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At the beginning of the 21st century the remarkable progress achieved in the syn-
thetic chemistry of both small molecules and polymers is stimulating the renais-
sance of the development of polymer-bound reagents and catalysts. The scope of
modern polymer supports is expanding well-beyond that of the traditional Merri-
field resins. Advanced polymer supports are offering new opportunities for the de-
velopment of the modern automated high-throughput screening methods as well
as of the advanced manufacturing processes with simplified product recovery. Ap-
plications include the production of fine chemicals and new intermediates for the
chemical and life sciences industries. An increasing number of academic and in-
dustrial labs are employing modern polymer supports to facilitate product purifi-
cation. Novel reagents are being designed to combine the advantages typical for
homogeneous and heterogeneous reactions. This strict borderline between hetero-
geneous and homogeneous reactions is gradually fading away with continuing
progress in the development of polymer-mediated reactions. Precise control of po-
lymerization processes using modern living polymerization methods affords an
unprecedented control of three-dimensional polymer architectures and allows se-
lective placement of functional groups and linker molecules. Prominent examples
of new polymer carrier generations are highly functional nanometer-sized dendri-
tic and hyperbranched polymers with core/shell topology and the high loading of
functional groups on the surface. Polymer self-assembly is being exploited to pre-
pare confined environments which can serve as nanoreactors for a variety of
chemical reactions. Design and application of polymer supports is attracting atten-
tion in combinatorial chemistry, drug discovery research, catalysis, and biosynth-
esis. Progress in this field is closely related to interdisciplinary research in the var-
ious fields of science and reaction engineering. This book meets very successfully
the important challenge to bring together leading experts and pioneers from all
these relevant fields in order to highlight the outstanding advances and the future
potential of the emerging new strategies for the rational development of modern
synthetic reactions based upon innovative polymer supports.

The individual chapters address important contributions relevant to the on-
going progress and future success of polymer-mediated reactions in organic syn-
thesis, catalysis, and biosynthesis. All facets of the modern development are pre-
sented in this book. Most authors give their complementary views from different
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angles on the novel strategies exploiting new methods introduced in polymer syn-
thesis, polymer characterization, and application of functional polymer supports.
This includes synthesis of structured polymer supports using living polymeriza-
tions and advanced graft copolymerization, the preparation of novel dendritic and
hyperbranched carriers with very high loadings, as well as the formation of struc-
tured particles, films, membranes, and monolithic systems. Reaction engineering
topics cover monitoring and optimization of reactions on solid supports and liq-
uid-phase systems, the development of polymer membrane reactors, the design of
combinatorial libraries, and the use of polymer-bound reagents and scavengers in
organic multistep syntheses. Several comprehensive overviews focus on the differ-
ent aspects and the practical applications of such modern polymeric supports in
organic syntheses and the emerging new opportunities of nanoreactor design by
means of micellar catalysis and novel molecular nanoparticles. Without any doubt
this book represents a very valuable asset to everybody who is interested in get-
ting a close-up view on the current state of the art and the exciting new opportu-
nities relating to the use of novel functional polymer systems being applied in cat-
alysis, modern organic synthesis, combinatorial chemistry, and biosynthesis.

May 2003 Rolf Mülhaupt

Albert-Ludwigs-Universität Freiburg
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It was in December 2001, when Dr. Peter Gölitz called me and “encouraged” me
to edit a book on recent relevant aspects of polymer chemistry in organic synthe-
sis and catalysis. Facing the bitter cup of sorrow I accepted for four reasons.

First, I could not turn down Peter Gölitz’ suggestion. Second, the area of poly-
mer science is a rapidly developing field that certainly deserved another book.
Third, hardly any other discipline has had such a strong influence on almost all
other areas of chemistry. And finally, though already introduced to both organic
synthesis and catalysis in the 1960s, the most substantial improvements in these
areas have been made during the last ten years. Therefore, I soon found myself
contacting colleagues asking for contributions, tables of contents and manu-
scripts. Quite surprising, I received hardly any negative replies. This and the pro-
fessional attitude of all contributors in terms of deadlines and quality of their
manuscripts soon sweetened the cup.

