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Over the last ten years, scientists from varying backgrounds have rallied around a
versatile new method for the synthesis of thin films. Because the layer-by-layer as-
sembly method provides opportunities for creative design and application of func-
tion-specific films, the field has experienced an initial period of exponential
growth. This book, the first on the topic, contains many insightful contributions
from leaders in the field that will enable novices and experts to understand the
promises and premises of multilayers.

Readers will instantly identify with a particular aspect of the technology,
whether it is the design and synthesis of new polymeric or nanoparticulate build-
ing blocks, understanding the polymer physical chemistry of multilayers, or char-
acterizing their optical, electrical or biological activities. The reasons for the in-
tense interest in the field are also clearly evident: multilayers bridge the gap be-
tween monolayers and spun-on or dip-coated films, and they provide many of the
aspects of control found in classical Langmuir-Blodget (LB) films, yet multilayers
are more versatile, in many respects, and easier to create.

This book is an essential and welcome addition to the literature on thin films.
Readers with interests in self-assembled systems, supramolecular chemistry, nano-
composites or polymers will find themselves fascinated by the diversity of topics
herein. The message that multilayers are making significant inroads into numer-
ous aspects of chemistry, physics and biology is made clear. The editors and
authors are to be commended for creating a comprehensive yet readable volume.

Jean-Marie Lehn
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When a new field is growing exponentially, as judged by the number of publica-
tions, presentations and patents, when is the “right” time to assemble a volume of
contributed chapters from some of the acknowledged leaders in the field? What if
every potential contributor is incredibly busy, following up an ever-expanding
plethora of ideas and experiments? It was in this harried atmosphere that our col-
leagues carved out the time to write their contributions. We are extremely grateful
to them for gathering their thoughts and accomplishments into chapters.

The idea for this book came together following a very successful symposium at
the ACS in San Francisco 2000, which we organized. No volume on the topic had
yet been published, but there was already a large store of knowledge that had
been created as groups had responded enthusiastically to the promise of the first
few papers appearing in the early 90’s. Multilayers had gathered a great deal of
momentum, flourishing in the more “informal” space of papers, preprints, talks
and word-of-mouth. By 2000, the field had simply outgrown informality.

We had been riding the wave of this activity, enjoying a growing number of col-
leagues. We were fully aware of the infectious nature of multilayers research,
which is like a good mystery novel – hard to put down once you start. We are ho-
nored to have been in the thick of things during the early years. Every experiment
was significant and the results suggested several more experiments. This dizzying
atmosphere pervades even today: ask any multilayerer!

We are pleased to have edited this book. Our object was not only to document
what is known about multilayers, but also to promote the potential of these versa-
tile thin films and to facilitate the adoption of the technology by others. The field
is new. We are proud of its ability to catalyze interdisciplinary thought and action.
In this regard, multilayers represent a model platform for promoting modern re-
search. Also, the intellectual distance between concept and application is minimal.
Commercial applications have already been realized.

We hope the message of abundant research opportunities is made loud and
clear. It is easy to get started. Easy to get “hooked.” This book is essential in show-
ing you how. We look forward to more elegant and complex multilayered architec-
tures and functionalities, as well as significant expansion at the biological/biome-
dical interface.

XV

Preface



Finally, we would like to express our thanks to Jean-Marie Lehn for his support
in writing the forword. His “big-picture” viewpoint is sincerely appreciated.

August 2002 Gero Decher

Joe Schlenoff
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1.1
Why is the Nanoscale so Interesting?

In our research team, we strongly believe that the functionality of any object (on any
length scale) arises from the intricate interplay of its constituents. In complex sys-
tems, new properties appear that are not observed for each individual component.
While it is trivial that electrons and nuclei form atoms (sub-ångstrom scale), that
atoms form molecules (ångstrom scale) or that monomers can be transformed into
polymers (early nanometer scale), we are just beginning to explore the potential of
supramolecular assemblies or of large multifunctional objects (e.g. copolymers of
complex architecture). While nature plays with the full range of objects on the
length scale from femtometers to parsecs, mankind is somewhat limited to the
length scale between subatomic particles and the size of our planet. Although the
range accessible to man is already reduced, we hardly master more than a fraction
of what is available to us. A particularly interesting length scale is, of course, the
nanoscopic organization of matter. Taking life as the most fascinating and complex
property of matter, nature clearly shows that the minimum size of a lifeform (in the
definition of life as we know it) is of nanoscopic to microscopic dimension. It is ex-
actly this length scale that is just being touched but not mastered by either bottom
up (chemical synthesis) or top down (miniaturization) approaches. Fig. 1.1 sum-
marizes our philosophy and motivation for working on the synthesis, properties
and fabrication of complex nanoorganized and nanocomposite materials.

