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Preface

Understanding the complex world around us is a difficult task and simple principles that cap-
ture essential features of complex natural systems are always welcome. One such principle
shared by a number of natural systems is their organization as networks of many interacting
units: Interacting molecules in living cells, nerve cells in the brain, computers in a telecommu-
nication network, and the social network of interacting people are just a few examples among
many others. The concept of networks is an easy-to-use metaphor, but does it really help us
in describing the real world?

Recent advances in the theory of complex networks indicate that this notion may be more
than just a philosophical term. Triggered by recently available data on large real world net-
works (e.g. on the structure of the internet or on molecular networks in the living cell) com-
bined with fast computer power on the scientist’s desktop, an avalanche of quantitative re-
search on network structure and dynamics currently stimulates diverse scientific fields. Results
obtained so far span areas from the prevention of computer viruses to sexually transmitted dis-
eases, and relate to the dynamics and stability of systems as diverse as the internet, regulatory
circuits of the genome, and ecosystems.

This handbook aims at providing a snapshot of this active field in its early phase and
gives a first-time compilation of the theory of complex network structure and dynamics and
its application to different disciplines. All contributors are active researchers in the field and
provide an up-to-date review of their respective research focus in self-contained chapters. The
first five chapters focus on structure of networks, covering different theoretical aspects from
graph theory to methods from theoretical physics, as well as models and applications. The
second focus of this handbook is on biological themes, covered in the subsequent five chap-
ters, spanning across scales from molecular networks to ecological systems. The remaining
chapters cover even larger scales and concentrate on interdisciplinary applications as traffic,
economics, social networks, internet and human language, and conclude with a chapter on
network evolution models and a network perspective on the origin of life problem.

Our intention is not a fully comprehensive coverage of the field of complex networks,
which for this young and dynamic field would be an impossible task. Perhaps it is even too
early to predict where this field will finally settle. However, major themes of current research
are covered in this handbook, as well as some topics that might be candidates to attract further
attention in the near future. We hope that this handbook serves non-specialists and specialists
alike as an inspiring introduction to this exciting new field. If readers take some inspiration
from this handbook or even use it as a starting point for further research it would fully serve
its purpose.



VI Preface

The idea for this handbook dates back to the “International Conference on Dynamical
Networks in Complex Systems” held in Kiel in the summer of 2001 gathering a crowd of
scientists with diverse backgrounds and the common interest of understanding dynamics and
structure of complex networks from their respective disciplines. We hope that this handbook
communicates some of the pioneering spirit of this meeting. We are grateful to our friends and
colleagues who joined the endeavor of this handbook and provided review chapters on their
fields of expertise. Finally we thank the Wiley-VCH staff for excellent professional support
in producing this book.

Stefan Bornholdt and Heinz Georg Schuster

Leipzig and Kiel, Summer 2002
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1 Mathematical results on scale-free random graphs

Béla Bollobás and Oliver M. Riordan

1.1 Introduction

Recently there has been much interest in studying large-scale real-world networks and at-
tempting to model their properties using random graphs. Although the study of real-world
networks as graphs goes back some time, recent activity perhaps started with the paper of
Watts and Strogatz [55] about the ‘small-world phenomenon’. Since then the main focus of
attention has shifted to the ‘scale-free’ nature of the networks concerned, evidenced by, for
example, power-law degree distributions. It was quickly observed that the classical models of
random graphs introduced by Erdős and Rényi [28] and Gilbert [33] are not appropriate for
studying these networks, so many new models have been introduced. The work in this field
falls very roughly into the following categories.

1. Direct studies of the real-world networks themselves, measuring various properties such
as degree-distribution, diameter, clustering, etc.

2. Suggestions for new random graph models motivated by this study.

3. Computer simulations of the new models, measuring their properties.

4. Heuristic analysis of the new models to predict their properties.

5. Rigorous mathematical study of the new models, to prove theorems about their proper-
ties.

Although many hundreds of interesting papers have been written in this area (see, for example,
the surveys [2, 27]), so far almost all of this work comes under 1-4; to date there has been
very little rigorous mathematical work in the field. Our main aim in this article is to present
some of this mathematical work, including several new results. Even an overview of the
work in 1-4 lies outside our scope, so we shall present only those models which have been
made mathematically precise and for which results have been proved, and mention only a
few heuristic results for comparison with the theorems we present. For similar reasons, we
cannot even survey the ‘classical’ theory of random graphs, referring the reader instead to [11]
and [38]. However, we shall briefly describe the classical models, as well as some results
relevant for comparison; much of the work on the new models has appeared in computer
science and physics journals, and it may be that some of the authors are not aware of the
related classical results.

