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Preface

The understanding of elementary excitations in electronic systems is of a basic importance,

both from a practical as well as from a fundamental point of view. For example, optical

properties and electrical transport in materials are primarily governed by excitation processes.

On the other hand, our main source of knowledge on the dynamics of elementary electronic

systems, such as isolated atoms, ions or molecules, is their response to an external probing

field, that excites the system. Generally, the corresponding quantum mechanical description

in terms of excitation amplitudes, entails a thorough understanding of the relevant excitation

spectrum of the system under study. For this purpose, efficient theoretical and calculational

techniques have been developed, and their implementations have rendered possible a detailed

insight into the nature and the dynamics of various electronic states in a variety of materials.

This progress is driven, to a large extent, by recent breakthroughs in the experimental fabrica-

tion, characterization and spectroscopic techniques which, in addition to providing stringent

tests of various aspects of current theoretical approaches, have also pointed out open questions

to be addressed by theory. Particularly remarkable is the diversity of the electronic materials

studied experimentally, ranging from isolated atoms to clusters and surfaces. It is this aspect

which is emphasized in this presentation of some of the theoretical tools for the description

of excited states of finite and extended electronic systems. The main goal is to highlight

common features and differences in the theoretical concepts that have been employed for the

understanding of electronic excitations and collisions in finite few-body (atomic) systems and

large, extended systems, such as molecules, metal clusters and surfaces.

The complete work is divided in two parts. The first part, which is this present book, deals

with the foundations and with the main features of the theoretical methods for the treatment of

few-body correlated states and correlated excitations in electronic systems. The forthcoming

second volume includes corresponding applications and the analysis of the outcome of theory

as contrasted to experimental findings.



XII Preface

A seen from a quick glance at the table of contents, the book starts by reviewing the main

aspects of the two-body Coulomb problem, which sets the frame and the notations for the

treatment of few-body systems. Subsequently, we sketch a practical scheme for the solution

of two-body problems involving an arbitrary non-local potential. Furthermore, an overview is

given on the mainstream concepts for finding the ground state of many-body systems. Sym-

metry properties and universalities of direct and resonant excitation processes are then ad-

dressed. Starting from low-lying two-particle excitations, the complexity is increased to the

level of dealing with the N -particle fragmentation in finite Coulomb systems. Having in mind

the theoretical treatment of excitations in extended and in systems with a large number of

active electrons, we introduce the Green’s function theory in its first and second quantization

versions and outline how this theory is utilized for the description of the ground-state and of

many-particle excitations in electronic materials.

The topics in this book are treated differently in depth. Subjects of a supplementary or an

introductory nature are outlined briefly, whereas the main focus is put on general schemes for

the treatment of correlated, many-particle excitations. In particular, details of those theoretical

tools are discussed that are employed in the second forthcoming part of this work.

Due to the broad range of systems, physical processes and theoretical approaches relevant

to the present study, only a restricted number of topics is covered in this book, and many im-

portant related results and techniques are not included. In particular, in recent years, numerical

and computational methods have undergone major advances in developments and implemen-

tations, which are not discussed here, even though the foundations of some of these techniques

are mentioned. Despite these restrictions, it is nevertheless hoped that the present work will

provide and initiate some interesting points of view on excitations and collisions in correlated

electronic systems.

The work is purely theoretical. It should be of interest, primarily for researchers working

in the field of theoretical few-body electronic systems. Nonetheless, the selected topics and

their presentations are hoped to be interesting and comprehensible to curious experimentalists

with some pre-knowledge of quantum mechanics.

The results of a number of collaborations with various friends and colleagues can be found

in this book. I would like to take this opportunity to thank few of them. I am particularly

indebted to M. Brauner, J. S. Briggs, J. Broad and H. Klar for numerous collaborations, dis-



Preface XIII

cussions and advice on charged few-particle problems. I would also like to thank P. Bruno,

A. Ernst, R. Feder, N. Fominykh, H. Gollisch, J. Henk, O. Kidun, and K. Kouzakov for

fruitful collaborations, encouragements and valuable discussions on the theoretical aspects

of electronic excitations and correlations in condensed matter. Furthermore, I am grateful to

L. Avaldi, I. Bray, R. Dörner, A. Dorn, R. Dreizler, J. Feagin, A. Kheifets, J. Kirschner, A.

Lahmam-Bennani, J. Lower, H. J. Lüdde, J. Macek, J. H. McGuire, D. Madison, S. Mazevet,

R. Moshammer, Yu. V. Popov, A.R.P. Rau, J.-M.Rost, S. N. Samarin, H. Schmidt-Böcking,

A. T. Stelbovics, E. Weigold and J. Ullrich for many insightful and stimulating discussions

we had over the years on various topics of this book. Communications, discussions and con-

sultations with E. O. Alt, V. Drchal, T. Gonis, J. Kudrnovský, M. Lieber and P. Ziesche are

gratefully acknowledged.
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their competent help and support in the preparation of the book.

