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1 Introduction

In 1989 the Deutsche Forschungsgemeinschaft established three Collaborative
Research Centres concerned with hypersonic vehicles at the Rheinisch-Westfa-
lische Technische Hochschule Aachen, the Technische Universitat Minchen
and the Universitat Stuttgart. The final report presents a selection of recent re-
search results and an overview of the activities and the organization of the net-
work which evolved during the past fifteen years.

The research was focused on basic aspects of future reusable space trans-
portation systems and covered the areas of overall design, aerodynamics, ther-
modynamics, flight dynamics, propulsion, materials, and structures. The under-
lying configuration which served as a guideline for detailed research consisted
of a two-stage-to-orbit vehicle with the ability to start horizontally. The first
stage had an airbreathing propulsion, the second stage a rocket propulsion.
Both stages were designed to return to earth and land horizontally on adequate
airports.

A major part of the research dealt with experimental and numerical aero-
dynamic topics ranging from low-speed to hypersonic flow past the external
configuration and through inlet and nozzle. The low-speed flow past the lower
stage was investigated for a large range of Reynolds numbers in different wind
tunnels including a test period at high Reynolds numbers with a large model in
the German-Dutch Wind Tunnel (DNW). The studies at high Mach numbers in-
cluded the very complex interference between the lower stage and the upper
stage during the initial flight and during stage separation and the aero-thermo-
dynamic heating. In all cases experimental and numerical approaches were
employed.

Another major part of the research was concerned with flight mechanics.
One aspect was trajectory optimization which was dealt with in cooperation of
mathematicians and engineers. A further aspect relates to stability, control and
flying qualities, the treatment of which includes a collaboration with the NASA
Dryden Flight Research Center using their unique simulation and flight test fa-
cilities. Moreover, the flight dynamics of the separation manoeuvre was subject
of the research activities, employing also wind-tunnel tests at the Institute of
Theoretical and Applied Mechanics of the Russian Academy of Sciences in No-
vosibirsk.
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The re-entry phase was investigated both experimentally and numerically.
Plasma wind tunnels were built to generate high-enthalpy plasma flows and to
investigate the interactions with heat shield materials. The experimental inves-
tigation was accompanied by numerical simulation of the flow field inside the
ground test facility and around a space vehicle re-entering the Earth's atmo-
sphere. New aero-thermodynamic models enabled a successful post-flight anal-
ysis of the MIRKA re-entry. Re-entry experiments for in-flight investigation of
plasma flow and material response were successfully flown on capsules such as
EXPRESS and MIRKA; others are about to be flown on missions such as EX-
PERT.

For the overall design investigations a propulsion simulation model includ-
ing the jet and ramjet modes was developed. The efficiency of supersonic and
hypersonic airbreathing propulsion depends strongly on the efficiency of inlets
and nozzles. Therefore, several numerical and experimental projects dealt with
these components of future space planes. In other projects methods to reach
stable supersonic combustion were investigated.

Structural research and development was predominantly coupled to the
needs for high-temperature resistant structures for space vehicles. During the
re-entry phase from orbit to earth temperatures of more than 1600°C are
reached. For the application in a thermal protection system (TPS) and also as a
material for the use in hot structures, like control surfaces, a new type of cera-
mic matrix composite was developed on the basis of carbon fibres that is called
C/C-SiC. The technology of thermal protection systems reached a maturity that
allowed a flight experiment with a representative TPS structure on the surface
of a Russian FOTON research capsule that was scheduled for a micro-gravity
mission in orbit with subsequent re-entry to earth.

This final report presents some of the most recent results obtained in the
disciplines required for the design of future space planes. In additional chapters
the unique model established for the cooperation of three cooperative research
centres at different universities is described and analyzed.

December 2003 Dieter Jacob
Gottfried Sachs
Siegfried Wagner



2  Network Organization of Collaborative
Research Centres for Scientific Efficiency
Enhancement

Dieter Jacob, Gottfried Sachs, and Siegfried Wagner

2.1 Introduction

Three initiatives for Collaborative Research Centres of the Deutsche For-
schungsgemeinschaft evolved in the late eighties, at the Rheinisch-Westfdlische
Technische Hochschule Aachen, the Technische Universitdt Miinchen and the
Universitat Stuttgart. After exploratory and advisory talks with the Deutsche
Forschungsgemeinschaft, principles for research planning and cooperation
were established, resulting in a concept for a framework of research and orga-
nization of the initiatives. This concept is based on the following elements:

— Each initiative for a Collaborative Research Centre proposes its own, inde-
pendent research programme which can be realized even if another initia-
tive fails. Each research programme has an own concentration on points of
emphasis as part of the overall theme.