The rest of this article is organized as follows. In the next section we briefly describe
the classical models of random graphs. In section 1.3 we state some theorems about these
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models chosen for comparison with recent results about the new models. Section 1.4 is a
brief digression concerning the Watts-Strogatz ‘small-world’ model. The rest of the article
concerns ‘scale-free’ models; a brief introduction is given in section 1.5. These models fall
into two types. The first takes a power-law degree distribution as given, and then generates a
graph with this distribution. Such models will not be considered here. The second type arises
from attempts to explain the power law starting from basic assumptions about the growth
of the graph. In section 1.6 we describe the Barabási-Albert (BA) model, noting that their
definition does not make mathematical sense. A precisely defined model, the ‘LCD model’,
along the lines of the BA model is described in section 1.7, followed by a generalization due
to Buckley and Osthus [20] in the next section. In these and the following few sections we
concentrate on the degree distribution, presenting results showing that the models are indeed
scale-free. Sections 1.9 and 1.10 present such results for the ‘copying’ models of Kumar,
Raghavan, Rajagopalan, Sivakumar, Tomkins and Upfal [40], and the very general models
defined by Cooper and Frieze [24]. Section 1.11 describes a model for directed graphs with
‘preferential attachment’ using both in- and out-degrees, and gives the power laws for in- and
out-degree distribution.

At this point we return to the LCD model, presenting results about properties other than
degree sequence: the clustering coefficient is discussed in section 1.12, the diameter in sec-
tion 1.13 and ‘robustness’ in section 1.14.

The last section concerns a special case of the BA model that had been studied consider-
ably earlier; that of scale-free trees. In section 1.15, we present results for small subgraphs
(useful for the LCD model) and distance distribution.

Finally, in section 1.16 we conclude with a few remarks.

1.2 Classical models of random graphs

The theory of random graphs was founded by Erdős and Rényi in a series of papers published
in the late 1950s and early 1960s. Erdős and Rényi set out to investigate what a ‘typical’
graph with n labelled vertices and M edges looks like. They were not the first to study
statistical properties of graphs; what set their work apart was the probabilistic point of view:
they considered a probability space of graphs and viewed graph invariants as random variables.
In this setting powerful tools of probability theory could be applied to what had previously
been viewed as enumeration questions.

Throughout this section, and indeed the rest of this article, we consider models of labelled
graphs. Although in the end one may choose to ignore the labels, the models are naturally
defined as generating graphs on a certain set of distinguishable vertices, rather than isomor-
phism classes of graphs. For definiteness it is often convenient to assume that, when the graph
has n vertices, the vertex set is [n] = {1, 2, . . . , n}.

In modern notation Erdős and Rényi considered the space Gn,M of all
(

N
M

)
graphs with

vertex set [n] having M edges, where N =
(
n
2

)
is the number of all possible edges between

vertices in [n]. The set Gn,M is made into a probability space by taking the elements of Gn,M

equiprobable; Gn,M will denote a random element of this space. We are interested in what
happens as n → ∞, with M = M(n) a function of n. We say that Gn,M has a certain
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property P with high probability (whp) if

Pr(Gn,M has P) → 1

as n → ∞. (Here and in what follows it is always understood that M is a function of n. The
case when M is constant as n → ∞ is rather uninteresting.) Following Erdős and Rényi, it is
customary to say that a typical random graph Gn,M has property P if Gn,M has P whp.

One of the main discoveries of Erdős and Rényi was that as M = M(n) increases, the
structure of a typical Gn,M tends to change suddenly. The following is a simple but funda-
mental result from [28] about connectedness.

Theorem 1. Let Mω = n
2 (log n + ω), where ω = ω(n) is a function of n. If ω → −∞ then

a typical Gn,Mω
is disconnected, while if ω → ∞, a typical Gn,Mω

is connected.

In the 1950s, Austin, Fagen, Penney and Riordan [4], Gilbert [32, 33], and Riddell and
Uhlenbeck [50] also studied statistical properties of graphs, but their approach was very differ-
ent, using generating functions to obtain exact enumeration formulae and then approximating
these. The results obtained this way were much weaker than those of Erdős and Rényi.

