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Preface

The field of biocatalysis is at a crossroads. On one hand, the frontier of research
races ahead, propelled by advances in the database-supported analysis of sequences
and structures as well as the designability of genes and proteins. Moreover, the
“design rules” for biocatalysts have emerged from vague images on the horizon, to
come into much clearer view. On the other hand, experienced practitioners from
other areas as well as more and more students entering this field search for ways
to obtain the level of knowledge in biocatalysis that advances their own agenda.
However, both groups find a rapidly growing field with too little guidance towards
the research front and too little structure in its guiding principles. In this situation,
this book seeks to fill the gap between the research front and the area beyond basic
courses in biochemistry, organic synthesis, molecular biology, kinetics, and reac-
tion engineering. Students and practitioners alike are often left alone to bridge the
gulf between basic textbooks and original research articles; this book seeks to cover
this intermediate area.

Another challenge this book strives to address results from the interdisciplinary
nature of the field of biocatalysis. Biocatalysis is a synthesis of chemistry, biology,
chemical engineering, and bioengineering, but most students and practitioners
enter this field with preparation essentially limited to one of the major contribut-
ing areas, or at best two. The essence of biocatalysis, as well as most of its current
research, however, is captured in the interdisciplinary overlap between individual
areas. Therefore, this work seeks to help readers to combine their prior knowledge
with the contents and the methods in this book to make an integrated whole.

The book is divided into three parts:
Chapters 1 through 7 cover basic tools. Many readers have probably encountered
the contents of some chapters before; nevertheless, we hope to offer an update
and a fresh view.
Chapters 8 through 14 expand on advanced tools. While command of such ad-
vanced concepts is indispensable in order to follow, much less to lead, today’s
developments in biocatalysis, the mastering of such concepts and tools cannot
necessarily be expected of all practitioners in the field, especially if their major
course of study often did not even touch on such topics.
Chapters 15 through 20 treat applications of all the tools covered in previous chap-
ters. “Applications” here encompass not just industrial-scale realization of bio-
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catalysis but also new intellectual frontiers in biological catalysis that are possi-
ble with today’s technologies, such as rapidly expanding DNA databases or com-
prehensive coverage of three-dimensional structure analysis for many enzymes.

In the early part of the book, several chapters have a fairly clear emphasis on chem-
istry, biology, or chemical engineering. Chapters on the isolation of microorgan-
isms (Chapter 3), molecular biology tools (Chapter 4), protein engineering (Chap-
ter 10), or directed evolution (Chapter 11) have a distinct biological flavor. Chemistry
is the main topic in the chapters on applications of enzymes as products (Chapter
6), in bulk and fine chemicals (Chapter 7), and in pharmaceuticals (Chapter 13).
Chemical engineering concepts predominate in the chapters on biocatalytic reac-
tion engineering (Chapter 5) or on processing steps for enzyme manufacture (Chap-
ter 8). Other chapters contribute a perspective from biochemistry/enzymology, such
as characterization of biocatalysts (Chapter 2) and methods of studying proteins
(Chapter 9), or from informatics, most notably bioinformatics (Chapter 14).

Finally, a word on the history of this book: the idea for the present work origi-
nated during a lectureship of one of us (A.S.B.) as an adjunct faculty member at
the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen in Aachen,
Germany, for nine years while he was working at Degussa in Wolfgang, Germany.
Time and time again, students enjoyed the interdisciplinary nature and coverage
of biocatalysis but lacked adequate preparation in those basic tools that were not
provided during their courses for their respective major, be it chemistry, biology, or
chemical engineering. Similar observations were made when teaching biocatalysis
or related subjects at the Georgia Institute of Technology in Atlanta/GA, USA.
One of the aims of this book is to take readers back to scientific fundamentals
often long forgotten, to let them to participate in the joy of discovery and under-
standing stemming from a multi-faceted picture of nature. While scientific funda-
mentals are a source of immense satisfaction, applications with an impact in the
day-to-day world are just as important. Two of the biggest challenges facing man-
kind today (and not exclusively the industrial societies) are maintenance and im-
provement of human health, and maintenance and improvement of the environ-

ment. Biocatalysis aids the first of these goals through its selectivity in generating
ever more complex pharmaceutically active molecules, and the second goal by open-
ing new routes to both basic and performance chemicals with the aim of achieving
sustainable development.

We hope that you enjoy reading this book. We encourage you to contact us to
voice your opinion, gripe, laud, discuss aspects of the book, point out errors or
ambiguities, make suggestions for improvements, or just to let us know what you
think. The easiest way to do this is via email at bommariu@bellsouth.net or
andreas.bommarius@alum.mit.edu.

We wish you pleasant reading.

Andreas S. Bommarius and Bettina R. Riebel
Atlanta/GA, USA
December 2003
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Introduction to Biocatalysis

Summary

Over the last 20 years, many reservations with respect to biocatalysis have been
voiced, contending that: (i) enzymes only feature limited substrate specificity; (ii)
there is only limited availability of enzymes; (iii) only a limited number of en-
zymes exist; (iv) protein catalyst stability is limited; (v) enzyme reactions are sad-
dled with limited space–time yield; and (vi) enzymes require complicated co-
substrates such as cofactors.