Jamal Berakdar
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1 The two-body Kepler problem: A classical treatment

This chapter provides a brief summary of the theoretical treatment of non-relativistic two-

body Coulomb systems. An extensive account can be found in standard textbooks, e. g. [1].

The purpose here is to introduce the basic ideas and notations utilized in the quantum theory

of interacting charged particles. Particular attention is given to the approach pioneered by

W. Pauli [4] which utilizes the existence of an additional integral of motion due to the dynam-

ical symmetry of Coulomb-type potentials, namely the Laplace-Runge-Lenz vector [2]. Let

us consider a system consisting of two interacting particles with charges z1 and z2 and masses

m1 and m2. In the center-of-mass system, the two-particle motion is described by a one-body

Hamiltonian H0 that depends on the relative coordinates of the two particles. Its explicit form

is 1

H0 =
1
2μ

p2
0 −

z12

r0
, (1.1)

where z12 = −z1z2 and the reduced mass is denoted by μ = m1m2/(m1 +m2). The vectors

r0 and p0 are respectively the two-particle relative coordinate and its conjugate momentum.

In addition to the total energy E, the angular momentum L0 = r0×p0 is a conserved quantity

due to the invariance of Eq. (1.1) under spatial rotations. Furthermore, the so-called Laplace-

Runge-Lenz vector [2]

A = r̂0 +
1

μz12
L0 × p0 (1.2)

is as well a constant of motion. This is readily deduced by noting that

∂tp0 = −z12r̂0/r2
0

1Unless otherwise specified, atomic units are used throughout this book.
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and therefore the time derivative of A vanishes, i.e.

∂tA = ∂tr̂0 +
1

μz12
L0 × (∂tp0)

=
∂tr0

r0
− [r0 · (∂tr0)]r0

r3
0

− 1
r3
0

[r0 × (∂tr0)]× r0 = 0.

(1.3)

For the derivation of the classical trajectories it is instructive to introduce the dimensionless

Figure 1.1: The motion of two particles interacting via a Coulomb-type potential takes place in
the plane spanned by the vectors A and A × L.

quantities

r = z12 r0/a, p = p0 a/(z12�), and L = L0/�,

where the length scale is given by a = �2/(μe2) (for clarity, the electron charge e and � are

displayed here). The Hamiltonian (1.1) transforms into H = 2a/(z2
12e

2)H0, whereas in the

scaled coordinates, the Laplace-Runge-Lenz vector (A) has the form

A = r̂ + L× p. (1.4)

Thus, the Hamiltonian H0 (1.1) measured in the energy units ε = (z2
12e

2)/(2a) is

H = H0/ε = p2 − 2/r. (1.5)

Since ∂tA = 0 = ∂tL and A ·L = 0 we deduce that the relative motion of the two particles is

restricted to a plane P defined by A and L×A, as illustrated in Fig. 1.1. The relative position
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vector r in the plane P is uniquely specified by the components [see Fig. 1.1]

x = r · (L×A), and y = r ·A.

The components x and y can be written in the form

y = r − L2, x = −L2(r · p). (1.6)

Furthermore we conclude that since

L2 = r2p2 − (r · p)2, the relation x2/L4 = r2p2 − L2 (1.7)

applies.

Thus, for a given total (scaled) energy E = p2 − 2/r the components x and y of the

position vector r are determined by the equation[
y E + (L2E + 1)

]2 − E

L4
x2 = L2E + 1. (1.8)

Further straightforward algebraic manipulations lead to

A2 = L2E + 1 ≥ 0.

Relation (1.8) is the defining equation for conic sections in the normal form:

• For E < 0 the motion proceeds along an elliptical closed orbit with A being along the

main axis. The excentricity of the orbit is determined by |A|.

