Sec. 1.2.

In Table 1.1, orders of running times, which occur typically in the context of algorithms, are
presented, accompanied by the resulting values for problem sizes 10, 100, and 1000.
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Table 1.1: Growth of functions as a function of input size n.

T (n) T (10) T (100) T (1000)
n 10 100 1000

n logn 10 200 3000

n2 102 104 106

n3 103 106 109

nlog n 10 104 109

2n 1024 1.3 × 1030 1.1 × 10301

n! 3.6 × 106 10158 4 × 102567

Usually one considers problems as easy, if the running time is bounded by a polynomial,
all others are considered as hard. The reason can be understood from the table: Even if
the polynomial functions may take higher values for small n, asymptotically non-polynomial
functions diverge much faster. Let us consider, e. g., the relative performance of two comput-
ers, one being twice as fast as the other one. In a linear-time problem, the faster computer is
able to solve a problem which is twice as large as the problem solvable in the same time on the
slower computer. If the running time grows, however, as 2n, the faster computer is just able
to go from n to n + 1 compared with the slower one. We see that for such hard problems, the
utility of higher-speed computers is very limited – a substantial increase in the size of solvable
problems can only be achieved via the use of better algorithms.

Often it is not immediately obvious whether or not a problem is easy. While finding the
shortest round tour in the TSP is hard, finding the shortest path between two given towns
(possibly through other cities) is easy, as we will see in Sec. 11.4.

Also in physics, many problems either are, or can be translated into, optimization problems.
Examples are the determination of ground states of magnetic systems, the calculation of the
structure of a folded protein, the analysis of data, or the study of flux lines in superconductors.
This will be illustrated using a classical model in statistical physics.

Example: Ising spin glasses

Spin glasses [7, 8] are amorphous magnetic materials. The atoms in the solid carry
microscopically small magnetic moments, which interact via couplings, some are
ferromagnetic while others are antiferromagnetic. Due to the amorphous nature
of the material, these couplings are disordered, i. e., they do not have any periodic
structure. Spin glasses show an interesting frozen low-temperature phase which is,
despite ongoing research over more than three decades, still poorly understood. Spin
glasses can be modeled in the following way:

The magnetic moments are described by Ising spins σi which, due to anisotropies
of the material, can take only two orientations called up and down, mathematically
formalized by σi = ±1. In the simplest model one assumes that these spins are
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placed on the sites of a regular lattice and that a spin interacts only with its nearest
neighbors. The model is thus described by

X = {−1, 1}
H(σ) = −

∑
<i,j>

Jijσiσj (1.2)

where Jij denotes the interaction strength between the spins on sites i and j, and
the sum runs over all pairs 〈i, j〉 of nearest neighbors. The function H measures the
total energy of the system, and is called the Hamiltonian. Note that the interaction
parameters are fixed, they are also called quenched variables, whereas the Ising
spins are subject to thermal fluctuations and my change their values.

In a ferromagnet it is energetically favorable for any two neighboring spins to as-
sume equal orientations σi = σj , i. e., all Jij are positive, and parallel spins lead to
a lower contribution to the total energy than antiparallel ones. So the system tends
to be globally oriented in the same way. On the other hand, thermal noise causes
spins to fluctuate randomly. At low temperatures T this thermal noise is small,
and energetic contributions dominate over random spin fluctuations. The system
becomes globally ordered. For temperatures higher than some critical temperature
Tc, this long-range order becomes destroyed; a phase transition occurs at Tc. In
Chap. 5, this phenomenon will be discussed in more detail in the context of a short
introduction to statistical mechanics.

Figure 1.3: Two-dimensional spin glass. Solid lines represent ferromagnetic inter-
actions, while jagged lines correspond to antiferromagnetic interactions. The small
arrows represent the spins, adjusted to a ground-state configuration. For all except
two interactions (marked by the crosses) the spins are oriented relative to each other
in an energetically favorable way. It is not possible to find a state with lower energy.
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At temperature T = 0 thermal fluctuations are completely absent, and the energy
H(σ) of the system assumes its global minimum. The corresponding spin config-
uration is called a ground state. The properties of these configurations are of great
interest in physics, they serve as a basis for understanding the low-temperature be-
havior of physical systems. In the case of a ferromagnet these ground states are, as
discussed above, extremely simple; all spins have the same orientation.