Driven by the discovery of many novel enzymes, by recombinant DNA technol-
ogy which allows both more efficient production and targeted or combinatorial
alterations of individual enzymes, and by process development towards higher
stability and volumetric productivity, synthesis routes in which one or all of the
steps are biocatalytic have advanced dramatically in recent years. Design rules for
improved biocatalysts are increasingly precise and easy to use.

Biocatalysts do not operate by different scientific principles from organic cata-
lysts. The existence of a multitude of enzyme models including oligopeptidic or
polypeptidic catalysts proves that all enzyme action can be explained by rational
chemical and physical principles. However, enzymes can create unusual and su-
perior reaction conditions such as extremely low pKa values or a high positive po-
tential for a redox metal ion. Enzymes increasingly have been found to catalyze
almost any reaction of organic chemistry.

Biotechnology and biocatalysis differ from conventional processes not only by
featuring a different type of catalyst; they also constitute a new technology base.
The raw materials base of a biologically-based process is built on sugar, lignin, or
animal or plant wastes; in biotechnology, unit operations such as membrane proc-
esses, chromatography, or biocatalysis are prevalent, and the product range of bio-
technological processes often encompasses chiral molecules or biopolymers such
as proteins, nucleic acids or carbohydrates.

Cost and margin pressure from less expensive competitors and operation with
emphasis on a clean (or less polluted) environment are two major developments.
Fewer processing steps, with higher yields at each step, lower material and energy
costs, and less waste are the goals. Biotechnology and biocatalysis often offer unique
technology options and solutions, they act as enabling technologies; in other cases,
biocatalysis has to outperform competing technologies to gain access. In the phar-
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maceutical industry, the reason for the drive for enantiomeric purity is that the vast
majority of novel drugs are chiral targets, favoring biocatalysis as the technology
with the best selectivity performance.

Biocatalytic processes increasingly penetrate the chemical industry. In a recent
study, 134 industrial-scale biotransformations, on a scale of > 100 kg with whole
cells or enzymes starting from a precursor other than a C-source, were analyzed.
Hydrolases (44%), followed by oxido-reductases (30%), dominate industrial
biocatalytic applications. Average performance data for fine chemicals (not phar-
maceuticals) applications are 78% yield, a final product concentration of 108 g L–1,
and a volumetric productivity of 372 g (L · d)–1.

1.1

1.1.1

State of Acceptance of Biocatalysis

Over the last 20 years, many reservations with respect to biocatalysis have been
voiced. The critics, often focusing on the drawbacks, have contended that

enzymes only feature limited substrate specificity,
there is only limited availability of enzymes,
only a limited number of enzymes exist,
protein catalyst stability is limited,
enzyme reactions are saddled with limited space–time yield, and
enzymes require complicated co-substrates such as cofactors.

The renaissance of biocatalysis, supported by the advent of recombinant DNA, is
only about 20 years old. Recently, several publications have appeared which deal
specifically with the attitudes listed above (Rozzell, 1999; Bommarius, 2001; Rasor,
2001). Most of the points above can either be refuted or they can be levied against any
novel catalytic technology; the situation with some competing technologies such as
chiral homogeneous catalysts is similar to that with enzymes (Chapters 18 and 20).

Enzymes only feature limited substrate specificity. Often, enzymes designed to con-
vert small molecules such as hydrogen peroxide, urea, fumaric acid, or l-aspartic
acid feature extremely narrow substrate specificity; the corresponding enzymes
catalase, urease, fumarase or aspartase, and l-aspartate decarboxylase take either
few other substrates, such as alkyl peroxides in the case of catalase, or no other
substrate, such as urease, which only converts urea. On the other hand, very
large enzymes acting as multi-enzyme complexes such as nonribosomal peptide
synthetases (NRPSs) (Kleinkauf, 1996) are often highly specific. Ordinary-sized
enzymes working on medium-sized substrates, however, in most cases feature
broad substrate specificity, a fact already noted by Rasor and Voss (Rasor, 2001).

Overview: The Status of Biocatalysis at the Turn of the 21st Century
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There is only limited availability of enzymes. Until very recently, limited availability
of enzymes was indeed a major problem. About ten years ago, with 3196 differ-
ent enzymes already listed in Enzyme Nomenclature (Moss, 1992), only about
50 enzymes were fully characterized and only about a dozen enzymes available
commercially on a regular basis. However, recombinant DNA technology, dis-
covered in 1978 by Cohen and Boyer (Stanford University, Palo Alto, CA, USA),
over the next 20 years allowed enzymes to be produced much more efficiently, in
higher purity, and more inexpensively (Baneyx, 1999), so that today a multitude
of enzymes are available not only from established suppliers such as Sigma–
Aldrich–Fluka (Milwaukee, WI, USA), E. Merck (Darmstadt, Germany), Mercian
(Tokyo, Japan), or Roche Diagnostics (Mannheim, Germany) but increasingly
also from smaller, more focused suppliers such as Biocatalytics (Pasadena, CA,
USA) or Jülich Fine Chemicals (Jülich, Germany). The argument of unavailabil-
ity or scarcity will be less and less justified in the future.

