Plasma Processes and Polymers

Edited by Riccardo d'Agostino, Pietro Favia, Christian Oehr, Michael R. Wertheimer

WILEY-VCH Verlag GmbH & Co. KGaA

Plasma Processes and Polymers

Edited by Riccardo d'Agostino, Pietro Favia, Christian Oehr, Michael R. Wertheimer

Plasma Processes and Polymers

Edited by Riccardo d'Agostino, Pietro Favia, Christian Oehr, Michael R. Wertheimer

WILEY-VCH Verlag GmbH & Co. KGaA

Editors

Prof. Riccardo d'Agostino Dipartimento di Chimica

Universita di Bari, Italy

Prof. Pietro Favia Dipartimento di Chimica

Universita di Bari, Italy

Dr. Christian Oehr

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Stuttgart, Germany

Prof. Michael R. Wertheimer

Department of Engineering Physics Ecole Polytechnique, Montreal, Canada This book was carefully produced. Nevertheless, editors, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany. Printed on acid-free paper.

 Composition
 Kühn & Weyh, Satz und Medien,

 Freiburg
 Printing
 Strauss GmbH, Mörlenbach

 Bookbinding
 Litges & Dopf Buchbinderei GmbH,

 Heppenheim
 Heppenheim

ISBN 3-527-40487-2

Contents

Preface 2	XVII			
List of Contributors XIX				
Part I	Plasma Deposition of Thin Films 1			
1	Polymer Surface Modification with Monofunctional Groups of Different Type and Density 3 J. Friedrich, G. Kühn, R. Mix			
1.1 1.2 1.3	Introduction 3 Experimental 9 Results 10			
1.3.1 1.3.2	Kinetics of the Deposition of Copolymers 10 Variation of the Density of Functional Groups 10			
1.3.3 1.3.4	Structure and Stability of Copolymers 14 Relation between Functional Groups of Copolymers and Surface Energy 15			
1.3.5 1.4	Relation between Functional Groups of Copolymers and Adhesion Discussion 19			
2	RF-Plasma Deposition of SiO_x and a-C:H as Barrier Coatings on Polymers 23 D. Hegemann, U. Schütz, C. Oehr			
2.1 2.2 2.3 2.4	Introduction23Experimental24Results and Discussion27Conclusions35			

VI Contents

3	Upscaling of Plasma Processes for Carboxyl Functionalization 39 V. Sciarratta, D. Hegemann, M. Müller, U. Vohrer, C. Oehr	
3.1 3.2 3.2.1 3.2.2 3.2.3 3.3 3.4	Introduction 39 Experimental 40 Materials 40 Plasma-Deposition Apparatus 40 Characterization Techniques 42 Results and Discussion 43 Conclusions 48	
4	Deposition of Fluorocarbon Films on Al and SiO ₂ Surfaces in High-Density Fluorocarbon Plasmas: Selectivity and Surface Wettability A. Tserepi, P. Bayiati, E. Gogolides, K. Misiakos, Ch. Cardinaud	51
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4	Introduction 51 Experimental 52 Results and Discussion 54 Etching and Deposition in C_4F_8 Plasmas 54 Etching and Deposition Experiments in CHF_3/CH_4 Plasmas 58 FC Film Characterization: Chemical Composition 60 Conclusions 63	
5	Hot-wire Plasma Deposition of Doped DLC Films on Fluorocarbon Polymers for Biomedical Applications 65 V.N. Vasilets, A. Hirose, Q. Yang, A. Singh, R. Sammynaiken, Yu.M. Shulga, A.V. Kuznetsov, V.I. Sevastianov	
5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.3.2	on Fluorocarbon Polymers for Biomedical Applications 65 V.N. Vasilets, A. Hirose, Q. Yang, A. Singh, R. Sammynaiken, Yu.M. Shulga,	
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1	on Fluorocarbon Polymers for Biomedical Applications 65 V.N. Vasilets, A. Hirose, Q. Yang, A. Singh, R. Sammynaiken, Yu.M. Shulga, A.V. Kuznetsov, V.I. Sevastianov Introduction 65 Experimental Details 66 Preparation of Samples 66 Plasma Deposition Technique 66 Surface Characterization 67 Platelet-Adhesion Technique 68 Results and Discussion 68 Characterization of Deposited Film 68	

- Structural Analysis of Diamond-like Carbon Films Deposited
 by RF (13.56 MHz) in a Methane Gas Plasma Atmosphere
 M. Ouchabane, M. Aoucher, A. Sekkal, K. Henda and H. Lahmar
- 7.1 Introduction 87
- 7.2 Experimental Procedure 88
- 7.2.1 Deposition Apparatus 88
- 7.2.2 Experimental Conditions 89
- 7.3 Results and Discussions 90
- 7.3.1 X-ray Auger Electron Spectroscopy (XAES) 90
- 7.3.2 Electron Energy Loss Spectroscopy (EELS) 91
- 7.4 Conclusion 93

