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Preface

Mankind has used plants as a source of raw materials and medicines for thousands
of years. From the earliest stages of civilization, plant extracts have been used to ob-
tain technical materials and drugs to ease suffering and cure disease. Since the late
seventies, many valuable therapeutic and diagnostic proteins have been discovered
through molecular biology research and molecular medicine, but widespread use of
these molecules has been hampered by production bottlenecks such as low yields,
poor and inconsistent product quality and a shortage of production capacity. In the
late 1980s, the application of recombinant DNA and protein technology in plants al-
lowed the exploration of plant-based expression systems for the production of safer
and cheaper protein medicines (Table 1). Over the last decade, plants have emerged
as a convenient, safe and economical alternative to mainstream expression systems
which are based on the large-scale culture of microbes or animal cells, or transgenic
animals. The production of plant-made pharmaceuticals and technical proteins is
known as Molecular Farming (Molecular PharmingTM). The objective is to harness the
power of agriculture to cultivate and harvest plants or plant cells producing recombi-
nant therapeutics, diagnostics, industrial enzymes and green chemicals.

Molecular Farming has the potential to provide virtually unlimited quantities of re-
combinant antibodies, vaccines, blood substitutes, growth factors, cytokines, chemo-
kines and enzymes for use as diagnostic and therapeutic tools in health care, the life
sciences and the chemical industry. Plants are now gaining widespread acceptance
as a general platform for the large-scale production of recombinant proteins. The
principle has been demonstrated by the success of a diverse repertoire of proteins,
with therapeutic proteins showing the greatest potential for added value and techni-
cal enzymes the first to reach commercial status.

We are facing a growing demand for protein diagnostics and therapeutics, but
lack the capacity to meet those demands using established facilities. Moreover, re-
combinant proteins will become more important as high throughput genomics, pro-
teomics, metabolomics and glycomics projects spawn new product candidates, dis-
ease targets and eventually new remedies. A shift to plant bioreactors may therefore
become necessary within the next few years. However, the production of pharmaceu-
tical proteins in plants will only realize its huge potential if the products achieve con-
sistent highest quality standards, enabling the provision of clinical grade proteins
that will gain regulatory approval and can be used routinely in clinical trials and
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treatments. The achievement of these goals is conditional on the development of
technologies for improving yields, ensuring product sustainability and quality, in-
cluding extraction and processing steps that comply with current good manufactur-
ing practice (cGMP) standards. Moreover, there are several further challenges con-
cerning the environmental impact, biosafety and risk assessment of Molecular Farm-
ing, which reflect the release of transgenic plants as well the safety of the plant-de-
rived products themselves.

This book covers the most recent achievements and challenges of Molecular Farm-
ing technology written by experts working in this field. The first few chapters focus
on the technological aspects of plant-based protein production, while the second part
address the two major target product groups expressed in plant systems: pharmaceu-
tical and technical proteins. Finally, issues concerning the production pipeline are
discussed, including production and product safety, quantity and quality control.

We thank all the authors for their contributions and the time and effort they de-
dicated to compiling this book, which helped to make it a comprehensive and state-
of-the-art overview of the technological, economical, commercial and regulatory as-
pects of Molecular Farming. We also gratefully acknowledge the help and support of
Dr. Richard Twyman and the team at Wiley. Without all their help, this book would
not have been possible.

Aachen, 2004 Rainer Fischer and Stefan Schillberg
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Tab. 1 Key events in the history of Molecular Farming.