— The research programmes of the initiatives should be complementary.

— The complementing of the research programmes must not confine the deci-
sion such that approval of all Collaborative Research Centres becomes im-
perative.

After successful passing the review procedure, the following three Collabora-
tive Research Centres have been established by the Deutsche Forschungsge-
meinschaft in 1989:

— Collaborative Research Centre 253 “Fundamentals of Space Plane Design”
at the Rheinisch-Westfalische Technische Hochschule Aachen,

— Collaborative Research Centre 255 “Transatmospheric Flight Systems” at
the Technische Universitat Miunchen,

— Collaborative Research Centre 259 "High-Temperature Problems of Reus-
able Space Transportation Systems"” at the Universitat Stuttgart.
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2.2 Organization of Collaboration

For organizing the collaboration of the three Collaborative Research Centres, a
Compound Network was established. It has the following structure:

1. Steering Committee

A Steering Committee consisting of the Speakers of the three Collaborative Re-

search Centres was established. The Steering Committee meets several times a

year and is responsible for the following topics:

— strategic planning for future research programmes;

— coordination of main research activities between the Collaborative Research
Centres;

— laying down of principles and goals of the collaboration among the Re-
search Centres as well as with external partners from research institutions
and industry;

— planning of joint activities for the presentation of research results;

— planning of joint education activities for students as well as engineers and
scientists.

2. The Collaborative Research Centres exchange their research results and in-

form each other about ongoing and planned work.

3. Data banks concerning the air and combustion gases will be jointly gener-

ated.

4. The Collaborative Research Centres will inform each other about test con-

figurations and models and use the same or similar models.

5. The Collaborative Research Centres present research results in a joint man-

ner at national and international scientific meetings, conferences, etc.

2.3 Efficiency Enhancement in Research

The Compound Network of the Collaborative Research Centres enabled an en-
hancement of efficiency in research. Basically, resources and competences of
the three Collaborative Research Centres could be brought together to yield
synergy effects and improvement of research efforts.

At the working level, advantages resulted from mutual contacts and visits
as well as from the exchange of scientists. Furthermore, working groups could
be established to address specific subjects (numerical methods, measurement
techniques, etc.). Other joint activities relate to the development of computer
codes and software or verification of numerical results.
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Contacts and cooperations with external scientist groups were also pro-
moted by the Compound Network. This concerns university institutes and re-
search establishments as well as industry companies.

A further enhancement of the research efficiency relates to large research
facilities which may not be accessible for a single Collaborative Research Cen-
tre. As an example, the three Collaborative Research Centres jointly conducted
a large experimental project at the German-Dutch Wind Tunnel.

The establishment of the Compound Network led to an increase in compe-
tence. Thus, the position of the three Collaborative Research Centres as coop-
eration partners of research and industry was strengthened. This resulted in a
further advantage since industry expressed their willingness for a continuous
support concerning computational techniques, data, and experimental facilities.
Another result was the participation of the Collaborative Research Centres in
national and international research programmes, like the German Programmes
TETRA "Technologien fiir zukinftige Raumtransportsysteme” and ASTRA
"Ausgewadhlte Systeme und Technologien fiir zukiinftige Raumtransportsystem-
Anwendungen” as well as the European Programmes FESTIP "“Future Europe-
an Space Transportation Investigations Programme” and FLPP “Future Launch-
er Preparatory Programme” (planned). Moreover, working groups with repre-
sentatives from research and industry were established. In addition, scientists
conducted flight experiments related to aero-thermodynamics and materials on
the re-entry missions EXPRESS, MIRKA and IRDT. Surface protection layer de-
velopment for thermal protection system materials of future reusable vehicles is
funded within a programme by the State of Baden-Wiirttemberg.