This becomes more complicated for spin glasses because ferromagnetic interactions
(Jij > 0) coexist with antiferromagnetic ones (Jij < 0). Two spins connected by

such an antiferromagnetic coupling prefer energetically to have opposite orienta-
tions. As already noted, spin glasses are amorphous materials, therefore ferromag-
netic and antiferromagnetic interactions are distributed randomly on the bonds of the
lattice. Consequently, it is not obvious how the ground state configurations of H(σ)
appear, and determining the minimum energy becomes a non-trivial minimization
problem.

Figure 1.3 shows a small two-dimensional spin glass and one of its ground states.
For this type of system usually many different ground states are feasible for each
realization of the disorder. One says, the ground state is degenerate. Algorithms
for calculating degenerate spin-glass ground states are explained in Chap. 11.
As we will explain there, this calculation is easy (polynomial running time) for
two-dimensional systems, but it becomes hard (exponential running time) in three
dimensions. �

1.2 Why study combinatorial optimization using statistical
physics?

The interdisciplinary exchange between computer science and statistical physics goes in both
directions:

On one hand, many problems in daily life and in many scientific disciplines can be formulated
as optimization problems. Hence, progress in the theory of combinatorial optimization, and
in particular the development of new and more efficient algorithms influences many fields of
science, technology and economy. In this obvious sense, computer science contributes to the
understanding of physical systems. We will give a short introduction on the application of
optimization algorithms for physics problems in Chap. 11.

On the other hand, physics can also help to shed light onto some basic, yet unsolved, questions
in computer science. In statistical mechanics, many analytical and numerical methods have
been developed in order to understand the macroscopic thermodynamic behavior of models
starting from some microscopic description of a system via its Hamiltonian. These methods
can be reinterpreted from the point of view of optimization theory. Problems, which are
originally formulated as purely combinatorial tasks, can be equivalently rewritten as physical
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models, by identifying the cost function with a Hamiltonian. Applying statistical mechanics
tools at a temperature close to T = 0, may thus unveil many properties of the original problem
and its cost-function minima; this will be the main focus of this book. In this way we will
obtain insight into the intrinsic reasons for the hardness of these problems. For example, we
will see that the hardness of many optimization problem is closely related to the glassiness of
the corresponding physical system. Using this alternative physical approach, many interesting
results have already been obtained, which have not been found before by applying traditional
methods from mathematics and computer science.

Furthermore, traditional computer science defines the hardness according to a worst-case sce-
nario. People dealing with practical applications are, however, more interested in typical in-
stances of an optimization task rather than looking for the hardest possible instances. For this
reason, suitably parametrized random ensembles of instances of problems have been intro-
duced over recent years. In this context, it was observed that in some regions of the ensemble
space instances are typically easy to solve, i. e., in a polynomially increasing running time,
while in other regions instances are found to be typically hard. This change in behavior
resembles the phase transitions observed in physical systems, like spin glasses or other disor-
dered materials. Once more it is tempting to exploit the long experience of statistical physics
with phase transitions in order to understand this behavior.

Example: Phase transitions in the TSP

As an example, we consider again the TSP. We study the random ensemble, where a
plane of area size A = Lx ×Ly is given. Each random instance consists of n cities,
which are randomly placed in the plane, with (xi, yi) ∈ [0, Lx]×[0, Ly] denoting the
position of city i. All positions are equally probable. The distances between pairs
of cities are just Euclidean distances, i. e., d(i, j) =

√
(xi − xj)2 + (yi − yj)2.

For each random instance of the problem, we ask the question:

Is the shortest round trip through all cities shorter than a given length l?