Year Highlight Reference

1986 First plant-derived recombinant therapeutic protein –
human growth hormone in tobacco and sunflower 1) 1

1989 First plant-derived recombinant antibody – full-size IgG in tobacco 2
1990 First native human protein produced in plants –

human serum albumin in tobacco and potato 3
1992 First plant-derived vaccine candidate –

hepatitis B virus surface antigen in tobacco 4
1992 First plant-derived industrial enzyme – �-amylase in tobacco 5
1995 Secretory IgA produced in tobacco 6
1996 First plant-derived protein polymer – artificial elastin in tobacco 7
1997 First clinical trial using recombinant bacterial antigen delivered

in a transgenic potato 8
1997 Commercial production of avidin in maize 9
1999 First glycan analysis of plant-produced recombinant glycoprotein 10
2000 Human growth hormone produced in tobacco chloroplasts 11
2000 Triple helix assembly and processing of human collagen produced in tobacco 12
2001 Highest recombinant protein accumulation achieved in plants so far –

46.1% total soluble protein for Bacillus thuringiensis Cry2Aa2 protein 13
2001 First multi-component vaccine candidate expressed in potato –

cholera toxin B and A2 subunits, rotavirus enterotoxin and enterotoxigenic
Escherichia coli fimbrial antigen fusions for protection against several
enteric diseases 14

2001 Glycan modification of a foreign protein produced in a plant host using
a human glycosyltransferase 15

2003 Expression and assembly of a functional antibody in algae 16
2003 Commercial production of bovine trypsin in maize 17
2004 Genetic modification of the N-glycosylation pathway in Arabidopsis thaliana

resulting in complex N-glycans lacking �1,2-linked xylose and core �1,3-linked
fucose 18

1) Human growth hormone was expressed as fusion with the Agrobacterium tumefaciens nopaline syn-
thase enzyme but only transcript was detectable

[1] A. Barta, K. Sommergruber, D. Thompson et al., Plant Mol. Biol. 1986, 6 (5), 347–357.
[2] A. Hiatt, R. Cafferkey, K. Bowdish, Nature 1989, 342 (6245), 76–78.
[3] P.C. Sijmons, B.M. Dekker, B. Schrammeijer et al., Bio/Technology (N Y) 1990, 8 (3), 217–

221.
[4] H.S. Mason, D.M. Lam, C.J. Arntzen, Proc Natl Acad Sci U S A. 1992, 89 (24), 11745–11749.
[5] J. Pen, L. Molendijk,W.J. Quax et al. Bio/Technology 1992, 10 (3), 292–296.
[6] J.K. Ma, A. Hiatt, M. Hein et al., Science 1995, 268 (5211), 716–719.
[7] X. Zhang, D.W. Urry, H. Daniell, Plant Cell Rep. 1996, 16 (3–4), 174–179.
[8] C.O. Tacket, H.S. Mason, G. Losonsky et al., Nat. Med. 1998, 4 (5), 607–609.
[9] E.E. Hood, D.R. Witcher, S. Maddock et al., Mol. Breeding 1997, 3 (4), 291–306.

[10] M. Cabanes-Macheteau, A.C. Fitchette-Laine, C. Loutelier-Bourhis et al., Glycobiology 1999, 9
(4), 365–372.

[11] J.M. Staub, B. Garcia, J. Graves, et al., Nat. Biotechnol. 2000, 18 (3), 333–338.
[12] F. Ruggiero, J:Y. Exposito, P. Bournat et al., FEBS Letter 2000, 469 (1), 132–136.
[13] B. De Cosa,W. Moar, S.B. Lee et al., Nat. Biotechnol. 2001, 19 (1), 71–74.
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[14] J. Yu,W.H. Langridge, Nat. Biotechnol. 2001, 19 (6), 548–552.
[15] H. Bakker, M. Bardor, J.W. Molthoff et al., Proc Natl Acad Sci U S A 2001, 98 (5), 2899–2904.
[16] S.P. Mayfield, S.E. Franklin, R.A. Lerner, Proc Natl Acad Sci U S A 2003, 100 (2), 438–442.
[17] S.L. Woodard, J.M. Mayor, M.R. Bailey, et al., Biotechnol. Appl. Biochem. 2003, 38 (2), 123–130.
[18] R. Strasser, F. Altmann, L. Mach, et al., FEBS Letters 2004, 561 (1–3), 132–136.
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Efficient and Reliable Production of Pharmaceuticals in Alfalfa
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Sonia Trépanier,Véronique Gomord, Loïc Faye and Louis-Philippe Vézina