2.4 Efficiency Enhancement in Teaching and Education

The establishment of the Compound Network also enabled an enhancement of
the efficiency in teaching and education. This is of particular importance for hy-
personics because of the backlog demand in this field.

A very effective means were the Space Courses which were jointly held
by the three Collaborative Research Centres at the Rheinisch-Westfalische
Technische Hochschule Aachen, the Technische Universitat Miinchen, and the
Universitat Stuttgart. The Space Courses which had a duration of two or three
weeks were offered to graduate students as well as to participants from re-
search establishments, industry companies, and administration agencies. There
was great interest in the Space Courses not only from Germany but also from
other countries.

There are manifold other activities of the Compound Network supporting
and enhancing the efficiency in teaching and education. Joint seminars and
workshops were conducted, yielding an exchange of experiences and results
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between members of the Collaborative Research Centres. Moreover, working
groups supported the education of students and young scientists. A further pos-
sibility concerns the participation of members of a Collaborative Research Cen-
tre in doctoral theses of another one.

Further activities enhancing the efficiency in education relate to joint re-
search programmes, yielding unique experience for the involved young scien-
tists. This concerns the already mentioned experimental programme at the Ger-
man-Dutch Wind Tunnel. Another activity was a joint wind tunnel test pro-
gramme at the Institute of Theoretical and Applied Mechanics of the Russian
Academy of Sciences, Siberian Branch in Novosibirsk, Russia, offering experi-
ence on cooperation with scientists from abroad.

2.5 Internationalization

The competence which the Collaborative Research Centres have attained led
to a greater visibility, both nationally and internationally. The Compound Net-
work has gained recognition in various countries. Multiple invitations came
from Europe, the USA, and Japan to give an overview of the German university
research on hypersonics. Furthermore, the joint arrangement of workshops with
participants from various countries contributed to the international recognition
of the Compound Network. This is also true for the joint organization of ses-
sions in international scientific congresses in Germany as well as in other coun-
tries.

Many research activities developed on an international basis. There was a
very successful collaboration with the NASA Dryden Flight Research Center in
Edwards, California, over many years, leading to the utilization of flight test
and simulation facilities which are unique in the world. Another international
cooperation effort was the already mentioned wind tunnel test programme of
the Institute of Theoretical and Applied Mechanics in Novosibirsk. The partici-
pation in the European programmes FESTIP and FLPP is another example.
There are many other research activities with scientists from other countries,
contributing to the international visibility of the Compound Network.

The international visibility of the Research Network also holds for the
teaching and education activities. There were students from other countries,
purposefully approaching the Collaborative Research Centres for diploma the-
ses. Other successful activities concern research stays of young scientists at the
Collaborative Research Centres abroad and vice versa. The great interest of
people from other countries in the Space Courses is also evidence of the inter-
national visibility.

A most remarkable activity which gained both national and international
recognition is the exhibition “The New Way into Space — Space Transporters of
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the Next Generation” of the Deutsche Forschungsgemeinschaft. This exhibition
which is concerned with the research of the Compound Network was displayed
with great success in various cities in Germany, like Bonn, Stuttgart, Miinchen,
Aachen, Berlin, and others. An international version of the exhibition was
shown in several countries within the scope of the Concerted Action “Joint Ini-
tiative for the Promotion of Study, Research, and Training in Germany" of the
German Federal Ministry of Education and Research, the States of the Federal
Republic of Germany, and other institutions. The fact that the Deutsche For-
schungsgemeinschaft selected the subject of the Compound Network for these
exhibitions is evidence of its successful research work.

2.6 Final Remarks

The experience which the involved scientists gained with the Compound Net-
work is very positive. It strengthened their activities in research and teaching.
This also holds for their relation and cooperation with external partners from re-
search institutions and industry, both nationally and internationally. To sum up,
it can be said that the Compound Network of the three Collaborative Research
Centres 253, 255, and 259 turned out as an appropriate means to efficiently or-
ganize the research work for a subject which is sufficiently broad.