• For E > 0 Eq. (1.8) defines a hyperbola.

• If E = 0 (and hence p2 = 2/r) we conclude from Eq. (1.7) and from r = y + L2 that

y = x2/(2L4)− L2/2.

This equation describes a parabola with a curvature L−4. If in addition L � 1 the

parabola degenerates to an almost straight line along A starting from the origin [see

Fig. 1.1].





2 Quantum mechanics of two-body Coulomb systems

2.1 Historical background

In a seminal work [4] W. Pauli applied the correspondence principle to introduce the hermitian

Laplace-Runge-Lenz operator A and showed that A commutes with the total Hamiltonian H ,

i. e. [H,A] = 0. Using group theory he utilized this fact for the derivation of the bound

spectrum of the Kepler problem. Later on, V. A. Fock [5] argued that the degeneracy of the

levels, having the same principle quantum numbers, is due to a “hidden” dynamical symmetry.

I. e. in addition to the symmetry with respect to the (spatial) rotation group O(3), the Kepler

problem with bound spectrum possesses a symmetry with respect to a wider (compact) group

O(4) (rotation in a four-dimensional space). Shortly after that V. Bargmann [6] showed how

the separability of the (bound) two-body Coulomb problem in parabolic coordinates is linked

to the existence of the conserved quantity A. J. Schwinger [7] utilized the rotational invariance

with respect to O(4) for the derivation of the Coulomb Green’s function. It is this line of

development which we will follow in the following compact presentation of this topic. A

detailed discussion of the Coulomb Green’s function in connection with the O(4) symmetry

is deferred to section 11.3.

The dynamical symmetry is related to the form of the Coulomb potential and persists

in the n dimensional space. In fact, S. P. Alliluev [8] showed that the Hamiltonian of the

n-dimensional (attractive) Kepler problem possesses a hidden symmetry with respect to the

O(n + 1) group. For n = 3 (e.g. the hydrogen atom) Fock showed [5] that the spectrum

is described by the irreducible representations of O(4). Those are finite dimensional since

O(4) is a compact group, i. e. a continuous group with finite volume. For the description of

the discrete and the continuous spectrum one has to utilize the non-compact analog of O(4),

namely the Lorenz group (for more details and further references see Ref. [9]).
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2.2 Group theoretical approach to the two-body problem

The classical vector (1.4) can not be translated directly into quantum mechanics as the Laplace-

Runge-Lenz vector operator A because it would be non-hermitian. An acceptable definition

for the (polar) vector operator A that satisfies A = A†, is 1

A = r̂ +
1
2

(L× p− p× L) . (2.1)

Since for any vector operator, such as p the relation L × p − p × L = i[L2,p] applies, we

can write A in the form

A = r̂ +
i

2
[L2,p]. (2.2)

With this definition of A one verifies the following commutation relations between the oper-

ators L,A and H

L× L = iL, (2.3)

A×A = −iH L, (2.4)

L×A + A× L = i2A, (2.5)

[H,L] = 0 = [H,A], (2.6)

A · L = 0 = L ·A. (2.7)

Furthermore, using Eq. (2.2) it is readily shown that

A2 = 1 + H(L2 + 1). (2.8)

Eqs. (2.6, 2.7) state that L and A (and H) are conserved while Eq. (2.8) serves to derive

Bohr’s formula of the energy level scheme, as shown below. Introducing the normalized

Laplace-Runge-Lenz operators as

N = A/h, h =

⎧⎪⎨⎪⎩
1/
√
−H ∀E < 0,

1/
√

H ∀E > 0,

1 E = 0,

(2.9)

1Hereafter we use the shorthand notation
P

ij [Ai,Bj ]εijk = (A × B)k where A and B are vector operators.
A vector operator satisfies the relation L × A + A × L = 2iA (same applies for B or any vector operator).
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the Hamiltonain H is scaled out of Eqs. (2.4–2.7) which then simplify to

L× L = iL , (2.10)

N×N = κ iL , (2.11)

N · L = 0 = L ·N , (2.12)

L×N + N× L = 2 iN. (2.13)

Here we adopt the definition κ = sgn(−E) and κ = 0 for E = 0. Eq. (2.8) becomes

−κHN2 = 1 + H(L2 + 1), if E �= 0, (2.14)

N2 = 1 + H(L2 + 1), if E = 0. (2.15)

The relations (2.10–2.13) coincide with the commutation relations between the generators of

the homogeneous Lorenz group describing rotations and translations. For E = 0 (i. e. κ = 0)

the Lorenz group (2.10–2.13) degenerates to the Galilean group. For a given positive energy

E > 0 the continuum wave functions are the irreducible representations of the Lorenz group.