8 Rate constant of HMDSO + O reaction in plasma afterglow 95

- Vít Kudrle, Vojtěch Doležal, Antonín Tálský, Jan Janča
- 8.1 Introduction 95
- 8.2 Experimental 96
- 8.3 Calculation of the rate constant 97
- 8.4 Results and discussion 99
- 8.5 Conclusion 101

9 Plasma-Enhanced Thin-Film Deposition On Polycarbonates 103

B. Ulejczyk, T. Opalinska, L. Karpinski, K. Schmidt-Szalowski

- 9.1 Introduction 103
- 9.2 Experimental 104
- 9.3 Results 106
- 9.4 Discussion 112
- 9.5 Conclusions 114
- 10Molecular Tailoring Coating on TiO2 Nanoparticle Surface
by Plasma Polymerization117

Jing Zhang, Feng Zhu, Changnian Shi, Li Sun, Ying Wang, Zhan Cheng, Ping Ji, Qinyu Yang, Ying Guo, Rongming Zhou, Hankun Xie, W. J. van Ooij, Jie Lian, Donglu Shi

- 10.1 Introduction 117
- 10.2 Experimental 119
- 10.3 Results and Discussions 120
- 10.3.1 Surface Morphology 120
- 10.3.2 Surface Molecular Structure 122
- 10.3.3 Dispersion Behavior of AA-Plasma-Polymer-Coated TiO₂ Nanoparticles 124
- 10.4 Conclusion 127

viii	Contents	
1	Part II	Plasma-Grafting of Functional Groups 129
	11	Introduction of Acidic Functional Groups onto the Surface of Activated Carbons by Atmospheric-Pressure Nonthermal Plasma 131 Satoshi Kodama and Hidetoshi Sekiguchi
	11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.3	Introduction 131 Experimental 132 Materials 132 Plasma Treatment of the Samples 132 Characterization 136 Results and Discussion 137 Surface Chemistry 137 Surface Morphology 140 Conclusion 142
	12	Treatment of Flexible Polyethylene with Low-pressure Plasma to Improve its Painting Properties 143 Asunción Martínez-García, Alejandra Segura-Domingo, Ana Sánchez-Reche, Santiago Gisbert-Soler
	12.1 12.2 12.2.1 12.2.2 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.4	Introduction 143 Experimental 144 Materials 144 Experimental Techniques 144 Results and Discussion 145 Effect of Treatment Time 145 Effect of Plasma Power 150 Effect of the Pressure inside the Chamber 152 Durability of the Treatment Effect 153 Conclusions 154
	13	Surface Modification of PVDF by Microwave Plasma Treatment for Electroless Metallization 157 Mihaela Pascu, Dominique Debarnot, S. Durand, Fabienne Poncin-Epaillard
	13.1 13.2 13.3 13.3.1 13.3.2 13.3.3 13.3.4	Introduction 157 Materials and Methods 158 Results and Discussion 160 Contact-Angle and Weight-Loss Measurements 160 Aging Studies 166 XPS results 168 Titration of the Surface Amino Groups 170
	13.3.5	Wide-Angle X-ray Diffraction 171

13.3.6 Preliminary Results on PVDF Metallization 173

- 13.3.7 Assays on Piezoelectric Coefficient Determination 174
- 13.4 Conclusion 175
- 14 Different Performance of Ar, O₂ and CO₂ RF Plasmas in the Adhesion of Thermoplastic Rubber to Polyurethane Adhesive 177 Ana B. Ortiz-Magán, M. Mercedes Pastor-Blas, José Miguel Martín-Martínez
- 14.1 Introduction 177
- 14.2 Experimental 178
- 14.2.1 Materials 178
- 14.2.2 Experimental Techniques 179
- 14.3 Results and Discussion 180
- 14.4 Conclusions 191
- 15 Low-temperature Plasma Treatment of Dry Empress-Tree Seeds 193
 - N. Puač, Z.Lj. Petrović, S. Živković, Z. Giba, D. Grubišić and A.R. Đorđević
- 15.1 Introduction 193
- 15.2 Experimental Setup 194
- 15.2.1 Power Transmitted to the Plasma 195
- 15.3 Paulownia tomentosa Steud 197
- 15.4 Results and Discussion 198
- 15.5 Conclusion 202
- 16 Ion-induced Chemical and Structural Modification of Polymer Surfaces 205
 G. Suchaneck, M. Guenther, G. Gerlach, K. Sahre, K.-J. Eichhorn, B. Wolf,
 A. Deyneka, L. Jastrabik
- 16.1 Ion Modification of Polymers 205
- 16.1.1 Modification of Polymer Properties 206
- 16.1.2 Energy Transfer from Ions to Polymer 206
- 16.1.3 Ion-modified Polymers for Sensor Application 206
- 16.1.4 Objective of this Work 207
- 16.2 Experimental 208
- 16.2.1 Sample Preparation 208
- 16.2.2 Evaluation of Structural Changes 209
- 16.2.3 Evaluation of Moisture Uptake 210
- 16.2.4 Electrical Measurements 210
- 16.3 Results and Discussion 211
- 16.3.1 Structural Changes 211
- 16.3.2 Moisture Uptake 216
- 16.3.3 Electrical Conductivity 219
- 16.4 Conclusions 219