1.2
From Self-Assembly to Directed Assembly

Suppose you do not like the way materials end up being arranged after carrying
out a self-assembly experiment and obtaining equilibrium. The obvious pathway
for improvements seems to be to re-engineer the chemical structure of the mole-
cules involved and to hope to obtain a more suitable structure with the new mole-
cules. This is often time-consuming as several optimization cycles are frequently
required.
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Another possible route to a desired target structure is to use an assembly proce-
dure that prevents equilibrium by trapping every compound kinetically in a prede-
termined spatial arrangement. At present there are only very few approaches in
this direction. Most of the work has been carried out for the simplest case, in
which different materials are put in one-dimensional order in a multilayer film.
For about 65 years the molecularly controlled fabrication of nanostructured films
has been dominated by the conceptually elegant Langmuir-Blodgett (LB) tech-
nique, in which monolayers are formed on a water surface and subsequently
transferred onto a solid support [2, 3]. The pioneering work on synthetic nanos-
cale multicomposites of organic molecules was carried out by Kuhn and collea-
gues in the late 1960s using the LB technique [4]. His experiments with donor
and acceptor dyes in different layers of LB films provided direct proof of distance-
dependent Förster energy transfer on the nanoscale. These were also the first true
nanomanipulations as they allowed for mechanical handling of individual molecu-
lar layers such as separation and contact formation with ångstrom precision [5].
Unfortunately the LB technique is rather limited with respect to the set of molec-
ular components suitable for LB deposition, and molecules are often not firmly
trapped and frequently rearrange after or even during deposition.
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Fig. 1.1 Complexity as a function of length
scale. Materials Science is not yet as far ad-
vanced as the evolutionary developments pre-
sent everywhere in nature. The photosystem

is just one example of the precise spatial as-
sembly of a functional molecular machine.
The drawing is adapted from [1].



1.3
The Layer-by-Layer Deposition Technique

The so-called layer-by-layer (LbL) deposition technique [6–14] (Fig. 1.2) also falls
into the category of template assisted assembly. Template assisted assembly is
much faster than self-assembly/chemical modification cycles whose outcome is of-
ten uncertain or difficult to predict. For the case of LbL-deposition, it can be tai-
lored to even allow multimaterial assembly of several compounds without special
chemical modifications [15–19], thus giving access to multilayer films whose com-
plex functionality can fall into the two following categories:

1. Tailoring of surface interactions: Every object interacts with its environment
via its surface. Thus all properties depending on this interaction are dictated by
surface functionality which can be tailored for many needs (e.g. corrosion protec-
tion [20], antireflective coatings [21], antistatic coatings, stickiness or non-sticki-
ness [22], surface induced nucleation [23–26], antifouling [27–29], hydrophilicity or
hydrophobicity, biocompatibility [30, 31], antibacterial properties, molecular recog-
nition, chemical sensing or biosensing [32–46], microchannel flow control [47,
48] . . .).

2. Fabrication of surface based devices: The sequence of deposition of different
materials defines the multilayer architecture and thus the device properties. One
may call this knowledge based (or programmed, or directed, or controlled, or tem-
plate assisted) assembly, in contrast to self-assembly. It leads to property engineer-
ing by controlling the mostly one-dimensional spatial arrangement of functional-
ity in multimaterial layered nanocomposites (membrane reactors [49–51], photo-
nic devices such as light emitting diodes [52–75] or complex waveguides, compart-
mentalized films with barrier layers or separation membranes [34, 44, 75–83], . . .).

The fabrication of multicomposite films by the LbL procedure means literally
the nanoscopic assembly of hundreds of different materials in a single device
using environmentally friendly, ultra-low-cost techniques. The materials can be
small organic molecules or inorganic compounds [7, 61, 84–99], macromolecules
[12, 39, 53, 55, 76, 86, 100–116, 117–125], biomacromolecules such as proteins or
DNA [15–18, 30, 32, 49, 50, 126–151] or even colloids (metallic or oxidic colloids
or latex particles) [18, 21, 75, 79, 98, 108, 121, 142, 152–198]. The technique can
be applied to solvent accessible surfaces of almost any kind and any shape, the
more exotic ones being microcapsules, colloids or biological cells [104, 122, 199–
206].