This representation is infinite dimensional and unitary because the values of the orbital angu-

lar momentum l are not restricted for a fixed positive energy (E > 0). Furthermore, L and

N, the generators of the group, are hermitian for H > 0. In contrast, for the bound spec-

trum (E < 0) a finite number of (orbital angular momentum) states corresponding to a given

principal quantum number n provides a finite dimensional, non-unitary representation. The

non-unitarity is a consequence of the fact that the generators N are antihermitian for H < 0.

2.2.1 The bound spectrum

As well known, for E < 0 there is a one-to-one correspondence between the representations

of the Lorenz group and the compact O(4) group that have the six generators (L,N). On

the other hand a reduction of the O(4) algebra into two O(3) algebras can be achieved upon

introducing the operators

J(1) =
1
2

(L + N) , (2.16)

J(2) =
1
2

(L−N) . (2.17)
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These satisfy the commutation relations of two independent angular momentum operators,

namely

J(1) × J(1) = iJ(1), (2.18)

J(2) × J(2) = iJ(2), (2.19)

[J(2)ν
× J(2)ν

] = 0, ∀ ν = 1, 2, 3. (2.20)

Thus, each of J(1) and J(2) can be regarded as the generators of rotations in three dimensions.

From a group theory point of view the three components of J(1) and of J(2) are the members

of two independent Lie algebras SO1(3) and SO2(3) [9]. As noticed by O. Klein [10], the

Lie algebra implied by Eqs. (2.18–2.20) is then SO1(3)× SO2(3) = SO(4) which describes

rotations in a four dimensional space. The representations of the Lie group SO(4) are thus

labelled by the two angular momenta j1 = 0, 1/2, 1, 3/2 · · · and j2 = 0, 1/2, 1, 3/2 · · · . The

eigenvalues of the Casimir operators J2(1)and J2(2) of the groups SO1(3) and SO2(3) are

respectively j1(j1 + 1) and j2(j2 + 1). Due to the restriction (2.7) we deduce from (2.16,

2.17) that

J2
(1) = J2

(2) =
1
4
(
L2 + N2

)
, (2.21)

i. e. j1 = j2. Furthermore, from Eq. (2.14) follows

H = −(N2 + L2 + 1)−1 = −(4J2
(1) + 1)−1.

This means, employing the |j1m1〉 ⊗ |j2m2〉 representation, and taking into account the con-

dition j1 = j2 = j, the energy eigenvalues E are (2j + 1)2-fold degenerated and are given

by

E = − 1
4j(j + 1) + 1

= − 1
(2j + 1)2

, j = 0,
1
2
, 1, · · · ,

E = − 1
n2

, n := (2j + 1) = 1, 2, 3 · · · . (2.22)

2.2.2 Eigenstates of two charged-particle systems

The states |Ψnlm〉 that form the representations of SO(4) are obtained as follows. Since

|j1m1〉 and |j2m2〉 are eigenvectors of angular momentum operators they can be regarded as

spherical tensors (see appendix A.1 for definitions and notations of spherical tensors) of rank
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j with components m = −j · · · j [note j = j1 = j2 = (n − 1)/2, see Eq. (2.22)]. From

SO(4) = SO1(3)× SO2(3) we deduce that |Ψnlm〉 is obtained via the tensor product2

|Ψnlm〉

=
∑

m1m2

〈
n− 1

2
m1

n− 1
2

m2

∣∣∣∣ lm〉 ∣∣∣∣j =
n− 1

2
m1

〉
⊗
∣∣∣∣j =

n− 1
2

m2

〉
. (2.23)

Noting that L = J(1) + J(2) and N = J(1) − J(2) [cf. Eqs. (2.16, 2.17)] we can rewrite

Eq. (2.23) in terms of the eigenvalues m and q of the components Lz and Nz with respect

to an appropriately chosen axis z. Since m = m1 + m2 and q = m1 −m2 the state vector

|Ψnlm〉 is readily expressed in terms of the common eigenstates |φnqm〉 of the operators Lz ,

Nz and H in which case Eq. (2.23) takes on the form

|Ψnlm〉 =
∑

q

〈
n− 1

2
m + q

2
n− 1

2
m− q

2

∣∣∣∣ lm〉 |φnqm〉 . (2.24)

The explicit forms of the wave functions Ψnlm(r) and φnqm(r) are given in the next section.