The model of random graphs introduced by Gilbert [33] (precisely at the time that Erdős
and Rényi started their investigations of Gn,M ) is, perhaps, even more fundamental than Gn,M ,
and is more convenient to use. To define Gilbert’s model, Gn,p, let {Xij : 1 ≤ i < j ≤ n}
be an array of iid Bernoulli random variables, with Pr(Xij = 1) = p and Pr(Xij = 0) =
1 − p, and let Gn,p be the random graph on [n] in which two vertices i and j are adjacent if
Xij = 1. Less formally, to construct a random Gn,p ∈ Gn,p, put in edges with probability
p, independently of each other. Again p is often a function of n, though the case p constant,
0 < p < 1, makes perfect sense. For M ∼ pN the models Gn,M and Gn,p are almost
interchangeable. (Note that, as usual, we commit a harmless abuse of notation, using Gn,. for
two different models. There is no danger of confusion, as M → ∞ while 0 < p < 1.)

Since the early 1960s several other ‘classical’ models of random graphs have been intro-
duced. A graph process G̃n = (Gn,t)N

t=0 on [n] is a nested sequence of graphs, Gn,0 ⊂
Gn,1 ⊂ · · · ⊂ Gn,N such that Gn,t has precisely t edges. The space G̃n of random graph
processes consists of all N ! graph processes on [n], endowed with the uniform (normalized
counting) measure. Note that this notation is consistent with that used earlier: the distribution
of Gn,t, a random graph process stopped at time t, is precisely the distribution of Gn,t as an
element of Gn,t. A random graph process has a natural interpretation as a dynamic Markov
process; given Gn,0, . . . , Gn,t, at the next step Gn,t+1 is obtained by adding one of the N − t

remaining possible edges to Gn,t uniformly at random. In studying G̃n one is mostly inter-
ested in the hitting times of certain properties (those preserved by adding edges), that is, the
random variable given by the minimal t for which Gn,t has the property. For example, The-
orem 1 claims that whp the hitting time of connectedness is at least n

2 (log n − ω(n)) and at
most n

2 (log n − ω(n)) whenever ω(n) → ∞. In fact, whp, the hitting time of connectedness
is precisely the hitting time of having no isolated (degree 0) vertices.

To get a random element Gn,k-out of the space Gn,k-out, join each vertex i to k other

vertices chosen at random and take the union of all these edges. Equivalently, let �Gn,k-out
be the random directed graph obtained by sending arcs from each vertex to a set of k other
vertices chosen uniformly at random; the random graph Gn,k-out is the underlying simple
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graph of �Gn,k-out. Note that each Gn,k-out has at least kn/2 and at most kn edges; although
kn is much smaller than n

2 log n, the threshold of connectedness given by Theorem 1, for all
k ≥ 2, whp Gn,k-out is connected.

The space Gn,r-reg is simply the set of all r-regular graphs on [n] with the uniform mea-
sure. Although this space is very easy to define, for larger values of r it is not so easy to
study.

The study of random graphs really took off in the mid 1970s; since then several thou-
sand papers have been written on the topic. Many of the results are presented in the mono-
graphs [11] and [38].

1.3 Results for classical random graphs

In this brief review it would be impossible to survey even the more important results about
classical random graphs; all we shall do is present some results that are analogous to a number
of results about scale-free random graphs we shall present later.

In addition to discovering the prevalence of ‘phase transitions’ for numerous properties of
random graphs, Erdős and Rényi [29] proved that the component structure of a random graph
process undergoes a sudden change around time t ∼ n/2. This result about the emergence of
the ‘giant component’ is the single most important theorem of Erdős and Rényi about random
graphs. Here we state it only in a simplified form.

Theorem 2. Let c > 0 be a constant, and set p = c/n. If c < 1 then whp every component
of Gn,p has order O(log n). If c > 1 then whp Gn,p has a component with (α(c) + o(1))n
vertices, where α(c) > 0, and all other components have O(log n) vertices.

Considerably more precise results have been proved by Bollobás [10], Łuczak [42], and
Janson, Knuth, Łuczak and Pittel [37]. The component of order Θ(n) whose existence is
guaranteed by Theorem 2 is usually called the giant component. If c is considerably larger
than 1, then the giant component has a large robust (highly connected) subgraph.

For p constant, the degree sequence of Gn,p is close to a sequence of n iid Binomial ran-
dom variables with probability p and mean np. (A very strong precise result along these lines
is given in [46].) For p = c/n, where c is constant, the degree sequence is well approxi-
mated by a sequence of n iid Poisson random variables with mean c. In particular, one has the
following very weak result.

Theorem 3. Let Xk be the number of vertices of degree k in Gn,p where p = c/n, with c > 0
constant. Then for k = 0, 1, . . .