1.1
Introduction

In 1986, it was shown that tobacco plants and sunflower calluses could express re-
combinant human growth hormone as a fusion protein [1]. Since then, a diverse
range of plant systems has been used for the production of pharmaceuticals [2, 3].
We have developed a production system based on the leaves of alfalfa (Medicago
sativa L.), a choice made originally because of the plant’s many favorable agronomic
characteristics. Alfalfa is a perennial plant, so vegetative growth can be maintained
for many years. For molecular farming, this characteristic, combined with the ease
of clonal propagation through stem cutting, makes alfalfa a robust bioreactor with
regard to batch-to-batch reproducibility. Among perennial plants, legume forage
crops such as alfalfa have the advantage of fixing atmospheric nitrogen, thus redu-
cing the need for fertilizers. Moreover, as a feed fodder crop, alfalfa has benefited
from important research aiming to increase leaf protein content, so that today’s vari-
eties produce as much as 30 mg total protein per gram fresh weight.

In addition to these appealing agronomic characteristics, biotechnological re-
search has revealed additional benefits for the production of pharmaceuticals in al-
falfa. Expression cassettes have been optimized for protein expression in alfalfa
leaves. Methods for transient protein expression have been developed so that it is
now possible to use agroinfiltration or the transformation of protoplasts for early-
stage demonstration and validation steps. In addition, glycosylation studies have
shown that alfalfa is capable of producing recombinant glycoproteins with homoge-
nous (uniform) glycosylation patterns.

This chapter provides an overview of the tools that have been developed and opti-
mized specifically for the production of pharmaceuticals in alfalfa, with the empha-
sis on recent technological breakthroughs. The ability of alfalfa leaves to produce
complex recombinant proteins of pharmaceutical interest is discussed and illu-
strated with recent data obtained in our laboratories. Data are presented concerning
the production and characterization of alfalfa-derived C5-1, a diagnostic anti-human
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IgG developed by Héma-Québec (Québec, Canada) for phenotyping and cross
matching red blood cells from donors and recipients in blood banks [4].

1.2
Alfalfa-specific Expression Cassettes

The first hurdle encountered during the development of alfalfa as a recombinant pro-
tein production system was the relative inefficiency of the available expression cas-
settes. A study in which a tomato proteinase inhibitor I transgene was expressed in to-
bacco and alfalfa under the control of the cauliflower mosaic virus (CaMV) 35S promo-
ter showed that 3–4 times more protein accumulated in tobacco leaves compared to al-
falfa leaves [5]. Despite the low efficiency of the CaMV 35S promoter in alfalfa, bio-
pharmaceutical production using this system has been reported in the scientific
literature. Such reports include expression of the foot and mouth disease virus antigen
[6], an enzyme to improve phosphorus utilization [7] and the anti-human IgG C5-1 [8].
In this last work, the C5-1 antibody accumulated to 1% total soluble protein [8].

Given the relatively high level of C5-1 antibody detected in alfalfa leaves using the
weak CaMV 35S promoter, it was expected that expression cassette optimization
would lead to significantly higher yields. The first family of expression cassettes we
developed was thus designed to achieve strong expression in the aerial parts of al-
falfa plants. The MED-2000 series (patent pending) consists of strong, leaf-specific
expression cassettes, and is based on regulatory sequences from the alfalfa plastocya-
nin gene. Using cassettes of this family to drive the gusA reporter gene, it was possi-
ble to achieve up to 14-fold the level of expression obtained in alfalfa leaves with the
35S promoter (Fig. 1.1). Interestingly, although the MED-2000 promoters were de-
rived from alfalfa genomic sequences, they also produced up to 25-fold higher �-glu-
curonidase (GUS) activity than the 35S-gusA-nos construct in the leaves of transgenic
tobacco plants.

Because pharmaceuticals are bioactive molecules, their accumulation in plant
cells could have a deleterious effect on the growth and development of the host
plant. Therefore, we have developed a second series of expression cassettes incorpor-
ating inducible promoter elements. The regulatory elements of the MED-1000 series
expression cassettes are derived from the alfalfa nitrite reductase (NiR) gene [9]. The
induction strategy used with these expression cassettes exploits the ability of alfalfa
to grow abundantly in the absence of mineral nitrogen while fixing atmospheric ni-
trogen through its symbiosis with rhizobium, but also takes into account the fact
that NiR genes are highly inducible by nitrate fertilizers [10, 11, 12].