2.3 The two-body Coulomb wave functions

The quantum mechanical two-body Coulomb problem is exactly solvable in only four coordi-

nate systems [3]:

1. In spherical coordinates the two-particle relative position r is specified by

r = r(sin θ cos ϕ, sin θ sin ϕ, cos θ) where θ ∈ [0, π] and ϕ ∈ [0, 2π] are the polar and

the azimuthal angles. The chosen set of commuting observables is {H,L2,Lz}.

2. In the spheroconic coordinates the coordinate r is given by

r = r(snα dnβ, cnα cnβ, dnα snβ), where r ∈ [0,∞[, α ∈ [−K, K], and

β ∈ [−2K ′, 2K ′], here 4K (4iK ′) is the real (imaginary) period of the Jacobi-elliptic

functions3 [238]. The set of commuting observables that are diagonalized simultaneously

is {H,L2,L2
x + k′L2

y}.
2The tensor product of two spherical tensors Tq1m1 and Tq2m2 with ranks q1 and q2 and compo-

nents m1 = −q1, · · · , q1 and m2 = −q2, · · · , q2 is the spherical tensor Pkm where Pkm =P
m1m2

〈q1m1 q2m2|km〉Tq1m1Tq2m2 . For more details see appendix A.1.
3 The Jacobi elliptic integrals are defined as u =

R ϕ
0

dθ√
1−k2 sin2 θ

. sn(u) = sin ϕ, cn(u) = cosϕ and

dn(u) = (1 − k2 sin2 ϕ)1/2. For the definition of the spheroconic coordinates k [k′] is deduced from the modulus
of sn(α) and cn(α) [sn(β), cn(β) and dn(β)].
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3. In spheroidal coordinates the relative coordinate r is defined as

r = R
2

(√
(ξ2 − 1)(1− η2) cos ϕ,

√
(ξ2 − 1)(1− η2) sin ϕ, ξη + 1

)
where R is a real

positive constant and ξ ∈ [1,∞[, η ∈ [−1, +1], and ϕ ∈ [0, 2π[. In this case the

chosen set of commuting operators is {H,L2 − 2RNz ,Lz}. For R → 0 the spheroidal

coordinates degenerates to the spherical coordinates whereas for R → ∞ they coincide

with the parabolic coordinates.

4. In the parabolic coordinates the preferred set of commuting operators is {H,Lz,Nz}. It

is this coordinate system which will be discussed below and will be utilized in the next

chapters of this book for the treatment of the few-body problem.

2.3.1 Spherical coordinates

The derivation of the normalized wave functions Ψnlm(r) in spherical coordinates can be

found in standard books on quantum mechanics [1]. Here we only give the final expression

Ψnlm(r) = Rnl(r)Ylm(r̂), (2.25)

Rnl(r) =
2

n2(n + 1)!

[
(n− l − 1)!

(n + l)!

]1/2 (2r

n

)l

e−
r
n L2l+1

n+l

(
2r

n

)
. (2.26)

The angular motion is described by the spherical harmonics Ylm(r̂) whereas the radial part

Eq. (2.26) is given in terms of the associated Laguerre polynomials4 La
b (x) [12, 99].

2.3.2 Parabolic coordinates

As mentioned above, as an alternative set of three commuting operators for the description of

the two-body Coulomb problem one may choose {H,Lz,Az}. The corresponding coordinate

system in which the Schrödinger equation separates is the parabolic coordinates. Those are

given in terms of the defining parameters of two systems of paraboloids with the focus at the

origin and an azimuthal angle ϕ in the (x, y) plane. The relation between these coordinates

4The Laguerre polynomials are obtained according to the formula Ln(z) = ez dn

dzn

ˆ
e−z zn

˜
. The associated

Laguerre polynomials are given by Lm
n (z) = dm

dzm Ln(z) and satisfy the differential equation

ˆ
z∂2

z + (m + 1 − z)∂z + (n − m)
˜ Lm

n (z) = 0. (2.27)
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and the cartesian coordinates (in which the position vector r is given by r = (x, y, z)) is

x =
√

ξη cos ϕ, ξ = r + r · ẑ,
y =
√

ξη sin ϕ, η = r − r · ẑ,
z = 1

2 (ξ − η), tanϕ = y
x ;

ξ ∈ [0,∞[, η ∈ [0,∞[, ϕ ∈ [0, 2π].