To answer this question for a given instance, one can use a branch-and-bound algo-
rithm. For an introduction to this type of algorithm, see Sec. 6.3. Here, the algorithm
basically enumerates all possible permutations of n cities stepwise, by selecting one
city after the other. Some efficient heuristic is used, which determines the order in
which the cities are tried, e. g., one starts the construction of the round trip, by first
taking the two cities which are closest to each other, for details see Ref. [9]. The
algorithm furthermore maintains a lower bound lmin of the tour length, determined
by the cities selected so far. If lmin > l, then the algorithm does not have to pursue
permutations containing the same order of the cities selected so far, and it can search
in other regions of the permutation space. On the other hand, if a full round trip with
H(σ) < l has been found, one knows that the answer to the question above is “yes”,
and the algorithm can stop.

In Fig. 1.4, the probability p that a tour of length smaller than l exists, is shown [9]
as a function of the rescaled length Φ = l/

√
nA. One observes that there is a strong
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Figure 1.4: Probability p that the minimum tour of n cities in plane of area A is shorter than
Φ = l/

√
nA, for different number n of cities. Reprinted from Ref. [9] with permission from

Elsevier.

increase in p when increasing l and that the curves for different sizes cross close
to Φ = 0.78. Hence, there seems to be a fundamental change in the nature of the
question close to Φ = 0.78, which resembles a phase transition in physical systems,
see Sec. 5.1.

One can show [9] that all probability curves for different sizes n fall on top of each
other, when p is plotted as a function of r = (l/

√
nA−0.78)n2/3. In this sense, the

problem exhibits a certain type of universality, independent of the actual number of
cities.

In Fig. 1.5 the running time of the TSP algorithm, measured by the number of times
a position of some city is assigned, when creating permutations, is shown as a func-
tion of the parameter r. One observes that, close to the point, where exactly half
of the instances have a shorter (minimum tour) length than l, the running time is
maximal. This means that close to the phase transition, the problem is hardest to
solve. It is a well known phenomenon in physics that, for the computer simulations
of phase diagrams, the running time is maximal close to phase transitions. It is one
of the main purposes of this book, to understand how this coincidence arises for
combinatorial optimization problems.

Finally, we mention that it is easy to understand why the running time is small for
large as well as for small values of Φ (i. e., l):

• For very small values of l, even the two closest cities have a larger distance than
the given value of l, hence the algorithm can stop immediately after one step.

• For very large values of l, even the first permutation of the cities has a total
distance smaller than l, i. e., the algorithm stops after n − 1 steps.
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Figure 1.5: Running time for branch-and-bound algorithm as a function of r =

(l/
√

nA − 0, 78)n2/3, for different number n of cities. The vertical line indicates
where half of the instances have a shorter tour length than l. Reprinted from Ref. [9]
with permission from Elsevier.

�

A better understanding of problems and algorithms may help to approach the solution of the
ultimate task: to find fast algorithms such that larger instances can be handled efficiently.
This is the main part of the work of computer scientists working in algorithmic design. Also
in this field, physics has recently proved its strength. For example the simulated annealing
technique originates in physics, see Chap. 2. The basic idea is to mimic the experimental
cooling of a system to find the low-temperature, i. e., low-energy, behavior. This technique
has the advantage of being widely applicable in very different fields. The disadvantage is
that it does not guarantee finding the global optimum. For many problems in practice, it
is, however, sufficient to find some local optima, which are close to the global one. Much
more recently, the deep insight into the structural properties of the solutions of several hard
optimization problems gained by statistical-mechanics analysis, has led to the proposal of a
new class of statistical inference algorithms, called survey propagation. These algorithms are
discussed in detail in Chaps 9 and 10.



10 1 Introduction

1.3 Textbooks

In the following list, some useful basic textbooks are suggested.

• T. H. Cormen, S. Clifford, C. E. Leiserson, R. L. Rivest: Introduction to Algorithms, MIT
Press, 2001
This book is considered as the standard introduction to algorithms and data structures and
provides a good foundation in the field which proves to be useful for theoretical studies
and especially for practical applications and implementations of algorithms at all levels.