Pr
(

(1 − ε)
cke−c

k!
≤ Xk

n
≤ (1 + ε)

cke−c

k!

)
→ 1

as n → ∞.

In a graph G, the distance d(u, v) between two vertices u and v is the length (number of
edges) of the shortest path between them. The diameter diam(G) of a connected graph G is
the maximum distance between two vertices; a disconnected graph is taken to have infinite
diameter. The diameter of a random graph has been studied by a great many people, including
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Burtin [21, 22], Bollobás [9] and Bollobás and de la Vega [14]. If pn/ log n → ∞ and
log n/ log(pn) → ∞ then whp the diameter of Gn,p is asymptotic to log n/ log(pn). In the
range we are interested in here, corresponding to the Θ(n) edges in scale-free random graphs,
Gn,p is disconnected, so the the diameter of Gn,k-out or Gn,r-reg is more relevant. Let us
state a weak form of a result from [14].

Theorem 4. Let r ≥ 3 and ε > 0 be fixed. Then

Pr
(

(1 − ε)
log n

log(r − 1)
≤ diam(Gn,r-reg) ≤ (1 + ε)

log n

log(r − 1)

)
→ 1

as n → ∞.

As we shall see, results vaguely resembling Theorem 4 hold for scale-free random graphs.
More or less by definition, the results corresponding to Theorem 3 are rather different.

1.4 The Watts-Strogatz ‘small-world’ model

In 1998, Watts and Strogatz [55] raised the possibility of constructing random graphs that
have some of the important properties of ‘real-world’ networks. The real-world networks
they considered included neural networks, the power grid of the western United States and
the collaboration graph of film actors. Watts and Strogatz noticed that these networks were
‘small-world’ networks: their diameters were considerably smaller than those of regularly
constructed graphs (such as lattices, or grid graphs) with the same number of vertices and
edges. More precisely, Watts and Strogatz found that real-world networks tend to be highly
clustered, like lattices, but have small diameters, like random graphs. That large social net-
works have rather small diameters had been noticed considerably earlier, in the 1960s, by
Milgram [47] and others, and was greatly popularized by Guare’s popular play ‘six degrees of
separation’ in 1990.

The importance of the Watts and Strogatz paper is due to the fact that it started the active
and important field of modelling large-scale networks by random graphs defined by simple
rules. As it happens, from a mathematical point of view, the experimental results in [55] were
far from surprising.

Instead of the usual diameter diam(G) of a graph G, Watts and Strogatz considered the
average distance

L(G) =
∑

{u,v}⊂V,u �=v

d(u, v)/
(

n

2

)
,

where V is the vertex set of G and n is the number of vertices. Clearly L(G) ≤ diam(G), but
in ‘most’ cases L(G) is not much smaller than diam(G). (For example, for Gn,r-reg, r ≥ 3,
whp these quantities are asymptotically equal.)

To measure the ‘cliquishness’ of a graph, for a graph G and vertex v, let Cv(G) be the
proportion of pairs of neighbours of v that are themselves neighbours, and let C1(G) be the
average of Cv(G) as v runs over the vertices. In section 1.12 we shall give a more formal
definition of this clustering coefficient C1(G), together with a variant of it.
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For a random r-regular graph, C1(Gn,r-reg) ∼ r−1
n , while

diam(Gn,r-reg) ∼ log n/ log(r − 1) :

the clustering coefficient is small, and so is the diameter. On the other hand, as pointed out
by Watts and Strogatz, many real-world networks tend to have a largish clustering coefficient
and small diameter. To construct graphs with these properties, Watts and Strogatz suggested
starting with a fixed graph with large clustering coefficient and ‘rewiring’ some of the edges.

To be precise, let G be the graph Cr
n, the rth power of an n-cycle, where n > 2r. Thus G

is a 2r-regular graph of order n; two vertices are joined in G if their distance in the n-cycle
Cn is at most r. For n = 2rs, s ≥ 2, say, we have diam(G) = s, and L(G) ∼ s/2 as s → ∞,
while C1(G) = 3(r−1)

2(2r−1) . Let G(p) be the random graph obtained from G by deleting each
edge at random with probability p, independently of the other edges, and then adding the same
number of edges back at random. Almost equivalently, G(p) is obtained from G by ‘rewiring’
a proportion p of the edges. What Watts and Strogatz found was that, even for a small value
of p, L(G(p)) drops down to O(log n), while C1(G(p)) stays close to 3/4; the introduction
of a small number of random edges reduces the diameter to O(log n).