As a result, it is now my pleasure to present this book. As can be deduced from
its title, it was intended to cover the most relevant achievements of polymer chem-
istry in the areas of organic synthesis and catalysis. For this purpose, 30 authors
have contributed to this venture in 13 chapters. The book commences with some
general properties of cross-linked polymers relevant to the above-mentioned appli-
cations, then turns to polymer-bound reagents, scavengers, catalysts and reactions
(including biocatalyzed reactions) that can be carried out. Special attention has
been given to soluble polymers including dendritic polymers and micelles used in
organic synthesis and catalysis as well as to the synthetic advancements in the
preparation of these materials. Metathesis-based techniques have had an enor-
mous impact, so two chapters covering both heterogeneous metathesis catalysts
and metathesis-derived supports have been added. Finally, the on- and off-bead
monitoring of reactions as well as technical aspects including those of high-
throughput screening and the use of membranes are summarized.

Any edited book strongly depends on the quality of every single contribution. It
was both my privilege and honor to win such well-known authors. With their con-
tributions, I am convinced that we have now a book in hand that represents the
state of the art and a comprehensive summary on the present status quo. It is de-
signed to attract equally students and advanced readers working in the areas of or-
ganic chemistry, organometallic chemistry, catalysis, polymer science, physical
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chemistry and technical chemistry by providing both substantial background infor-
mation and interdisciplinary up-to-date knowledge. Special consideration has been
given to the literature sections, which should facilitate further reading. Unfortu-
nately, for economical and practical reasons, every book has to be limited to a cer-
tain number of pages. Therefore, few additional, interesting aspects had to be
shortened or even neglected. Nevertheless, I am sure Peter Gölitz will find some-
body else to write a book on these topics.

Finally, one thing remains to be done, that is to thank all those who have
helped me in putting this book together: The contributing authors and Wiley-
VCH, in particular Dr. Elke Westermann, for her support, encouraging e-mails
and patience.

Innsbruck, Spring 2003 Michael R. Buchmeiser
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1.1
Synthesis and Molecular Structure of Polymer Supports

The overwhelming majority of synthetic macromolecules used as supports are vi-
nyl addition polymers. Styrene-based species are by far the most important of
these, with methacrylate- and acrylamide-based systems finding more limited ap-
plication. Styrene-based polymer supports have the major advantage of being rela-
tively chemically inert and yet readily functionalized by powerful electrophiles.
The ester and amide functions in methacrylate- and acrylamide-based polymer
supports make these more susceptible to chemical degradation, and so more care
is required in exploiting these species. Though these monomer types can be poly-
merized via a variety of mechanisms involving free radical [1, 2], cationic, anionic
[3] and dipolar [4] reactive intermediates, in practice most polymers destined for
use as supports are produced by a free radical polymerization process.

Vinyl polymers can be synthesized as linear macromolecules (Fig. 1.1 a) which
will dissolve to form isotropic solutions in a suitable solvent. They can also be pro-
duced in a highly branched form (Fig. 1.1 b) and again these macromolecules are
completely soluble in appropriate solvents. Linear polymers and branched or den-
dritic polymers can be used as supports and these species form the subject of
other chapters in this book. If however a vinyl monomer is copolymerized with a
divinyl monomer then an infinite cross-linked network (Fig. 1.1 c) results, and
though these macromolecular species will swell in a thermodynamically compati-
ble solvent, their molecular weight is effectively infinite and this prevents their
dissolution to form isotropic solutions. Instead the solvent swollen material ap-
pears as a highly flexible gel when low levels of cross-linking comonomer are
used or indeed a relatively rigid one when high levels of cross-linker are em-
ployed. However, if the individual particles of the cross-linked species are small
enough they will disperse in a suitable solvent and may superficially appear to dis-
solve, while in practice they will be present as microgel.

This chapter will focus exclusively on cross-linked vinyl polymer supports either in
a spherical bead or resin form, or in some other macroscopic format. These essen-
tially insoluble materials lead to considerably simplified reaction work-up and prod-
uct isolation procedures when used e.g. in solid phase synthesis or as catalyst or
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scavenger supports. They are also readily adaptable to continuous flow technologies
and robotic instrumentation, and not surprisingly have become the work-horse of
many combinatorial and parallel synthetic and screening procedures. Further de-
tails are available in extensive reviews [5, 6] and in a number of textbooks [7–12].