Evidence of a Compound Network as an efficient possibility of organizing
research in a greater framework is also due to the statement of the German
Wissenschaftsrat on the development of the programme for the Collaborative
Research Centres from 23 January 1998. Here, the Compound Network of the
three Collaborative Research Centres 253, 255, and 259 is recognized and a
stronger networking of thematically related Collaborative Research Centres is
also recommended for the future.
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3.1 Conceptual Design of Winged Reusable
Two-Stage-to-Orbit Space Transport Systems

Stefan Lentz, Mirko Hornung *, and Werner Staudacher

3.1.1 Background and Introduction

During the Space Race — from the fifties to the eighties — money was almost
irrelevant to bring anything alive, which went to orbit and beyond. Those days
could be characterized as paradise for rocket scientists, engineers, conceptual-
ists and lots of men with brilliant or weird ideas on both sides of the iron cur-
tain. Some concepts and ideas came to the drawing board and entered life
(Apollo and Space Shuttle, Saljut, Buran, Mir etc.) and some — or most of them
— went into the drawer or just became paper planes. Eventually, the curtain
dropped and space flight slithered into a crisis; money became a factor which
could not be disregarded, economical aspects gained in importance and as a
consequence lots of concepts died. The cold war and national prestige driven
high tech aerospace machinery began to stutter.

The American partly reusable Space Transportation System STS or “Space
Shuttle” was still suffering from the Challenger catastrophe and was just too
expensive to place satellites into orbit with human assistance. The two major
expendable rocket systems Delta and Titan — which were derivatives from in-
tercontinental ballistic missiles concepts — were unreliable and ineffective for a
rising demand in commercial payloads. Russian launchers still were not or only
hardly accessible. It was the age of the European Ariane rocket which was
especially designed to place (commercial) payloads into orbit and, in addition,
due to the lack of other competitors. Although Ariane IV was very versatile and

* EADS European Aeronautic Defence & Space Company, Division Military Aircraft,
MS61 — A400M Program Management, 81663 Miinchen; mirko.hornung@eads.com
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successful, it was still an expendable system and thus expensive. In the fading
of 20™ century it was realized, that exorbitant costs for access to space need to
be reduced drastically to give further rise of attractiveness for space transporta-
tion and exploitation. Auspicious and ambitious fully reusable concepts like the
American National Aerospace Plane, the German Sanger or the British HOTOL
emerged from this proposition. National prestige and still a kind of cold-war-
thinking led to excessive requirements resulting in insuperable technical and
financial obstacles. However these concepts showed the right trend for long-
term future launchers. Cost reduction strategies for present expendable rockets
led to increasing and multiple payload capabilities and heavier and bulkier sys-
tems such as Ariane V, Delta IV and Atlas V, which share a hard-fought mar-
ket, especially since Russian low cost carriers are available [1].

Today the expense factor is a major and global approved criterion for the
development of future space transportation systems. A cost-efficient and reli-
able launcher is vital to win the leading market position. After initial success in
the commercial space market, Europeans need to find alternatives for the cost-
intensive expendable systems to maintain or regain their position in the global
market. The logical and in the long term only reasonable consequence is the
design of reusable space transportation systems, which keep down non recur-
ring costs (design and development) as well as recurring costs (production and
operations) and finally allow "aircraft-like" operations. To achieve these re-
quirements several strategies and philosophies exist [2—4].

At the present time, design and development of reusable space transporta-
tion systems is still in a conceptual phase. The state-of-the-art is rather seen as
prospect and can be classified as highly evolutionary. The continuous quest for
solutions and the exigency of an evolutionary process are reflected in a multitude
of more ore less favourable design alternatives and concepts, preferences de-
pending on strategies and experiences from the past. An example for a wide-
spread investigation is the FESTIP (Future European Space Transportation Inves-
tigations Programme) system study of ESA, in which 7 system concept families
with 19 variants of space launchers were analyzed. This system study can be seen
as a paradigmatic characterization from an European view, since American con-
cepts were also incorporated. On the other side of the Atlantic several American
studies exist such as the SLI (Space Launch Initiative) of NASA [3-6].

A major problem is the justification of Reusable Launch Systems (RLV).
Current number of world wide launches is below 100 per year but only few of
them are performed by at least partially reusable Space Shuttle. This market is
shared among the major competitors as the USA, Europe, Russia, Japan and
(soon) China. Even the United States’ share of the market (including commer-
cial and governmental launches) is too small to overcome the break even point
for the development of a fully reusable launch vehicle [7].
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