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XVII

Preface

In the chemical industries, the pretreatment of educts, their chemical conversion
into valuable products, and the purification of resulting product mixtures in down-
stream processes are carried out traditionally in sequentially structured trains of unit
operations. In many cases, the performance of this classical chemical process struc-
ture can be significantly improved by an integrative coupling of different process
units.

The integration of unit operations to form multifunctional processes very often
gives rise to synergetic effects which can be technically exploited. By suitable process
design, an efficient and environmentally benign process operation can be achieved.
Possible advantages of process integration include:

• higher productivity;
• higher selectivity;
• reduced energy consumption;
• improved operational safety; and
• improved ecological harmlessness by avoidance of auxiliary agents and

chemical wastes.
Due to the interaction of several process steps in one apparatus, the steady-state

and the dynamic operating behavior of an integrated process unit is often much
more complex than the behavior of single, non-integrated units. Therefore, suitable
methods for the design and control must be developed and applied, ensuring opti-
mal and safe operation of the considered integrated process.

The major objectives of current research activities in this highly interesting
domain of chemical engineering are to develop new concepts for process integration,
to investigate their efficiency, and to make them available for technical application.
The importance of this field is reflected by the increasing number of articles in jour-
nals and book contributions that have been published during the past three decades
(Fig. 1).

Among these published articles and books, some excellent reviews have appeared
which focused on specific aspects of the process integration. Agar and Ruppel [1]
were among the first to investigate the whole area of integration of heat-exchanging
functions in chemical reactors, whilst Agar [2] later also surveyed other innovative
integration concepts in chemical reactor engineering. According to the present
editors’ knowledge, the first review which covered a broader range of integration
concepts including heat exchange, separation and also mechanical unit operations,
was published in 1997 by Hoffmann and Sundmacher [3]. The cited works refer to
integrated chemical processes as “multifunctional reactors”, which is often used as a
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Preface  XVIII

synonym. Multifunctional reactors can be seen as a very important sub-class of the
area of “process intensification” which was summarized by Stankiewicz and
Moulin [4].

A comprehensive volume covering all aspects of integrated chemical processes
including heat exchange, separations and mechanical unit operations is still miss-
ing, however, and as a consequence the present book was prepared to fill this gap.
The book’s chapters have been authored by leading international experts, and pro-
vide overviews on the present state of knowledge and on challenging future issues.

The book is divided into three parts. Part I surveys concepts for heat-integrated
chemical reactors, with special focus on coupling reactions and heat transfer in fixed
beds and in fuel cells. Part II is dedicated to the conceptual design, control and analysis
of chemical processes with integrated separation steps, whilst Part III focuses on how
mechanical unit operations can be integrated into chemical reactors.

Part I:

Integration of Heat Transfer and Chemical Reactions

Chapters 1 to 3 discuss two recent and important applications of heat-integrated
chemical reactions. Chapter 1, by Kolios et al., is concerned with high-temperature
endothermic processes in heat integrated fixed-bed reactors. Emphasis is placed on
reforming processes, which are widely used for the production of basic chemicals
and fuels from fossil feed stocks. These processes require large amounts of heat at
temperatures up to 1000 °C. In conventional solutions, only about half of the heat
supplied at high temperatures is transferred into the endothermic reaction. Emerg-
ing applications such as decentralized hydrogen production for residential and
mobile power generation require considerable improvement in specific productivity
and thermal efficiency. Therefore, this topic is currently the subject of vivid research
activities in industry and academia alike. Chapter 1 also includes an introduction to

Fig. 1. Journal publications on integrated chemical 

processes according to the Science Citation Index.
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Part II: Integration of Separation Processes and Chemical Reactions XIX

the fundamentals of heat-integrated processes, an overview on recent trends in pro-
cess and apparatus design, and an analysis of the state of the art, with special
emphasis on the steam reforming of methane.

The focus in Chapters 2 and 3 is on high-temperature fuel cells with internal reform-

ing. In particular, special attention is given to the Molten Carbonate Fuel Cell
(MCFC) which is increasingly used for decentralized power generation. In Chapter
2, Heidebrecht and Sundmacher use a simple model of an MCFC to discuss the pros
and cons of alternative reforming concepts in high-temperature fuel cells.