X Contents

17	Plasma-Enhanced Fluorination of Nitrile Butadiene Elastomer:
	an XPS study 223
	A. Tressaud, E. Durand, C. Labrugère
17.1	Introduction 223
17.2	Experimental Procedure 224
17.2.1	Elastomer Samples 224
17.2.2	Fluorination Procedure: The Plasma-enhanced Fluorination (PEF) 224
17.2.3	XPS Characterization 225
17.3	Results and Comparison of the XPS Spectra 226
17.3.1	Plasma-enhanced Fluorination 226
17.3.2	Comparison with Direct F ₂ -gas Fluorination 228
17.4	Concluding Remarks 231
18	Plasma-Surface Modification of Styrene-Butadiene Elastomers for Improved Adhesion 233 J. Tyczkowski, I. Krawczyk, B. Woźniak
18.1	Introduction 233
18.2	Experimental 236
18.2.1	Materials 236
18.2.2	Plasma Treatment 236
18.2.3	Wet-chemical Treatment 237
18.2.4	Surface-characterization Techniques 237
18.3	Results and Discussion 238
18.3.1	Preliminary Peel Test 238
18.3.2	Plasma Chlorination 238
18.3.3	CO ₂ and O ₂ Plasma Treatment 246
18.4	Conclusion 250
19	PET Surface after Plasma or Laser Treatment: Study of the Chemical Modifications and Adhesive Properties 253 P. Laurens, S. Petit, P. Bertrand, F. Aréfi-Khonsari
19.1	Introduction 253
19.2	Experimental Details 254
19.3	Results 257
19.3.1	Untreated PET 257
19.3.2	Plasma-treated PET 259
19.3.3	Laser-treated PET 260
19.4	Discussion 264
19.4.1	Surface Oxidation 264
19.4.2	Surface Degradation 265
19.4.3	Al–PET Adhesion 267
19.5	Conclusion 268

Contents XI

20 Plasma Pretreatments and Treatments on Polytetrafluoroethylene for Reducing the Hydrophobic Recovery 271

P. Favia, A. Milella, L. Iacobelli, R. d'Agostino

- 20.1 Introduction 271
- 20.2 Experimental 273
- 20.3 Results and Discussion 274
- 20.4 Conclusions 279
- Oxygen-plasma Modification of Polyhedral Oligomeric Silsesquioxane (POSS) containing Copolymers for Micro- and Nanofabrication 281
 N. Vourdas, V. Bellas, E. Tegou, O. Brani, V. Constantoudis, P. Argitis, A. Tserepi and E. Gogolides, D. Eon, G. Cartry, C. Cardinaud
- 21.1 Introduction and Experimental Conditions 281
- 21.2 Results and Discussion 284
- 21.2.1 Etching of POSS Copolymers in Oxygen Plasmas 284
- 12.2 Surface Roughness of POSS Polymers after Plasma Treatment 287
- 21.3 Conclusions 291
- Part III Plasma and Life Science 293
- 22 Radicals of Plasma Needle Detected with Fluorescent Probe 295 Ingrid E. Kieft, Joep J.B.N. van Berkel, Erik R. Kieft, Eva Stoffels
- 22.1 Introduction 295
- 22.2 Experimental 297
- 22.2.1 Plasma Needle 297
- 22.2.2 Raman Scattering 298
- 22.2.3 Fluorescent Probe 298
- 22.2.4 Calibration with NO Radicals 299
- 22.2.5 Plasma Treatment 301
- 22.3 Results and Discussion 301
- 22.3.1 Raman Scattering 301
- 22.3.2 The Fluorescent Probe Measurements 302
- 22.4 Conclusions 307
- 23 RF-Plasma Treatment on the Inside of Small Functional Devices for Biomedical Application 309

C. Oehr, D. Hegemann, M. Müller, U. Vohrer, M. Storr

- 23.1 Introduction 309
- 23.2 Experimental 310
- 23.3 Results and Discussion 311
- 23.3.1 Devices with Geometrically Well-described Trenches Oriented Parallel to the Applied Field 311