(2.28)

The Laplacian Δ expressed in parabolic coordinates reads

Δ =
4

ξ + η
( ∂ξξ∂ξ + ∂ηη∂η ) +

1
ηξ

∂2
ϕ. (2.29)

Thus, the Schrödinger equation for an electron in the field of an ion with a charge Z = 1

a.u. is

(H − Ē)φ = 0,(
p2 − 2

r
− E

)
φ = 0, (2.30)

where E = 2Ē. In parabolic coordinates Eq. (2.30) has the following form{
4

ξ + η
[ ∂ξξ∂ξ + ∂ηη∂η + 1 ] +

1
ηξ

∂2
ϕ + E

}
φ = 0. (2.31)

Multiplying this equation by (ξ + η)/4 and upon inserting in (2.31) the ansatz

φ = NE e±i mϕ u1(ξ)u2(η), (2.32)

where m ≥ 0, and NE is an energy dependent normalization constant, (2.33)

we obtain the two determining equations for functions u1(ξ) and u2(η) as

∂ξ(ξ∂ξu1) +
E

4
ξu1 −

m2

4ξ
u1 + c1u1 = 0, (2.34)

∂η(η∂ξu2) +
E

4
ηu2 −

m2

4η
u2 + c2u2 = 0. (2.35)

Here c1 and c2 are integration constants satisfying

c1 + c2 = 1. (2.36)

Since the function u1 have the limiting behaviour

lim
ξ→0

u1 → ξm/2 and lim
ξ→∞

u1 → exp(−
√
−E ξ/2) (2.37)

it is advantageous to write down u1 in the form

u1 = ξm/2 exp(−
√
−E ξ/2)g1(ξ). (2.38)
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From Eq. (2.34) one deduces for the unknown function g1 the determining equation[
x∂2

x + (m + 1− x)∂x +
(

c1√
−E
− m + 1

2

)]
g1 = 0, (2.39)

where x = ξ
√
−E. The solution of the differential equation Eq. (2.39) is the associated

Laguerre polynomials Lm
n (z), as readily verified upon a comparison with Eq. (2.27), i. e.

g1(x) = Lm
n1+m(x), (2.40)

n1 =
c1√
−E
− (m + 1)

2
= 0, 1, 2, · · · . (2.41)

In an analogous way one expresses the function u2 in terms of associated Laguerre polynomi-

als as

u2 = ηm/2 exp (−
√
−E η/2) Lm

n2+m(η
√
−E), (2.42)

n2 = c2/
√
−E − (m + 1)/2 = 0, 1, 2, · · · . (2.43)

With this formula we conclude that the function, defined by Eq. (2.32), has the final form

φ = NE e±i mϕu1u2,

= NE e±i mϕ ×

×ξm/2 exp (−
√
−E ξ/2) Lm

n1+m(ξ
√
−E)

×ηm/2 exp (−
√
−E η/2) Lm

n2+m(η
√
−E). (2.44)

Since c1 + c2 = 1 we conclude from Eqs. (2.41, 2.43) that

1√
−E

= n =
1√
− 2Ē

,

where the integer number n is identified as the principle quantum number and is related to n1

and n2 via

n := n1 + n2 + m + 1 = 0, 1, 2, · · · , i.e. E = − 1
n2

.

The connection between the separability sketched above and the Laplace-Runge-Lenz vec-

tor becomes apparent when the component Nz (Lz) of N (L), along a chosen quantization

axis, is expressed in parabolic coordinates. This has been done by V. Bargmann [6] who

showed that the states |n1n2m〉 are eigenvectors of Nz , Lz and H .

The operator N is a polar vector (odd under parity operation). In contrast L is an axial

vector and as such is even under parity. Therefore, as far as parity is concerned, the states
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|n1n2m〉 are mixed, i.e. they have no well-defined parity. This is as well clear from the

definition of the parabolic coordinates (2.28) that gives preference to the z direction (and

therefore the parabolic eigenstates derived above are symmetrical with respect to the plane

z = 0).