• A. V. Aho, J. E. Hopcroft, J. D. Ullman: The design and analysis of computer algorithms,
Addison-Wesley, 1974
This book merges the field of practical applications of algorithms and theoretical studies
in this field.

• M. R. Garey and D. S. Johnson: Computers and intractability, Freeman, New York,
1979
This book is a traditional standard text book on complexity theory. It concentrates on
the part of theoretical computer science related to hard problems. The basic classes of
problems are defined, many fundamental problems are explained, and their relationship
is proved. In addition, the book contains a huge list of combinatorial problems which
may serve as a source of inspiration for further research.

• C. H. Papadimitriou and K. Steiglitz: Combinatorial Optimization, Prentice-Hall, 1982
This book gives a good introduction to the field of combinatorial optimization. All rel-
evant basic problems and algorithms are explained. It exists in an economic paperback
edition.

• A. K. Hartmann and H. Rieger: Optimization Algorithms in Physics, Wiley-VCH, Berlin,
2001
This text book shows how optimization algorithms can be applied to many problems
in physics. It explains the transformations needed to convert physical problems into
optimization problems, and presents the algorithms needed to solve these problems.

• M. Mézard, G. Parisi, and M. A. Virasoro: Spin glass theory and beyond, World Scien-
tific, Singapore, 1987.
This book gives an introduction to the statistical-mechanics theory of spin glasses, to-
gether with reprints of the most important papers. It discusses also first applications of
spin-glass methods to non-physical problems, including neural networks and combinato-
rial optimization.

• K. H. Fisher and J. A. Hertz: Spin Glasses, Cambridge University Press, 1991
This book introduces the methods of statistical physics needed to study phase transitions
in optimization problems. In this text, all techniques are applied to spin glasses, for which
the methods were originally developed.



Bibliography 11

Bibliography

[1] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Science 220, 671 (1983).

[2] M. Mézard and G. Parisi, J. Physique 47, 1285 (1986).

[3] N. J. Cerf, J. Boutet de Monvel, O. Bohigas, O. C. Martin, and A. G. Percus, Journal de
Physique I 7, 117 (1997).

[4] A. G. Percus and O. C. Martin, J. Stat. Phys. 94, 739 (1999).

[5] A. Chakraborti and B. K. Chakrabarti, Eur. Phys. J. B 16, 677 (2000).

[6] D. S. Dean, D. Lancaster, and S. N. Majumdar, arXiv preprint cond-mat/0411111.

[7] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Sci-
entific, Singapore, 1987).

[8] K. H. Fisher and J. A. Hertz, Spin Glasses (Cambridge University Press, 1991).

[9] I. P. Gent and T. Walsh, Artif. Intell. 88, 349 (1996).





2 Algorithms

This chapter gives a short introduction to algorithms. We first present a notation called pidgin
Algol which will be used throughout this book to describe algorithms. Next, we introduce
some basic principles of algorithms frequently encountered later on when studying optimiza-
tion techniques: iteration, recursion, divide-and-conquer, dynamic programming and back-
tracking. Since there are many specialized textbooks in this field [1–3] we will demonstrate
these fundamental techniques by presenting only a few simple examples.

2.1 Pidgin Algol

The algorithms will not be presented using a specific programming language. Instead, we will
use a notation for algorithms called pidgin Algol, which resembles modern high-level lan-
guages like Algol, Pascal or C. But unlike any conventional programming language, variables
of an arbitrary type are allowed, e. g., they can represent numbers, strings, lists, sets or graphs.
It is not necessary to declare variables and there is no strict syntax.