Following this observation, much research was devoted to the ‘surprising’ phenomenon
that the introduction of a little randomness makes the diameter small (while various other
graph invariants remain essentially unchanged). In fact, it is far from surprising that a few
random edges superimposed on a connected ground graph give a graph of small diameter. For
example, Bollobás and Chung [13] proved that a random matching added to a cycle gives a
graph whose diameter is about that of a random cubic graph. Similarly, for c > 0, adding
cn random edges to a tree of order n results in a graph of diameter O(log n). These results
(though not the precise constant given in [13]) are particular instances of a general phenom-
enon which has been known much longer; they follow from the fact that the diameter of
Gn,r-reg (or of the giant component of Gn,p, p = c/n) is O(log n).

The graphs obtained by rewiring some of the edges of a power of a cycle do not resemble
large-scale real-world networks, although they share some of their characteristics. To model
these networks, it is desirable to define new families of random graphs rather different from
from the classical models. This is the topic of the next several sections.

1.5 Scale-free models

In 1999, Faloutsos, Faloutsos and Faloutsos [30] suggested certain ‘scale-free’ power laws
for the graph of the Internet, and showed that these power laws fit the real data very well. In
particular, they suggested that the degree distribution follows a power law, in contrast to the
Poisson distribution for classical random graphs given in Theorem 3. This was soon followed
by work on rather vaguely described random graph models aiming to explain these power
laws, and others seen in features of many real-world networks.

In fact, power-law distributions had been observed considerably earlier; in particular, in
1926 Lotka [41] claimed that citations in academic literature follow a power law, and in 1997
Gilbert [34] suggested a probabilistic model supporting ‘Lotka’s law’. Other early investiga-
tions into power-law distributions are due to Simon [51] and Zipf [56].
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The degree distribution of the graph of telephone calls seems to follow a power law as
well; motivated by this, Aiello, Chung and Lu [1] proposed a model for ‘massive graphs’. This
model ensures that the degree distribution follows a power law by fixing a degree sequence
in advance to fit the required power law, and then taking the space of random graphs with
this degree sequence. Thus their approach is very different from the models we are interested
in, where the aim is to understand how power laws might arise, by finding simple rules that
generate random graphs satisfying such laws.

In the next sections we present several of these models, concentrating for the moment on
the degree sequence. Later in the article we return to one particular model, the LCD model,
presenting results about several other properties.

1.6 The Barabási-Albert model

Perhaps the most basic and important of the ‘scale-free’ random graph models, i.e., models
producing power-law or ‘scale-free’ behaviour from simple rules, is the ‘BA model’. This was
introduced by Barabási and Albert [5] in 1999:

. . . starting with a small number (m0) of vertices, at every time step we add a
new vertex with m(≤ m0) edges that link the new vertex to m different vertices
already present in the system. To incorporate preferential attachment, we assume
that the probability Π that a new vertex will be connected to a vertex i depends on
the connectivity ki of that vertex, so that Π(ki) = ki/

∑
j kj . After t steps the

model leads to a random network with t + m0 vertices and mt edges.

The basic motivation is to provide a highly simplified model of the growth of, for example, the
world-wide web. New sites (or pages) are added one at a time, and link to earlier sites chosen
with probabilities depending on their current ‘popularity’; this is the principle that ‘popularity
is attractive’; this principle presumably plays a role in the growth of real networks in a wide
range of contexts. It is customary to call this the ‘preferential attachment’ rule. Barabási and
Albert themselves, and many other people, gave experimental and heuristic results about the
BA model; we will return to a few of these later. From a mathematical point of view, however,
the description above, repeated in many papers, does not make sense.

The first problem is getting started: how do we take probabilities proportional to the de-
grees when these are all zero? Perhaps it makes sense to ignore the explicit start from no
edges given by Barabási and Albert, and start instead from a small graph G0 with no isolated
vertices, hoping that the choice of G0 makes little difference. While for many properties G0

turns out not to matter, for others it matters very much. For example, in the case m = 1 the
BA model describes the growth of a tree, provided G0 is a tree. If G0 is disconnected, say,
then at all later stages the graph produced will also be disconnected. For general m the initial
graph G0 also has significant lasting effects, for example on the expected maximum degree,
which can change by a constant factor when G0 is changed.