XII Contents

23.3.2	Devices with Geometrically Defined Trenches Oriented Nonparallel to the Applied Field 313
23.3.3	Devices with Pores in Micrometer Dimension 314
23.4	Conclusions 317
24	Plasma Sterilisation: Mechanisms Overview and Influence of Discharge Parameters 319 Francois Rossi, Riccardo De Mitri, Sophie Bobin and Rosy Eloy
24.1	Introduction 319
24.2	Experimental 320
24.3	Results 322
24.4	Discussion 329
24.5	Conclusions 330
25	Improvement of Low-pressure Microwave Plasma-assisted AminoFunctionalization of Polymers333K. Schröder, B. Finke, A. Ohl
25.1	Introduction 333
25.2	Experimental 336
25.2.1	Plasma Processing 336
25.2.2	Surface Diagnostics 337
25.3	Results and Discussion 338
25.3.1	Amino Functionalization in the UHV Plasma System 338
25.3.2	Amino Functionalization in the Low-Vacuum Plasma Reactor 343
25.4	Summary 347
26	PE-CVD Modification of Medical-grade PVC to Inhibit Bacterial Adhesion: PEO-like and Nanocomposite Ag/PEO-like Coatings 351 D.J. Balazs, K. Triandafillu, E. Sardella, G. Iacoviello, P. Favia, R. d'Agostino, H. Harms, and H.J. Mathieu
26.1	Introduction 351
26.2	Materials and Methods 353
26.2.1	Substrate Preparation 353
2.2	Plasma-Deposition Processes 354
26.2.3	Protein Adsorption 355
26.2.4	XPS Analysis 355
26.2.5	Contact-Angle Measurements 356
26.2.6	Bacterial Adhesion 356
26.3	Results and Discussion 357
26.3.1	PEO-like Film Deposition 357
26.3.2	Ag/PEO-like Films 360

26.2.3 Evaluation of Protein Adsorption 365

- 26.3.4 Evaluation of Bacterial Adhesion 367
- 26.4 Conclusion 369
- 27 Plasma-aided Micropatterning of Polystyrene Substrates for Driving Cell Adhesion and Spreading 373 E. Sardella, R. Gristina, G.S. Senesi, R. d'Agostino, P. Favia
- 27.1 Introduction 373
- 27.2 Materials and Methods 375
- 27.2.1 Surface Modifications 375
- 27.2.2 Surface Diagnostic 375
- 27.2.3 Cell Culture 376
- 27.3 Results and Discussion 377
- 27.3.1 PD-PEO-l Coatings 377
- 27.3.3 Micropatterning of PEO-like Coatings 381
- 27.4 Conclusions 385

28 Plasma-deposited Acrylic Acid Coatings on Flat and Nanostructured Substrates for Cell-Culture Experiments 389

L. Detomaso, R. Gristina, G.S. Senesi, L.C. Lopez, P. Favia, R. d'Agostino

- 28.1 Introduction 389
- 28.2 Experimental 390
- 28.2.1 Substrates 390
- 28.2.2 Plasma Reactors and Processes 391
- 28.2.3 Surface Characterization 391
- 28.2.4 Cell-Culture Experiments 392
- 28.3 Results and Discussion 392
- 28.4 Conclusions 400
- 29 The Model for Origin of Life Precursors Based on Exhaust Utilisation in the Electric Discharge 403 Marcela Morvová, Imrich Morva, František Hanic
- 29.1 Introduction 403
- 29.2 Experimental 404
- 29.3 Conclusions 411
- Part IV Chemical Synthesis, Powders and Non-Equilibrium Effects 413
- 30 Gliding-Discharge CF₂Cl₂ and CHF₂Cl Decomposition in Reducing Conditions 415 Teresa Opalińska, Anna Opalska, Krzysztof Schmidt-Szałowski

30.1 Introduction 415

30.2 Experimental 417

30.2.1 Experimental Setup 417

(IV Contents

- 30.2.2 Chemical Analysis 418
- 30.2.3 Conditions of Experiments 418
- 30.2.4 Definition of the Process Parameters 419
- 30.3 Results and Discussion 420
- 30.3.1 Essential Parameters of the Process Characteristics 420
- 30.3.2 Main Reaction Products Hydrocarbons and Carbon Black 422
- 30.3.3 Formation of Fluorine-containing Organic Compounds 424
- 30.3.4 Energetic Efficiency of the Process 426
- 30.4 Conclusions 426

The Oxidation of Streams for Diesel Fuels Formulations by Means of High-voltage Oxygen Plasmas 431 Pedro Patiño, Eugenio Farrera, and Aurora Mejía

Peuro Pauno, Eugenio Farrera, una Auro

- 31.1 Introduction 431
- 31.2 Experimental 432
- 31.2.1 Equipment 432
- 31.3 Results 433
- 31.3.1 Model Compounds 433
- 31.3.2 Streams and Fuel Oil 437
- 31.4 Discussion 437
- 31.5 Conclusions 439

32 Acetylene and Ethylene Carbon Blacks Production in Plasma Process 443 Tomasz Zieliński, Teresa Opalińska, Jacek Kijeński

- 32.1 Introduction 443
- 32.2 Experimental 444
- 32.2.1 Apparatus 444
- 32.2.2 Procedure 445
- 32.3 Results and Discussion 446
- 32.4 Conclusions 453