The temperature management in a fuel cell stack is a key issue in the operation of
high-temperature fuel cells. In Chapter 3, prepared by Mangold and colleagues, it is
shown that the temperature-dependence of the electrolyte’s electrical conductivity is
a potential source of instabilities, hot spots, and spatial temperature patterns.

Part II:

Integration of Separation Processes and 

Chemical Reactions

Due to fact that chemical reactions typically do not deliver the desired product alone
and that separation processes are always required, a wide range of efforts have long
been undertaken to combine these two processes into a single apparatus. Although a
comprehensive overview was published recently [5], nine chapters of the present
book describe and discuss the possibilities of integrating separation processes and
chemical reactions.

In Chapter 4, Sundmacher et al. – in the first contribution – analyze in detail the
thermodynamic and kinetic effects relevant to an understanding of reactive distilla-

tion processes. Although a comprehensive volume on this type of process integration
was published in 2003 [6], Chapter 4 focuses on the a priori determination of prod-
ucts that can be obtained using such processes.

In exploiting the equilibrium theory, Kienle and Grüner present in Chapter 5 a
general analysis of the development and propagation of nonlinear waves in reaction
separation processes. Besides considering reactive distillation as one example, these
authors also analyze reactive chromatography.

In Chapter 6, Morbidelli et al. describe chromatographic separations combined with

chemical reactions, the focus of their contribution being to present possibilities of
performing such processes in a continuous manner.

An analysis of reactors where adsorbents are used as a regenerative source or sink for
one or several of the reactants is discussed systematically by Agar, in Chapter 7.

In cases where reactive distillation cannot be applied because some of the reac-
tants are temperature-sensitive, reactive stripping might be an efficient alternative,
and the current state of the application of this technology is reviewed by Kapteijn
and colleagues in Chapter 8.

Another powerful concept is to combine absorption processes with chemical reac-

tions, and a large number of possible concepts for this approach is presented in
Chapter 9 by Kenig and Górak.
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In addition, extraction processes can be performed with reacting species, and
several advantages of this technique may be realized compared to conventional
consecutive processes, as discussed by Bart in Chapter 10.

Based on a thorough analysis of reactive crystallization, Ng and colleagues,
in Chapter 11, demonstrate that such integrated processes can also be performed
efficiently with solid phases involved.

In the final chapter of Part II, Seidel-Morgenstern presents two examples of how
membrane reactors might become an alternative to conventional technology.

Part III:

Integration of Mechanical Unit Operations and 

Chemical Reactions

The last four chapters of the book are dedicated to the successful combination of
chemical reactions and mechanical process operations. In Chapter 13, Janssen eluci-
dates that reactive extrusion has emerged from a scientific curiosity to an industrial
process. Nonlinear effects in this process can give rise to instabilities that are of
thermal, hydrodynamic, or chemical origin.

In Chapter 14, Hoffmann and colleagues provide a survey on the status and direc-
tions of reactive comminution. In this type of process integration, mechanical stress
exerted in mills is used to enhance the chemical reactions of solids with fluids.
Simultaneously, chemical reactions can generate cracks in solid particles and
thereby enhance their comminution.

Filtration and chemical reactions can be usefully integrated in order to separate
diesel soot particles efficiently from motor exhaust gases, and this is illustrated by
Rieckmann and Völker in Chapter 15, together with a series of other examples of
reactive filtration processes which are realized in the chemical industries.

In the final chapter, Mörl and coworkers analyze the complex interaction of
particle granulation and/or agglomeration with chemical reactions in fluidized beds.
For the description of the particle property distribution, a population balance
approach is recommended which is mathematically challenging but which provides
valuable insight into the steady-state and dynamic process operating behavior.

The Book’s History, and the Editors’ Acknowledgments

The present book is the outcome of the International Max Planck Symposium on
Integrated Chemical Processes held in Magdeburg, Germany, on 22–24 March,
2004. At this symposium, renowned scientists met to discuss the current state and
future trends in the field of integrated chemical processes. The conference was
organized by this book’s editors and their colleagues at the Max Planck Institute
for Dynamics of Complex Technical Systems, with financial support from the
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collecting the manuscripts which form the basis of this book. Last – but not least –
we are thankful to Dr. Hubert Pelc and Rainer Münz from Wiley-VCH for their

helpful assistance during the book’s preparation.
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