The presence of a preferential space direction in the definition of the parabolic variables

makes this coordinate system predestinate for formulating problems that involve a direction

determined by physical measurements, such as an external electric field or the asymptotic

momentum vector of a continuum electron. A well-known demonstration of this statement is

the separability in parabolic coordinates of the two-body Hamiltonian in the presence of an

electric field E (the Stark effect). In this case one chooses the z axis to be along the field and

writes down the Schrödinger equation as

(H − E z − E)φ = 0.

Expressing this relation in the coordinate (2.28) and making the ansatz (2.32) one obtains two

separate, one-dimensional differential equations for the determination of u1 and u2, namely[
∂ξξ∂ξ +

E

4
ξ − m2

4ξ
+
E
2

ξ2 + c1

]
u1(ξ) = 0, (2.45)[

∂ηη∂η +
E

4
η − m2

4η
− E

2
η2 + c2

]
u2(η) = 0. (2.46)

These relations make evident the complete separability of the Stark effect in parabolic coordi-

nates.

2.3.3 Analytical continuation of the two-body Coulomb wave functions

Another example involving a physically defined direction in space occurs in ionization prob-

lems. There, the wave vector k of the continuum electron is specified experimentally. Thus, a

suitable choice for the space direction ẑ, that enters the definition of the parabolic coordinates,

is ẑ ≡ k̂. In this case the parabolic coordinates are

ξ = r + r · k̂, (2.47)

η = r − r · k̂, (2.48)

ϕ = arctan(y/x). (2.49)

Since we are dealing in case of Ē > 0 with continuum problems one may wonder whether it is

possible to utilize the wave function (2.32) (with the asymptotically decaying behaviour (2.37))
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to describe the two-particle continuum, i.e. whether Eq. (2.32) can be continued analyti-

cally across the fragmentation threshold. To answer this question we note that the associ-

ated Laguerre polynomials can be written in terms of the confluent hypergeometric functions5

1F1(a, b, z) [11, 12] as

Lm
n (z) =

(m + n)!
m!n! 1F1(−n, m + 1, z). (2.52)

Defining the (generally) complex wave vector k =
√

2Ē and choosing the phase convention

for Eqs. (2.44) such that

φ = NE e±i mϕu∗
1u2 (2.53)

we deduce the general solution of Schrödinger equation for one electron in the field of a

residual ion with a unit positive charge (i.e. Eq. (2.32)) as (we recall the assumption that the

electron-ion reduced mass is unity)

φ = Nk,m e±i mϕ ξm/2ηm/2 eik·r

1F1(−i
c1

k
+

1−m

2
, 1 + m,−ikξ)

1F1(i
c2

k
+

1−m

2
, 1 + m, ikη), (2.54)

where m ≥ 0, Nk,m = N(k,±m), c1 + c2 = 1, k ∈ C.

Since 1F1(a, b, z) is analytic for all values of the complex arguments a, b, z, except for nega-

tive integer values of b one can use Eq. (2.54) for the description of the all bound and contin-

uum states. Outgoing continuum waves characterized by the wave vector k are obtained from

(2.54) upon the substitution m→ 0, c1 → −ik/2 in which case (2.54) reduces to

φout = N+
k eik·r

1F1(−iαk, 1, ik(r − k̂ · r) ). (2.55)

5The confluent hypergeometric function 1F1(a, b, z) is the solution of the confluent Kummer-Laplace differential
equation [11, 12]

z u′′ + (b − z)u′ − a u = 0. (2.50)

1F1(a, b, z) is also called Kummer’s function of the first kind. The confluent hypergeometric function has the series
representation [11, 12]

1F1(a, b, z) = 1 +
a

b
z +

a(a + 1)

b(b + 1)

z2

2!
+ · · · =

∞X
j=0

(a)j

(b)j

zj

j!
, (2.51)

where (a)j denotes the Pochhammer symbols; its form is inferred from (2.51). The power series representing the
function 1F1(a, b, z) is convergent for all finite z ∈ C. If a and b are integers, a < 0, and either b > 0 or b < a,
then the series yields a polynomial with a finite number of terms. Except for the case b ≤ 0, b ∈ N, the function
1F1(a, b, z) is an entire function of z.