33 DCM Production in a Dusty-Plasma Trap 455

A. Ivanov, V. Mitin, A. Pal, A. Ryabinkin, A. Serov, E. Skryleva, A Starostin, V. Fortov, Yu. Shulga

- 33.1 Introduction 455
- 33.2 The Setup for DCM Production 456
- 33.3 Results and Discussion 458
- 33.3.1 Measurement of the Mean Nickel Content 459
- 33.3.2 Measurement of the Specific Surface 460
- 33.3.3 X-ray Diffraction Investigations 460
- 33.3.4 Magnetic Properties of the Processed Powder 461
- 33.3.5 X-ray Photoelectron Spectroscopy 462
- 33.4 Conclusion 463

χıν

34 Dust Particles in the dc Glow-Discharge Plasma: Self-organization and Peculiarities of Behavior 465 V.E. Fortov, A.G. Khrapak, V.I. Molotkov, O.F. Petrov, M.Y. Poustylnik,

V.E. Fortov, A.G. Khrapak, V.I. Molotkov, O.F. Petrov, M.Y. Poustyli V.M. Torchinsky

- 34.1 Introduction 465
- 34.2 Experimental Setup 466
- 34.3 Plasma Crystals and Liquids 468
- 34.3.1 Structures of Spherical Grains 468
- 34.3.2 Plasma Liquid Crystal 469
- 34.4 Wave Phenomena 470
- 34.5 Diagnostics of the dc Glow-Discharge Plasma 472
- 34.5.1 Measurement of the Grain Charge 472
- 34.5.2 Application of Thermophoresis for Diagnostics of Dust-Particle Confinement 473
- 34.6 Conclusion 475

35 Controlled Growth of Carbon Nanotubes Using Pulsed Glow-Barrier Discharge 477

Tomohiro Nozaki, Yoshihito Kimura, Ken Okazaki, Shigeru Kado

- 35.1 Introduction 477
- 35.2 Experimental 478
- 35.3 General Aspects of Carbon-Nanotube Deposition with He-based APG 479
- 35.4 Aligned Nanotube Growth with Pulsed APG 481
- 35.4.1 Effect of Pulsed Voltage on Alignment 483
- 35.4.2 Growth Temperature and Pulse Duty 484
- 35.5 Concluding Remarks and Future Work 485
- Investigation of Excited Species in a Carbon Ablation Plume
 in Nitrogen Gas Environment 489
 M.A. Bratescu, Y. Sakai, N. Sakura, D. Yamaoka, Y. Suda and H. Sugawara
- 36.1 Introduction 489
- 36.2 Experimental Setup 490
- 36.3 Results and Discussion 492
- 36.4 Conclusions 497
- 37
 Optimization of a DC-RF Hybrid Plasma Flow System Using

 Statistical Analysis
 499
 - Kohtaro Kawajiri, Kandasamy Ramachandran and Hideya Nishiyama
- 37.1 Introduction 499
- 37.2 Experimental Apparatus and Procedures 500
- 37.3 Results and Discussion 503
- 37.3.1 Particle Residence Time 503

XVI Contents

- 37.3.2 Appearance and Disappearance Voltages 505
- Upper Limit of Injected Nitrogen Flow Rate 509 37.3.3
- Downstream-Gas Temperature 514 37.3.4
- 37.3.5 Optimization 516
- Conclusion 517 37.4

Preface

At the 16th International Symposium on Plasma Chemistry (ISPC-16) in Taormina, which took place in June 2003, we launched the idea to edit a new journal, named *Plasma Processes and Polymers*, and published by Wiley-VCH. The purpose was to collect under the same cover the great majority of articles dealing with plasma processing of polymers and related issues, which at that time were scattered throughout a vast number of journals. The new journal was intended to "correct this unfortunate situation" and to provide a home for the community working in low-temperature plasma surface modification of polymers and other materials, in applications ranging from packaging, biomedical products, displays, to components for aerospace and automotive industries, etc.

We met with such an enthusiastic response at that conference, considered the most representative forum for scientists working in the field of plasma technology, that we decided, right there and then, to solicit original papers from authors who presented suitable contributions. The present book can, therefore, be considered "Volume zero" of the journal bearing the same name, and it has the same editors and publisher. At the same time as this book will be published, the journal will be at its third issue; although still in its infancy, it is already clear that the original idea was very good, because the journal is now attracting the best articles in the world relating to this field.

Plasma Processes and Polymers, the book, is a comprehensive collection of 37 peer-reviewed articles which were presented as contributions at ISPC-16, in several different sessions dealing with low-temperature plasma processes. All of these articles have been carefully examined by the editors and by numerous referees, and the English has been revised according to the highest scientific standards.

The articles have been divided into four chapters, namely: *plasma deposition of thin films; plasma-induced grafting of functional groups; plasma in the life sciences; chemical synthesis, powders and non-equilibrium effects.* Altogether, these articles offer a good overview of recent advances in non-equilibrium low-and high-pressure glow discharges for materials processing, from fundamentals to industrial applications, from diagnostics to materials performance, and from biomedical to environmental applications. We are confident that *Plasma Processes and Polymers*, the book and the journal, will soon become the reference for materials scientists, chemists, physicists, engineers, biologists and physicians, and others who are either experts in the field

XVII

XVIII Preface

or just starting to work in it. In addition, it will constitute a very useful tool for foresightful managers who do not wish to "navigate by the stars", but want to orient themselves in a rigorous manner while "sailing on the ocean of plasma applications".