We have demonstrated that the alfalfa NiR promoter is an excellent candidate for
the inducible control of transgene expression in alfalfa leaves. As an example, a 3-kb
genomic fragment corresponding to an alfalfa NiR promoter was isolated and fused
to the gusA gene for analysis. We have shown that the promoter remains silent in no-
dulated plants grown in a nitrate-free medium. Upon the addition of nitrate, how-
ever, gusA gene expression is induced, and the reporter enzyme accumulates to a si-
milar level to that observed in the leaves of 35S-gusA alfalfa plants (Fig. 1.1).
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1.3
Alfalfa Transformation Methods

Genetic transformation, which results in the stable integration of foreign DNA into
the genome, is one of the key technologies underpinning the production of pharma-
ceuticals in alfalfa. Plant transformation at the industrial level must be optimized for
efficiency, predictability and reproducibility in all aspects ranging from explant pre-
paration to the physical conditions of DNA intake and the recovery of transgenic
plants. This is an interesting challenge because plant transformation efficiency de-
pends on many factors, including DNA conformation, explant type, plant species,
plant genotype and the culture medium. In addition, the development of a plant-
based expression platform to produce pharmaceuticals, nutraceuticals and industrial
enzymes adds further requirements in terms of plant transformation. For example,
a key issue in prototype development is the rapidity with which the ability of the sys-
tem to produce a selected molecule can be tested, and this reflects the identification
of optimal regulatory sequences to drive transgene expression. In order to address
these various issues, we have adapted documented transformation methods and de-
veloped an alfalfa transformation portfolio ranging from proof-of-concept technology
that allows rapid screening of target proteins, to stable expression in transgenic
plants or cell cultures for sustainable commercial-scale production. Table 1.1 lists the
characteristics of different transformation methods used with alfalfa.

As for many plants, alfalfa is amenable to transformation by various methods in-
cluding Agrobacterium-mediated transfer, direct DNA transfer to protoplasts using
polyethylene glycol, and particle bombardment (reviewed in [13]). In recent years, we
have developed a medium-throughput system to manage the various activities re-
lated to plant transformation, from plant preparation through to transformation and
regeneration. This allows us to maintain a continuous production schedule. The sys-
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tem allows the introduction of up to six constructs per week, which represents ap-
proximately 600 explants, and this capacity can easily be scaled up by increasing the
number of staff and the availability of appropriate equipment. Thus far, more than
180 constructs have been integrated into alfalfa, and several thousand transgenic
plants have been generated in our facilities. Given that 98% of the regenerated
plants are PCR positive for the gene of interest, our medium-throughput system ap-
pears to work very efficiently.

In order to reduce the time required to confirm the accumulation of a given re-
combinant protein, we have developed a cell culture system in which transgenic
alfalfa callus material produced at the proliferation step of Agrobacterium-based
transformation is used to initiate cell cultures. These cell suspensions can be sub-
cultured to sustain batch production of modest protein amounts. The protein blot
shown in Fig. 1.2 demonstrates our ability to detect a recombinant protein in total
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Tab. 1.1 Characteristics of alfalfa transformation methods

Agrobacterium-
mediated stable
transformation –
Plant

Agrobacterium-
mediated stable
transformation –
Cell culture

Transient
protoplast
transformation

Particle
bombardment-
based transient
expression

Agrobacterium-
mediated
transient
expression

Plasmid type Binary Binary pUC-based pUC-based Binary
Tissue Leaves Isolated cells Protoplasts Leaves Leaves
Working conditions Sterile Sterile Sterile Sterile Non-sterile
Integration in the
genome