For the definition of pidgin Algol, we assume that the reader is familiar with at least one high-
level language and that terms like variable, expression, condition and label are clear. A pidgin
Algol program is a sequence of statements between a begin and an end, or, in other words a
compound statement (see below). It is composed of the following building blocks:

1. Assignment
variable := expression

A value is assigned to a variable. Examples: a := 5 ∗ b + c, A := {a1, . . . , an}
Also more complex and informal structures are allowed, like
let z be the first element of the queue Q

2. Condition
if condition then statement 1

else statement 2

The else clause is optional. If the condition is true, statement 1 is executed, otherwise
statement 2 is executed (if it exists).

Example: if money>100 then restaurant := 1 else restaurant := 0
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3. Cases
case: condition 1

statement1_A;
statement1_B;
. . .

case: condition 2
statement2_A;
statement2_B;
. . .

case: condition 3
statement3_A;
statement3_B;
. . .

. . .
end cases

This statement is useful if many different case can occur, thus making a sequence of
if statements too complex. If condition 1 is true, then the first block of statements is
executed (here no begin . . . end is necessary). If condition 2 is true, then the second
block of statements is executed, etc.

4. While loop
while condition do statement

The statement is performed as long as the condition is true.

Example: while counter < 200 do counter := counter+1;

5. For loop
for list do statement

The statement is executed for all parameters in the list. Examples:

for i := 1, 2, . . . , n do sum := sum+i

for all elements q of queue Q do waits[q] := waits[q]+1

6. Goto statement
a) label: statement
b) goto label

When the execution of an algorithm reaches a goto statement the execution is continued
at the statement which carries the corresponding label.

7. Compound statement
begin

statement 1;
statement 2;
. . .
statement n;

end
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The compound statement is used to convert a sequence of statements into one statement.
It is useful, e. g., if a for-loop should be executed for a body of several statements.

Example:
for i := 1, 2, . . . , n do
begin

a := a + i;
b := b + i ∗ i;
c := c + i ∗ i ∗ i;

end

For brevity, sometimes a compound statement is written as a list of statements in one
line, without the begin and end keywords.

8. Procedures
procedure procedure-name (list of parameters)
begin

statements
return expression

end

The return statement is optional. Note that we use the return statement also inside
algorithms to return the final result. A procedure is used to define a new name for a
collection of statements. A procedure can be invoked by writing: procedure-name
(arguments)

Example:

procedure minimum (x, y)
begin

if x>y then return y
else return x

end

9. Comments
comment text

Comments are used to explain parts of an algorithm, i. e., to aid in its understanding.
Sometimes a comment is given at the right end of a line without the comment keyword.

10. Miscellaneous statements: practically any text which is self-explanatory is allowed.
Examples:

Calculate determinant D of matrix M
Calculate average waiting time for queue Q

As a first example we present a simple heuristic for the TSP problem, which we have intro-
duced in Sec. 1.1. This method constructs a tour which is quite short, but it does not guarantee
to find the optimum. The basic idea is to start at a randomly chosen city. Then iteratively the
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city which has the shortest distance from the present city, i. e., its nearest neighbor, is chosen
from the set of cities which have not yet been visited. The array v will be used to indicate
which cities already belong to the tour. In σi the ith city visited is stored. Please remember
that d(i, j) denotes the distance between cities i and j and n is the number of cities.

algorithm TSP-nearest-neighbor(n, {d(i, j)})
begin

for i := 1, 2, . . . , n do
v[i] := 0;

σ1 := one arbitrarily chosen city;
v[σ1] := 1;
for i := 2, 3, . . . , n do
begin

min := ∞;
for all j with v[j] = 0 do

if d(σi−1, j) < min then
min := d(σi−1, j); σi := j;

v[σi] := 1;
end

end

1

3

6

2

5

4

Figure 2.1: Example of where the heuristic fails to find the shortest round trip.

Please note that the length of the tour constructed in this way depends on the city where the
tour starts and that this city is randomly chosen. As already mentioned, the algorithm does
not guarantee to find the shortest tour. This can be seen in Fig. 2.1, where the algorithm is
applied to a sample. In the resulting tour, two edges ((1, 2) and (4, 5)) cross, which shows that
a shorter round trip exists. One can replace the two crossing edges by (1, 4) and (2, 5).