At the end of this enterprise, we like to warmly thank Ms Grazia Retto and Ms Roberta Giordano, from the staff at the University of Bari, who have dedicated for almost one year their professional care and great dedication to this project.

We hope that you will enjoy reading this book as much as we enjoyed editing it!

Riccardo d'Agostino Pietro Favia Christian Oehr Michael R. Wertheimer

List of Contributors

d'Agostino, R.

Department of Chemistry, University of Bari, Bari, Italy

Aoucher, M.

Laboratoire de physique des matériaux, Equipe couches minces et semiconducteurs, Faculté de Physique, El Alia, Bab-ezzouar, Alger, Algérie

Argitis, P.

Institute of Microelectronics, NCSR "Demokritos", Athens, Greece

Aréfi-Khonsari, F. LGPPTS, E.N.S.C.P., Paris, France

Balazs, D. J.

Laboratory for Functional Fibers and Textiles, Swiss Federal Laboratories for Materials Testing and Research (EMPA), St. Gallen, Switzerland

Balazs, D. J.

Materials Science Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Bayiati, P. Institute of Microelectronics-NCSR "Demokritos", Athens, Greece **Bellas, V.** Institute of Microelectronics, NCSR

"Demokritos", Athens, Greece

van Berkel, J. J. B. N.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Bertrand, P.

PCPM, Université Catholique de Louvain, Louvain-la-Neuve, Belgique

Bobin, S.

Biomatech, Chasse sur Rhone, France

Brani, O.

Institute of Microelectronics, NCSR "Demokritos", Athens, Greece

Bratescu, M. A.

Division of Electronics and Information Engineering, Hokkaido University, Sapporo, Japan

Cardinaud, C.

Laboratoire des Plasmas et des Couches Minces, Institut des Materiaux, Nantes, France XX List of Contributors

Cartry, G.

Laboratoire des Plasmas et des Couches Minces. Institut des Materiaux, Nantes, France

Chen, Z.

College of Sciences, Donghua University, Shanghai, China

Constantoudis, V.

Institute of Microelectronics, NCSR "Demokritos", Athens, Greece

De Mitri, R.

European Commission, Joint Research Centre. Institute for Health and Consumer Protection, Ispra, Italy

Debarnot, D.

Laboratoire Polymères, Colloïdes, Interfaces, Université du Maine, Le Mans, France

Detomaso, L.

Department of Chemistry, Institute of Inorganic Methodologies and Plasmas (IMIP), University of Bari, Bari, Italy

Deyneka, A.

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Đorđević, A. R.

Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia and Montenegro

Durand, A. E.

Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS), Université Bordeaux, Pessac, France.

Durand, S.

Laboratoire Polymères, Colloïdes, Interfaces, Université du Maine, Le Mans. France

Eichhorn, K.-J.

Institute of Polymer Research Dresden, Dresden, Germany

Eloy, R. Biomatech, Chasse sur Rhone, France

Eon, D.

Laboratoire des Plasmas et des Couches Minces. Institut des Materiaux, Nantes, France

Farrera, E.

Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela

Favia, P.

Department of Chemistry, University of Bari, Bari, Italy

Finke, B.

Materials Science Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Fortov. V.

Institute of Problems of Chemical Physics, Chernogolovka, Russia

Fortov, V. E.

Institute for High Energy Densities, Russian Academy of Sciences, Moscow, Russia

Friedrich, J.

Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Gerlach, G.

Institute for Solid State Electronics, Dresden University of Technology, Dresden, Germany

Giba, Z.

Institute of Botany, Faculty of Biology, University of Belgrade, Belgrade, Serbia and Montenegro

Gisbert-Soler, S. AIJU Toy Research Institute, Ibi (Alicante), Spain

Glidle, A.

Nanoelectronics Research Centre, Department of Electronics and Electrical Engineering, Glasgow University, Glasgow, United Kingdom

Gogolides, E. Institute of Microelectronics, NCSR "Demokritos", Athens, Greece

Gristina, R.

Institute of Inorganic Methodologies and Plasmas, Bari, Italy

Grubišić, D.

Institute for Biological Research "Siniša Stanković", Belgrade, Serbia and Montenegro

Guenther, M.

Institute for Solid State Electronics, Dresden University of Technology, Dresden, Germany

Guo, Y. College of Sciences, Donghua University, Shanghai, China

Hanic, F.

Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia

Harms, H.

Institute of Environmental Science and Technology, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Hegemann, D.

Swiss Federal Laboratories for Material Testing and Research EMPA, St. Gallen, Switzerland

Henda, K.