Yes Yes No No No

Timing 6 months
minimum

5 weeks 2 days 2 days 5 days

Amount of protein
produced

Micrograms or
greater

Nanograms Nanograms Minimal Micrograms

Complex protein
assembly

Yes Yes Yes No Yes

Possibility to purify Yes Limited Limited No Yes
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Fig. 1.2 Protein blot analysis of human therapeutic protease
inhibitor (HTPI) produced in alfalfa cell cultures using different
promoters and subcellular targeting peptides as shown. Equal
amounts of total soluble proteins from cell cultures were separated
by sodium dodecylsulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and blotted onto a polyvinyldifluoride (PVDF) mem-
brane. Monoclonal anti-HTPI IgGs were used for detection.



soluble protein extracts from alfalfa cell cultures. It must be emphasized at this point
that the recovered protein is most likely derived from several transformation events
involving the same gene construct. This technique allows the detection of recombi-
nant proteins 6–8 weeks after transformation, which is three times faster than the
20 weeks required to regenerate and screen transgenic plants following Agrobacter-
ium-mediated transformation. This development has also shown that our alfalfa ex-
pression cassettes, although more adapted for leaf expression, provide adequate ex-
pression in cell cultures.

Although cell culture considerably reduces the time required to achieve proof-of-
concept for new molecules, this time frame still needs to be reduced. In addition,
there is some concern that the cell culture system might not correctly predict the
ability of alfalfa to assemble complex proteins, and might not be a suitable guide for
the selection of subcellular targeting strategies. We have therefore adapted several
transient transformation methods to work with the alfalfa platform, including PEG-
based protoplast transformation, particle bombardment and Agrobacterium-mediated
transient transformation of leaves (agroinfiltration). The last method turned out to
be particularly successful for the selection of optimal targeting strategies for a given
candidate protein. Figure 1.3 shows that, for a given recombinant protein expressed
in alfalfa leaves, the level of accumulation is dependent on the subcellular destina-
tion of the protein. More importantly, the figure shows that the relative protein accu-
mulation in the different subcellular compartments is similar in leaves from agroin-
filtrated and transgenic plants. In the case presented here, chloroplast targeting led
to the highest accumulation both in agroinfiltrated leaves and transgenic plants, fol-
lowed by targeting to the cytosol and mitochondria.

Agrobacterium-mediated transient gene expression has become the method of
choice for rapid validation of gene constructs and targeting strategies in alfalfa
leaves. It was adapted for alfalfa from a method published by Kapila et al. (1997) [14].
In this system, an Agrobacterium culture carrying the T-DNA of interest is forced to
enter into the intercellular spaces of the leaves under high vacuum. Once the physi-
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Fig. 1.3 Prediction of the most appropriate
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cal barrier of the epidermis is crossed, the bacteria infect neighboring cells, transfer-
ring T-DNA copies into the nucleus. Although the T-DNA exists inside the nucleus
only transiently, the genes present on the T-DNA are transcribed, leading to the pro-
duction of the recombinant protein in each infected cell. The efficiency of this
method is thus highly dependent on the ability to distribute the bacterial culture
evenly inside the leaf tissue.

As well as its short time frame, agroinfiltration has several further advantages for
recombinant protein production. The method allows the expression of multiple
genes by infiltrating cells with a mixture of two or more Agrobacterium cultures (co-
infiltration), thus eliminating the need to clone several genes within the same T-
DNA. Agroinfiltration is also readily scalable. Routinely, 25 leaves are infiltrated for
immunological verification of expression or the comparison of targeting strategies.
However, after the selection of an ideal transgene construct, infiltration of 7500
leaves per week can be carried out by a limited number of staff, in a continuous pro-
cess, for the production of micrograms of recombinant protein.

The production of C5-1 by co-infiltration illustrates the impressive capacity of this
method. Results presented in Fig. 1.4 show that the production of C5-1 in detached al-
falfa leaves was validated within 5 days from infiltration. In these experiments, differ-
ent bacteria bearing the light- and the heavy-chain constructs were used to infect the
cells. Most of the infected cells were occupied by both strains, and a protein corre-
sponding to fully assembled C5-1 was detected in the infiltrated leaf extract. This result
demonstrates the potential of agroinfiltration for testing the adequate expression and
assembly of complex proteins in alfalfa leaves using different Agrobacterium strains.