Only a limited number of enzymes exist. This criticism, while depending on the
observer’s position, is indeed a drawback at the moment. Although enzymes have
been found for every conceivable organic chemical reaction except the hetero-
Cope rearrangement (Table 1.4, below), there are enzymes sought for many more
reactions than there are enzymes available. If enzymes were inferior catalysts
this situation would not arise, of course. In fact, enzymes are often superior cata-
lysts (see the next section), so superior is fact, that the community seeks plenty
more of them. Chapter 3 treats the discovery of novel enzymes, whereas Chap-
ters 10 and 11 cover improvement of existing enzymes through rational (protein
engineering) and combinatorial random mutagenesis (directed evolution).

Protein catalyst stability is limited. This is one of major drawbacks of enzymes.
They commonly require temperatures around ambient to perform (15–50°C),
pH values around neutral (pH 5–9), and aqueous media. In addition, any number
of system components or features such as salts, inhibitors, liquid–gas or liquid–
solid interfaces, or mechanical stress can slow down or deactivate enzymes. Under
almost any condition, native proteins, with their Gibbs free enthalpy of stability
of just a few kilojoules per mole, are never far away from instability. In this book,
we cover inhibitors (Chapter 5, Section 5.3) or impeding system parameters
(Chapter 17) and successful attempts at broadening the choice of solvents (Chap-
ter 12).

Enzyme reactions are saddled with limited space–time yield. The notion that
biocatalysts are slow catalysts is false. Slow catalysts, applied at low concentra-
tions, certainly lead to low space–time yields. However, optimized syntheses not
only produce very good selectivities or total turnover numbers but also satisfac-
tory to excellent space–time yields. Examples with such good s.t.y. values are
– in commodity biochemicals, the synthesis of l-aspartate from fumaric acid

and ammonia with space–time-yields of up to 60 kg (L · d)–1 (Rozzell, 1999),
and
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– in advanced pharmaceutical intermediates, kinetically-controlled peptide syn-
thesis to kyotorphin (Tyr-Arg) catalyzed by α-chymotrypsin from maleyl-l-Tyr-
OEt and Arg-OEt, employing a highly soluble protecting group at the electro-
phile (Fischer, 1994). Space–time-yields of 1.34 kg (L · d)–1 have been achieved.

The question of high volumetric productivity is coupled to the solubility of
substrates. High space–time-yields have been demonstrated to be correlated with
high solubilities of substrates (Bommarius, 2001).

Enzymes require complicated co-substrates such as cofactors. Much has been made
of the requirement of some enzymes for cofactors, such as nicotinamide-con-
taining compounds, NAD(P)(H), for dehydrogenases; flavin compounds, FMN
or FAD, for oxidases; pyridoxylphosphate, PLP, for transaminases and decarboxy-
lases; thiamine pyrophosphate, TPP, for carboligases, and vitamin B12 for
glycerate dehydratase, among others. The scale-up of l-aspartate decarboxyla-
tion to l-alanine with the help of PLP-requiring l-aspartate decarboxylase, or of
reductive amination of trimethylpyruvate to l-tert-leucine with the help of NADH-
requiring leucine dehydrogenase demonstrates the feasibility of industrial
processing with cofactor-requiring enzymes. The implementation also gives cre-
dence to the suggestion that cofactors are no longer the dominating cost compo-
nent, as was believed until recently. Requirements for cofactors constitute a tech-
nological challenge but one that has been met successfully and so should not be
regarded as impeding the use of biocatalysts in processing.

1.1.2

Current Advantages and Drawbacks of Biocatalysis

1.1.2.1 Advantages of Biocatalysts

The biggest advantage of enzymes is their often unsurpassed selectivity. While
enzymes are used beneficially to increase chemical selectivity or regioselectivity of
a reaction, their biggest advantage lies in the differentiation between enantiomeric
substrates, a pair of substrates with Gibbs free enthalpy differences between the R-
and the S-enantiomer ΔGRS of around 1–3 kJ mol–1. With enzymes, enantio-
selectivities of > 99% e.e. can be achieved routinely, although by no means in every
case. This fact becomes increasingly important for using biocatalysts in the syn-
thesis of advanced pharmaceutical intermediates, as regulatory agencies require
separate toxicological studies for every impurity comprising above 1% of the con-
tent (Chapter 13, Section 13.1.4) (Crossley, 1995).

The fact that enzymes are active mostly at mild, near-ambient conditions of tem-
perature and pH and preferentially in aqueous media is often regarded as an ad-
vantage rather than a drawback nowadays. Goals for industrial processing such as
“sustainable development”, “green chemistry”, or “environmentally benign manu-
facturing”, an increasingly important boundary condition for industrial activity in
a large part of the world, would be much harder to attain without the availability of
biocatalysts which tolerate and require such conditions.
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