Centre de Développement des Technologies Avancées, Division des milieux ionisés & Lasers, Baba Hassan, Alger, Algérie

Hirose, A.

Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, Canada

Hodson, C.

Oxford Instruments Plasma Technology, Bristol, United Kingdom

Iacobelli, L.

Department of Chemistry, University of Bari, Bari, Italy

Iacoviello, G.

Department of Chemistry, University of Bari, Bari, Italy

Ivanov, A.

RCC "Kurchatov Institute", Moscow, Russia

XXII List of Contributors

Janca, J.

Department of Physical Electronics, Masaryk University, Brno, Czech Republic

Jastrabik, L.

Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Kado, S.

Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan

Karpiński, L.

Institute of Plasma Physics and Laser Microfusion, Warszawa, Poland

Kawajirim, K.

Institute of Fluid Science, Tohoku University, Sendai, Japan

Khrapak, A. G.

Institute for High Energy Densities, Russian Academy of Sciences, Moscow, Russia

Kieft, E. R.

Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

Kieft, I. E.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Kijeński, J. Industrial Chemistry Research Institute, Warsaw, Poland

Kimura, Y.

Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan

Kinsey, C. R.

Oxford Instruments Plasma Technology, Bristol, United Kingdom

Kodama, S.

Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo, Japan

Krawczyk, I.

Faculty of Process and Environmental Engineering, Technical University of Lodz, Lodz, Poland

Kudrle, V.

Department of Physical Electronics, Masaryk University, Brno, Czech Republic

Kuznetsov, A. V.

The Research Center for Biomaterials, Research Institute of Transplantology and Artificial Organs, Moscow, Russia

Kühn, G.

Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Labrugère, C.

Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS), Université Bordeaux, Pessac, France.

Lahmar, H.

Centre de Développement des Technologies Avancées Division des milieux ionisés & Lasers, Baba Hassan, Alger, Algérie Laurens, P. LALP-CNRS, Arcueil, France

Liang, J.

Department Of Materials Science and Technology, University of Cincinnati, Cincinnati, Ohio, USA

Lopez, L. C.

Department of Chemistry, Institute of Inorganic Methodologies and Plasmas (IMIP), University of Bari, Bari, Italy

Martín-Martínez, J. M.

Adhesion and Adhesives Laboratory, Department of Inorganic Chemistry, University of Alicante, Alicante, Spain

Martínez-García, A.

AIJU Toy Research Institute, Ibi (Alicante), Spain

Mathieu, H. J.

Materials Science Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Mejía, A.

Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela

Milella, A.

Department of Chemistry, University of Bari, Bari, Italy

Misiakos, K.

Institute of Microelectronics-NCSR "Demokritos", Athens, Greece

Mitin, V.

Institute for Inorganic Materials, Moscow, Russia

Mix, R.

Federal Institute for Materials Research and Testing (BAM), Berlin, Germany

Molotkov, V. I.

Institute for High Energy Densities, Russian Academy of Sciences, Moscow, Russia

Morva, I.

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

Morvová, M.

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

Müller, M.

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany

Nishiyama, H.

Institute of Fluid Science, Tohoku University, Sendai, Japan

Nozaki, T.

Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan

Oehr, C.

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany

Ohl, A.

Materials Science Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

XXIV List of Contributors

Okazaki, K. Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan

Van Ooij, W. J.

Department Of Materials Science and Technology, University of Cincinnati, Cincinnati, Ohio, USA

Opalińska, T.

Industrial Chemistry Research Institute, Warsaw, Poland

Opalska, A.

Industrial Chemistry Research Institute, Warsaw, Poland

Ortiz-Magán, A. B.

Adhesion and Adhesives Laboratory, Department of Inorganic Chemistry, University of Alicante, Alicante, Spain

Ouchabane, M.

Centre de Développement des Technologies Avancées, Division des milieux ionisés & Lasers, Alger, Algérie

Pal, A.

Institute of Nuclear Physics, Moskow State University, Gory, Moskow, Russia

Pascu, M.

Laboratoire Polymères, Colloïdes, Interfaces, Université du Maine, Le Mans, France

Pastor-Blas, M. M.

Adhesion and Adhesives Laboratory, Department of Inorganic Chemistry, University of Alicante, Alicante, Spain

Patiño, P.

Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela

Petit, S. LALP-CNRS, Arcueil, France

Petrov, O. F. Institute for High Energy Densities, Russian Academy of Sciences, Moscow, Russia

Petrović, Z. L. Institute of Physics, Zemun, Serbia and Montenegro

Poncin-Epaillard, F.

Laboratoire Polymères, Colloïdes, Interfaces, Université du Maine, Le Mans, France

Poustylnik, M. Y.

Institute for High Energy Densities, Russian Academy of Sciences, Moscow, Russia

Puač, N.

Institute of Physics, Zemun, Serbia and Montenegro

Ramachandran, K.

Institute of Fluid Science, Tohoku University, Sendai, Japan

Rossi, F.

European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy

Ryabinkin, A.