1.4
Characteristics of Alfalfa-derived Pharmaceuticals

When recombinant proteins are produced in a heterologous system, there may po-
tentially be differences between the final product and the natural molecule. Hence,
for each new protein produced in alfalfa, a thorough analysis of the processing, fold-
ing, assembly and post-translational modification is conducted to ensure the confor-
mity of the purified molecules. This section describes the analysis of alfalfa-derived
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Fig. 1.4 Protein blot analysis of C5-1 assembly in
agroinfiltrated alfalfa leaves. Total leaf soluble pro-
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C5-1 antibodies to demonstrate the ability of alfalfa plants to produce large amounts
of high-quality molecules for therapeutic or diagnostic applications.

Purified C5-1 has been obtained from alfalfa leaf extracts by affinity chromatogra-
phy on either a human IgG-Sepharose column or a Streamline rProtein A-Sepharose
column. Interestingly, the purified product obtained with these two methods differed
significantly. As shown in Fig. 1.5a, the antibody fraction obtained from the human
IgG column contained a mixture of different intermediate assembly forms of the
heavy (H) and light (L) chains, ranging from H2 to the fully assembled H2L2 form.
In comparison, purification on rProtein A-Sepharose resulted in the isolation of
H2L2 form alone (Fig. 1.5 b). This situation emphasizes the major impact that purifi-
cation methods can have on the characteristics of the end product.

In some heterologous production systems, improper removal of the signal peptide
may occur during the expression of secreted proteins, which would result in the ad-
dition or removal of amino acids at the N-terminal end. In most cases, these modifi-
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as control. Used with permission from Ref 18.



cations are undesirable in a therapeutic context. For C5-1 expression in alfalfa, the
natural sequence encoding the signal peptide was retained during the assembly of
the expression cassettes. Although most examples show that mammalian signal pep-
tides are correctly processed in plants, N-terminal amino acid sequencing was per-
formed on the heavy chain of alfalfa-derived C5-1 in order to confirm the N-terminal
integrity of the antibody. The N-terminal sequence of the heavy chain was confirmed
as EIQLV, which is identical to that of the hybridoma-derived C5-1 and indicates the
correct processing of the signal peptide in alfalfa.

N-glycosylation is another important issue when considering the conformity of
therapeutic proteins produced in heterologous systems. Although every eukaryotic ex-
pression system N-glycosylates proteins targeted to the secretory pathway, each sys-
tem links a different form of N-glycan to the recombinant protein. The glycans synthe-
sized in a heterologous production system only rarely correspond to those found in
the natural source of the protein. In this context, the ability of plants to perform com-
plex glycosylation [15] represents an advantage over yeast and insect cells, and places
the plant system in the group of Chinese hamster ovary cells (CHO) and murine mye-
loma cell lines (NSO). Importantly, however, the analysis of recombinant IgGs pro-
duced in tobacco indicates heterogeneity in the structure of N-glycans [16, 17].

In contrast, glycosylation analysis of alfalfa-derived C5-1 showed that a single, un-
ique N-linked glycan form is found on the antibody (Fig. 1.5). The glycoform is re-
presentative of plant complex N-glycans, and includes core �(1,2)-xylose and �(1,3)-
fucose. Figure 1.6 shows a comparison of N-glycan structures found on alfalfa- and
mouse-derived C5-1. Homogenous N-glycosylation of a recombinant protein ensures
batch-to-batch reproducibility, but also provides an ideal substrate for in vitro modifi-
cation of the N-glycan. For example, it has been shown that incubating the purified
alfalfa-derived C5-1 with �(1,4)-galactosyltransferase in the presence of UDP-galac-
tose resulted in an efficient addition of �(1,4)-galactose to the terminal GlcNAc resi-
dues of the N-linked glycans [18].
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Fig. 1.6 Structure of N-glycans isolated from
(a) alfalfa-derived C5-1 and (b) murine C5-1.
Used with permission from Ref 18.