The second problem is with the preferential attachment rule itself, and arises only for
m ≥ 2; when we add a new vertex, say the t + 1st, we must join it to a random set Nt+1 of
m earlier vertices. In our notation, working always with graphs on {1, 2, . . .}, the BA model
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says only that, for 1 ≤ i ≤ t,

Pr(i ∈ Nt+1) = mdt(i)/
t∑

j=1

dt(j), (1.1)

where dt(i) is the degree of vertex i in the growing graph at time t. (Actually, as can be seen
from the quotation above, Barabási and Albert give this formula without the factor of m. If we
assume their formula is intended to hold separately for each edge added, then (1.1) follows.
However, their description does not allow us to add edges one by one independently, as it is
specified that the edges go to different vertices.) To fully describe the model, we must specify
the distribution of Nt+1, i.e., the probability that Nt+1 = S for each of the

(
t
m

)
possible

sets S of earlier vertices. This distribution is not uniquely specified by giving the marginal
probabilities that i ∈ Nt+1 for each earlier vertex i. To see this note, for example, that the
distribution of Nt+1 has

(
t
m

)− 1 degrees of freedom (the
(

t
m

)
probabilities must add up to 1)

while there are only t marginal probabilities specified by the BA description. Again one might
hope that the exact choice does not make much difference, and again this turns out to be false.
As shown by the following result, there is a range of models fitting the BA description with
very different properties.

Theorem 5. Let f(n), n ≥ 2, be any integer valued function with f(2) = 0 and f(n) ≤
f(n + 1) ≤ f(n) + 1 for every n ≥ 2, such that f(n) → ∞ as n → ∞. Then there is a
random graph process T (n) satisfying (1.1) with m = 2 such that, with probability 1, T (n)

has exactly f(n) triangles for all sufficiently large n.

In less formal language, Theorem 5 says, for example, that if you want log n triangles
when the graph has n vertices, there is a precise model satisfying the BA description (except
for the start, which cannot be satisfied) which achieves this. Similarly, if you want nα triangles
for any 0 < α ≤ 1, or any other plausible function. Thus the clustering coefficient (see
section 1.12) may also be tuned. The only tiny caveat is that you may be forced to create a
finite number of triangles at the start. Note that this is different from the result in [36], which
considers a model outside the Barabási-Albert definition (triangles are created by adding edges
between existing vertices).

Proof. We give only an outline of the proof. We will work entirely with simple graphs, with
no loops or multiple edges, starting with T (2) a single edge. When adding a new vertex v to a
simple graph and joining it to two distinct existing vertices, x and y, the number of triangles
either remains the same, or goes up by one. It goes up by one if and only if xy is an edge.
Restating the theorem, we must show that given T (n) we have two ways choosing x and y
to define T (n+1), each satisfying the Barabási-Albert preferential attachment rule (1.1): one
where xy is always an edge of T (n), and one where, except perhaps for finitely many steps
near the start, it never is.

The first case is easy: to guarantee a new triangle, take xy to be a random edge of T (n).
By definition of degree, the probability that a particular vertex w is chosen as one of x and y
is just the degree d(w) of w in T (n) over the total number (2n − 3) of edges of T (n), so (1.1)
is satisfied.

For the second case we must assign non-negative weights pxy = pyx to pairs
{x, y} ⊂ V (T (n)) with pxy zero for every edge, such that

∑
y �=x pxy = d(x)/(2n − 3).
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Then
∑

{x,y} pxy = 1, so we may take pxy as the probability of joining the new vertex to x
and y. Such an assignment is possible under very mild conditions; for example, the maximum
degree of T (n) being at most n/3 is more than sufficient. It is easy to check that in any process
satisfying (1.1), the maximum degree is at most O(n1/2) whp, so the result follows.

An extreme case of the process above, in which a triangle is added at every step, was
actually considered by Dorogovtsev and Mendes [27] (section IX C), without noting that it
satisfies the Barabási-Albert description. In fact, it is introduced there as a simpler alternative
model for easier analysis.

As seen from the example above, in order to prove results about the BA model, one must
first decide on the details of the model itself. In the next section we present one particular
choice for how to do this which has several advantages.

1.7 The LCD model and G
(n)
m

In this section we define precisely a random graph model introduced in [16] satisfying the
vague description given by Barabási and Albert. It turns out to be convenient to allow multiple
edges and loops; there will not be very many of these, and in any case there seems no reason
to exclude them from the point of view of the interpretation: one web site may contain several
links to another, for example, or links to itself.

