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1
Background and Motivation

After some soul searching we agreed to collaborate with Wiley-VCH on this book
project on the technical application of enantioselective chemo- and biocatalysis.
Some of the reasons for our positive decision were the following:

·While there are quite a number of recent books and monographs on the
science of enantioselective catalysis using homogeneous, heterogeneous or bio-
catalysts, no good reference book exists focusing on relevant aspects of the
large-scale application of these technologies.· It is generally very difficult to obtain reliable information on industrial pro-
cesses, on the one hand due to secrecy concerns and on the other hand because
writing publications is not a central aspect of industrial work. In addition, the
existing reports are often found in congress proceedings or scattered in mono-
graphs and thus not easily accessible.· An additional incentive was of course the awarding of the Nobel Prize 2001 to
W.S. Knowles, R. Noyori, and K. B. Sharpless for their work in the area of enan-
tioselective catalysis. From the point of view of the industrial chemist, it was
especially gratifying that the development of a technical process for l-dopa was
the basis for the award to W.S. Knowles, a very rare event indeed! And to our
great satisfaction, he agreed to let us include his Nobel lecture in our book.

2
Goals and Concept

When we contacted prospective authors for the planned monograph, we defined
the central goal as follows: “To show the organic chemist working in process develop-
ment that enantioselective catalysis is not just an academic toy but is really a suitable
tool for large-scale production of enantioenriched intermediates. To serve as a source of
information and maybe also inspiration for academic research and last but not least
strengthen the position of the industrial catalyst specialists working in the exciting but
sometimes frustrating field of enantioselective catalysis”.
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For this purpose we decided to collect case studies on the development of indus-
trial scale enantioselective processes written exclusively by the specialists who
were very closely involved with the work described in their contribution. In this
context, technical-scale can be anything from a few hundred kilograms of a com-
plex chiral intermediate for a pharmaceutical to several thousand tons for a herbi-
cide or an amino acid. Because up to now there were no similar books available,
it was less important whether a particular process had been described previously
but rather that interesting and useful information be collected and discussed in a
context where it can be found easily.

We asked the authors to illustrate important aspects of development work, such
as:

· the environment and situation for carrying out process development in industry
such as time pressures, the fit of the catalytic step into the over-all synthesis or
the competition with other synthetic approaches and so on;· the typical problems that are encountered in the various phases of the develop-
ment of a technical enantioselective process such as finding/developing the cat-
alyst, optimization of the process or choice of the equipment etc.;· the successful (and also the unsuccessful!) approaches to solve the problem(s)
at hand.

In addition, and we realized that due to problems of confidentiality this would not
always be possible, we suggested that the authors also address frequently asked
questions such as

· which is the preferred catalyst (homogeneous, heterogeneous, biocatalyst)· how to separate soluble catalysts from the reaction mixture· how to handle the sometimes very sensitive catalysts (impurities, air sensitivity,
temperature sensitivity, etc.)· the need for catalyst recycling (is it feasible or to be avoided?)· where to get the enzyme/chiral catalyst/ligand/auxiliary in commercial quanti-
ties· what are the critical parameters to optimize an enantioselective catalytic reac-
tion· questions of special equipment (pressure, high/low temperature)· which were the success factors and which the critical factors during process de-
velopment.

3
Our (the Editors) Assessment of the Resulting Monograph

Originally, we contacted 41 potential authors we knew to be involved in the tech-
nical application of asymmetric catalysis, 27 agreed to write a chapter, a surpris-
ingly high “yield” of almost 70%, and in fact we can present 25 contributions. Ma-
jor reasons for declining the invitation were on the one hand confidentiality, se-

Introduction2