1.2
Suspension Polymerized Particulate Resin Supports –
Structural and Morphological Variants

1.2.1
Suspension Polymerization

Since cross-linked polymers cannot be re-formed or re-shaped it is necessary to
synthesize them in the final physical form appropriate for each particular applica-
tion. Particles in the size range �50–1000 �m are suitable for laboratory scale
chemistry, while larger particles have advantages in large scale continuous pro-
cesses. Irregularly shaped particles are susceptible to mechanical attrition and
breakdown to ‘fines’, whereas the process of suspension polymerization [13] yields
uniform spherical cross-linked polymer particles often referred to as beads, pearls
or resins. These are much more mechanically robust and are widely exploited on
both a small and large scale e.g. as the basis of ion exchange resins [14].

Particles of a suitable size and symmetry (Fig. 1.2) are readily prepared by sus-
pension polymerization in which the organic monomer phase containing dis-
solved free radical initiator is dispersed as droplets in a continuous aqueous
phase. The latter usually contains a water-soluble polymer (e.g. polyvinyl alcohol
or a polysaccharide) to aid stabilization of the monomer droplets, and the whole
system is efficiently stirred. Polymerization is initiated by raising the temperature
typically to �70 �C and maintaining this for �6 hours. The spherical monomer
droplets are converted to solid spherical polymer resin beads. In the laboratory
the batch reaction can be performed in a round-bottomed flask, but it is better to
use a baffled parallel sided reactor with a flattish base typically 0.5–2 liter in vol-
ume. More details are available in Ref. [15]. This technology is also practiced
widely on an industrial scale where the reactor size is larger and can yield 100s
kg of resin in one batch. The major challenge in suspension polymerization is to
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Fig. 1.1 Synthetic macromolecular architectures A) linear B) branched
C) cross-linked.



avoid agglomeration of the polymerizing droplets, and since aggregation arises
from surface interactions, perhaps somewhat counter-intuitively, small scale sus-
pension reactions are more problematical than large ones. Recently however the
use of a small scale oscillatory baffled reactor (Fig. 1.3) has been described allow-
ing efficient suspension polymerization on a gram scale [16].

1.2.2
Resin Morphology

So-called gel-type resins are prepared from a vinyl monomer typically in the pres-
ence of a low level (�5 mol%) of a divinyl cross-linking comonomer and no other
component other than the free radical initiator. Such materials (shown in Fig. 1.4,
left) are hard and glassy in the solid state with a surface area �5 m2g–1 (measured
by e.g. N2 sorption and application of the BET equation see Section 1.4.2). How-
ever, these species can swell readily in a thermodynamically good solvent to pro-
vide access to essentially all the segments of the polymer network e.g. to carry out
chemical derivatization. The negative aspect of these resins, however, is that they
are relatively impenetrable in the dry state and in contact with thermodynamically
poor solvents. Their use is therefore restricted to processes involving swelling sol-
vents. Despite this 1–2% cross-linked poly(styrene-divinylbenzene) (PS-DVB) gel-
type resins are the supports most used in solid phase synthesis applications.

So-called macroporous resins (shown in Fig. 1.4, right) are prepared from a vi-
nyl monomer typically in the presence of higher levels of a divinyl cross-linking
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Fig. 1.2 Optical micrograph of suspension polymerized resin beads �200 �m diameter.



comonomer (from �10–80 mol%). The term ‘macroporous’ is an old one which
in the present context means permanently porous; it is not an indication of pore
size. The permanently porous morphology of these species is generated by induc-
ing the growing polymer network to phase separate or precipitate during the sus-
pension polymerization. This is achieved by using a porogen in the polymerizing
mixture, typically present in an equal volume to that of the comonomers. The
porogen is more often than not a simple organic solvent, chosen to form an iso-
tropic solution with the comonomers but to cause precipitation of the copolymer
at some desired point in the polymerization. When the network does phase sepa-
rate, microgel particles typically �100 nm in diameter form and these aggregate
within each polymerizing droplet to form a discrete polymer phase, separate from
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Fig. 1.3 Small scale oscillatory baffled reactor (OBR) for gram scale suspension polymerization.