Consider a fixed sequence of vertices v1, v2, . . .. (Later we shall take vi = i; the general
case simplifies the notation when we merge vertices.) Let us write dG(v) for the degree of the

vertex v in the graph G. We define inductively a random graph process (G(t)
1 )t≥0 so that G

(t)
1

is a graph on {vi : 1 ≤ i ≤ t}, as follows: start with G
(0)
1 the empty ‘graph’ with no vertices,

or with G
(1)
1 the graph with one vertex and one loop. Given G

(t−1)
1 , form G

(t)
1 by adding the

vertex vt together with a single edge between vt and vi, where i is chosen randomly with

Pr(i = s) =
{

d
G

(t−1)
1

(vs)/(2t − 1) 1 ≤ s ≤ t − 1,

1/(2t − 1) s = t.
(1.2)

In other words, send an edge e from vt to a random vertex vi, where the probability that a ver-
tex is chosen as vi is proportional to its degree at the time, counting e as already contributing
one to the degree of vt. (We shall see why this is convenient later.) For m > 1, add m edges
from vt one at a time, counting the previous edges as well as the ‘outward half’ of the edge
being added as already contributing to the degrees. We choose this precise rule because it
leads to the following equivalent definition: define the process (G(t)

m )t≥0 by running the pro-

cess (G(t)
1 ) on a sequence v′1, v

′
2, . . ., and forming the graph G

(t)
m from G

(mt)
1 by identifying

the vertices v′1, v
′
2, . . . , v

′
m to form v1, identifying v′m+1, v

′
m+2, . . . , v

′
2m to form v2, and so

on.
For the rest of the article we shall take vi = i, so G

(t)
m is a graph on [t] = {1, 2, . . . , t}.

Note that the edges of G
(t)
m have a natural orientation, from later vertices to earlier vertices, so

ij is oriented from i to j if i > j. However, as for studies of the BA model, we shall generally
treat the graph as unoriented. For these models the orientation is not very interesting (indeed
it may be reconstructed from the graph even if the vertex labels are not given).
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In addition to satisfying the basic mathematical criterion of being precisely specified, the
process G

(t)
m has several useful properties. One is that G

(t)
m can be defined in terms of G

(mt)
1 , a

much simpler object, so questions about G
(t)
m can be re-written in terms of G

(mt)
1 , and results

can be proved this way. Another very important property is the following: while the process
G

(t)
1 is dynamic, the distribution of the graph G

(n)
1 obtained at a particular time t = n has a

simple static description, the linearized chord diagram or LCD description, given in [16]:

An n-pairing is a partition of the set {1, 2, . . . , 2n} into pairs, so there are
(2n)!/(n!2n) n-pairings. These objects are sometimes thought of as linearized
chord diagrams (or LCDs) [15, 52], where an LCD with n chords consists of 2n
distinct points on the x-axis paired off by semi-circular chords in the upper half
plane. Two LCDs are considered to be the same when one can be turned into the
other by moving the points on the x-axis without changing their order. Thinking of
pairings as LCDs, we shall talk of chords and their left and right endpoints. We form
a graph φ(L) from an LCD L as follows: starting from the left, identify all endpoints
up to and including the first right endpoint reached to form vertex 1. Then identify
all further endpoints up to the next right endpoint to form vertex 2, and so on. For
the edges, replace each chord by an edge joining the vertex corresponding to its
right endpoint to that corresponding to its left endpoint.

As stated in [16], if L is chosen uniformly at random from all (2n)!/(n!2n) LCDs with n

chords (i.e., n-pairings), then φ(L) has the same distribution as a random G
(n)
1 defined via the

process G
(t)
1 given earlier.

To see this note that L can be obtained by taking a random LCD L′ with n − 1
chords and adding a new chord whose right endpoint is to the right of all n − 1
chords, and whose left endpoint lies in one of the 2n − 1 possible places, each
chosen with equal probability. This corresponds to adding a new vertex to φ(L′)
and joining it to another vertex with probabilities according to the degrees, exactly
as in the description of (G(n)

1 ).

A simple result proved in [19] using the LCD description, which can also be proved in
other ways, concerns the degree sequence. We write #n

m(d) for the number of vertices of
G

(n)
m with in-degree equal to d, i.e., with (total) degree m + d.

Theorem 6. Let m ≥ 1 and ε > 0 be fixed, and set

αm,d =
2m(m + 1)

(d + m)(d + m + 1)(d + m + 2)
.

Then with probability tending to 1 as n → ∞ we have

(1 − ε)αm,d ≤ #n
m(d)
n

≤ (1 + ε)αm,d

for every d in the range 0 ≤ d ≤ n1/15.
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This result gives a rigorous justification of the power-law dependence of the degrees de-
scribed in [6].