Institute of Nuclear Physics, Moskow State University, Gory, Moskow, Russia

Sahre, K.

Institute of Polymer Research Dresden, Dresden, Germany

Sakai, Y.

Division of Electronics and Information Engineering, Hokkaido University, Sapporo, Japan

Sakura, N.

Division of Electronics and Information Engineering, Hokkaido University, Sapporo, Japan

Sammynaiken, R.

Department of Chemistry, University of Saskatchewan, Saskatoon, Canada

Sardella, E.

Department of Chemistry, University of Bari, Bari, Italy

Schmidt-Szałowski, K.

Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland

Schröder, K.

Materials Science Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Schütz, U.

Swiss Federal Laboratories for Materials Testing and Research EMPA, St. Gallen, Switzerland

Sciarratta, V.

Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany

Segura-Domingo, A.

AIJU Toy Research Institute, Ibi (Alicante), Spain

Sekiguchi, H.

Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo, Japan

Sekkal, A.

Centre de Développement des Technologies Avancées, Division des milieux ionisés & Lasers, Alger, Algérie

Senesi, G. S.

Institute of Inorganic Methodologies and Plasmas, Bari, Italy

Serov, A.

Institute of Nuclear Physics, Moskow State University, Gory, Moskow, Russia

Sevastianov, V. I.

The Research Center for Biomaterials, Research Institute of Transplantology and Artificial Organs, Moscow, Russia

Shi, Ch.

College of Sciences, Donghua University, Shanghai, China

Shi, D.

Department Of Materials Science and Technology, University of Cincinnati, Cincinnati, Ohio, USA

Shulga, Y. M.

Institute of Problems of Chemical Physics, Moscow, Russia

Sim, C.

Nanoelectronics Research Centre, Department of Electronics and Electrical Engineering, Glasgow University, Glasgow, United Kingdom

Singh A.

Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, Canada

List of Contributors xxvi I

Skryleva, E.

Institute of Problems of Chemical Physics, Chernogolovka, Russia

Starostin, A.

RCC "Kurchatov Institute", Moscow, Russia

Stoffels. E.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Storr. M.

Gambro dialysators GmbH & Co. KG, Hechingen, Germany

Suchaneck, G.

Institute for Solid State Electronics, Dresden University of Technology, Dresden, Germany

Suda, Y.

Division of Electronics and Information Engineering, Hokkaido University, Sapporo, Japan

Sugawara, H.

Division of Electronics and Information Engineering, Hokkaido University, Sapporo, Japan

Sun, L. College of Sciences, Donghua University, Shanghai, China

Sánchez-Reche, A. AIJU Toy Research Institute, Ibi (Alicante), Spain

Talsky, A.

Department of Physical Electronics, Masaryk University, Brno, Czech Republic

Tegou, E. Institute of Microelectronics, NCSR "Demokritos", Athens, Greece

Torchinsky, V. M. Institute for High Energy Densities, Russian Academy of Sciences, Moscow, Russia

Tressaud, A.

Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS), Université Bordeaux, Pessac, France

Triandafillu, K.

Institute of Environmental Science and Technology, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

Tserepi, A.

Institute of Microelectronics, NCSR "Demokritos", Athens, Greece

Tyczkowski, J. I.

Faculty of Process and Environmental Engineering, Technical University of Lodz, Lodz, Poland

Ulejczyk, B.

Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland

Vasilets, V. N.

The Research Center for Biomaterials, Research Institute of Transplantology and Artificial Organs, Moscow, Russia

Vohrer. U.

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany

Vourdas, N. Institute of Microelectronics, NCSR "Demokritos", Athens, Greece

Wang, Y. College of Sciences, Donghua University, Shanghai, China

Wilkinson, C. D. W. Nanoelectronics Research Centre, Department of Electronics and Electrical Engineering, Glasgow University, Glasgow, United Kingdom

Wolf, B.

Dept. of Computer Science, Electr. and Mech. Engineering, University of Applied Sciences, Senftenberg, Germany

Woźniak, B. Leather Research Institute, Lodz, Poland

Xie, H.

College of Sciences, Donghua University, Shanghai, China

Yamaoka, D.

Division of Electronics and Information Engineering, Hokkaido University, Sapporo, Japan Yang, P. J. Q.

College of Sciences, Donghua University, Shanghai, China

Yang, Q.

Plasma Physics Laboratory, University of Saskatchewan, Saskatoon, Canada

Zhang, J.

College of Sciences, Donghua University, Shanghai, China

Zhou, H.

Nanoelectronics Research Centre Department of Electronics and Electrical Engineering, Glasgow University, Glasgow, United Kingdom

Zhou, R.

College of Sciences, Donghua University, Shanghai, China

Zhu, F.

College of Sciences, Donghua University, Shanghai, China

Zieliński, T.

Industrial Chemistry Research Institute, Warsaw, Poland

Živković, S.

Institute for Biological Research "Siniša Stanković", Belgrade, Serbia and Montenegro