Let us remark that in the case m = 1, essentially this result had been proved much earlier
by Szymański [54] in a slightly different context (see section 1.15).

In the next few sections we describe other scale-free models for which power-law degree
distribution has been proved.

1.8 The Buckley-Osthus model

Two groups, Dorogovtsev, Mendes and Samukhin [26] and Drinea, Enachescu and Mitzen-
macher [25], introduced a variation on the BA model in which vertices have an ‘initial at-
tractiveness’: the probability that an old vertex is chosen to be a neighbour of the new vertex
is proportional to its in-degree plus a constant ‘initial attractiveness’, which we shall write as
am. The case a = 1 is just the BA model, since there total degree is used, and each out-degree
is m. Buckley and Osthus [20] made this more general model precise along the lines of the
LCD model; for a fixed positive integer a, they define a process H

(t)
a,1 exactly as G

(t)
1 is defined

above, but replacing (1.2) with

Pr(i = s) =

⎧⎨
⎩

din

H
(t−1)
a,1

(vs)+a

(a+1)t−1 1 ≤ s ≤ t − 1,
a

(a+1)t−1 s = t.

Note that when a = 1 the definition of H
(t)
a,1 reduces exactly to that of G

(t)
1 . As for G

(t)
m , a

process H
(t)
a,m is defined in [20] by identifying vertices in groups of m. Buckley and Osthus

established that the degree distribution of this model also obeys a power law. Let us write
#n

a,m(d) for the number of vertices of H
(n)
a,m with in-degree d.

Theorem 7. Let m ≥ 1 and a ≥ 1 be fixed integers, and set

αa,m,d = (a + 1)(am + a)!
(

d + am − 1
am − 1

)
d!

(d + am + a + 1)!
.

Let ε > 0 be fixed. Then whp we have

(1 − ε)αa,m,d ≤ #n
a,m(d)
n

≤ (1 + ε)αa,m,d

for all d in the range 0 ≤ d ≤ n1/100(a+1). In particular, whp for all d in this range we have

#n
a,m(d)
n

= Θ(d−2−a).

The proof is rather difficult, as the equivalent for H
(t)
a,1 of the LCD model for G

(t)
1 is much

more complicated. Dorogovtsev, Mendes and Samukhin [26] gave a non-rigorous argument
for a weaker form of this result, where the range of d considered is bounded.
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1.9 The copying model

Around the same time as the BA model, Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins
and Upfal [40] gave rather different models to explain the observed power laws in the web
graph. The basic idea is that a new web page is often made by copying an old one, and then
changing some of the links. Let us define one of these models by quoting almost verbatim
from [40]:

The linear growth copying model is parametrized by a copy factor α ∈ (0, 1)
and a constant out-degree d ≥ 1. At each time step, one vertex u is added, and u
is then given d out-links for some constant d. To generate the out-links, we begin
by choosing a ‘prototype’ vertex p uniformly at random from Vt (the old vertices).
The ith out-link of u is then chosen as follows. With probability α, the destination is
chosen uniformly at random from Vt, and with the remaining probability the out-link
is taken to be the ith out-link of p. Thus, the prototype is chosen once in advance.
The d out-links are chosen by α-biased independent coin flips, either randomly from
Vt, or by copying the corresponding out-link of the prototype.

The intuition behind this model is the following. When an author decides to
create a new web page, the author is likely to have some topic in mind. The choice of
prototype represents the choice of topic—larger topics are more likely to be chosen.
The Bernoulli copying events reflect the following intuition: a new viewpoint about
the topic will probably link to many pages ‘within’ the topic (i.e., pages already
linked to by existing resource lists about the topic), but will also probably introduce
a new spin on the topic, linking to some new pages whose connection to the topic
was previously unrecognized.

As for the BA model, it turns out that the degree distribution does follow a power law.
Let Nt,r be the expected number of vertices of degree r in the graph formed by the model
outlined above at time t (when the graph has t vertices). Among other results, the following
was proved in [40].

Theorem 8. For r > 0, the limit Pr = limt→∞ Nt,r/t exists, and satisfies

Pr = P0

r∏
i=1

1 + α/(i(1 − α))
1 + 2/(i(1 − α))

and

Pr = Θ
(
r−

2−α
1−α

)
.

When one looks only at the degree sequence, this copying model behaves very similarly to
models with preferential attachment; we shall return to this in the next section. In other ways,
however, the model is essentially different. An obvious example is that copying will give rise
to many more dense bipartite subgraphs; part of the original motivation was to explain the
appearance of these in the web graph.