Note that the list of references above is intended to give some introductory in-
formation on some recent developments of layer-by-layer assembly. Since many
groups have provided reviews of their excellent work for this book, a complete ref-
erence list to all of their work is not needed in this overview chapter. A more de-
tailed history of LbL deposition, the principle of which was apparently first de-
scribed by Iler [207], is found in a recent review [208]. In the last eight years the
field has been reviewed on several occasions outlining the concepts behind and
the potential of the LbL technology [208–215]. The approach has spread from our
laboratory to the international community and kindled research of physicists, che-
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mists and of scientists in the biomedical field, because it is extremely powerful
yet simple to use and because it challenges theory at the level of polyelectrolyte
adsorption.

1.3.1
LbL Deposition is the Synthesis of Polydisperse Supramolecular Objects

For most cases an LbL film has a unique layer sequence that depends strictly on the
deposition sequence. This points to the fact that LbL deposition should be consider-
ed as an analogue to a chemical reaction sequence (Fig. 1.3). While a chemical reac-
tion takes place between different synthons and typically yields a unique molecule
after each synthetic step, layer-by-layer deposition involves the adsorption of a single
species in each adsorption step and yields a multilayer film with a defined layer
sequence. While molecules are synthesized in several consecutive reaction steps,
a multicomposite film is fabricated in several adsorption steps.

The reagents in classic synthesis are typically molecules, in layer-by-layer deposi-
tion they can be chosen from a wide range of materials. This is represented sche-
matically in Fig. 1.4. While today most of the multilayer films have been fabri-
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Fig. 1.2 Top: Simplified molecular concept of
the first two adsorption steps depicting film
deposition starting with a positively charged
substrate. The polyion conformation and layer
interpenetration are an idealization of the sur-
face charge reversal with each adsorption
step which is the basis of the electrostatically
driven multilayer buildup depicted here. Coun-
terions are omitted for clarity. Bottom:
Schematic of the film deposition process

using glass slides and beakers. Steps 1 and 3
represent the adsorption of a polyanion and
polycation respectively, and steps 2 and 4 are
washing steps. The four steps are the basic
buildup sequence for the simplest film archi-
tecture (A/B)n where n is the number of de-
position cycles. The construction of more
complex film architectures requires additional
beakers and an extended deposition se-
quence.



cated using mainly electrostatic attraction as the driving force for multilayer build-
up, this is by no means a prerequisite. There are many other interactions that
have been used successfully for multilayer deposition including: donor/acceptor
interactions [216-218], hydrogen bonding [173, 219–224], adsorption/drying cycles
[225, 226], covalent bonds [11, 14, 45, 227–238], stereocomplex formation [239–
241] or specific recognition [6, 17, 126, 128, 132, 139, 242–246].

In general one needs just any interaction (this may be one or several different
interactions) between two species “reagents” in order to incorporate them into a
multilayer film. The interaction can easily be tested in solution prior to carrying
out the deposition if both film constituents are soluble in the same solvent. When

1.3 The Layer-by-Layer Deposition Technique 5

Fig. 1.3 Analogy of chemical multistep synthesis and multilayer
deposition, both leading to a unique molecular and supramole-
cular species (multilayer film).

Fig. 1.4 Reagents for layer-by-layer deposition. Some details on composition and structur-
al properties are shown for polymers and colloids. To keep the schematic simple, this level
of detail is not carried through for the last three types of reagents. One should also note
that small molecules and complex ions are sometimes more difficult to incorporate into
multilayer films in a regular way than, for example, charged macromolecules.



both solutions are mixed and flocculation occurs it is a good sign that multilayer
fabrication will be possible. This is only a very crude test: multilayer formation
may also be possible in the absence of flocculation.

Given the large set of materials which are easily incorporated into multilayer
films, layer-by-layer deposition is a rather general approach for the fabrication of
complex surface coatings. It combines several advantages as shown in Fig. 1.5. It
is possible to coat almost any solvent-accessible surface starting with sub-micron
objects [104, 122, 199-202, 204–206] up to the inside of tubings or even objects
with a surface of several square meters. Like a chemical reaction, the precise
structure of each layer depends on a set of control parameters such as concentra-
tion, adsorption times, ionic strength (e.g. [9]), pH (e.g. [247]), or temperature
(e.g. [248]), but in general the processing window is rather broad.

1.3.2
Reproducibility and Deposition Conditions

The question of reproducibility arises immediately when we draw the analogy be-
tween a chemical reaction and layer-by-layer adsorption. At first sight one may say
that molecules are unique species and multilayer films are “only” ill-defined su-
pramolecular objects. This is essentially the same argument that has downgraded
macromolecular chemistry for years in comparison to organic chemistry. Today it
is generally accepted that “ill-defined” macromolecules are also unique species
that can indeed be well described by distributions and average properties like poly-
dispersity or degree of polymerisation. The situation is similar for multilayer
films as they are characterised by a sequence of layers in which each layer has its
individual structure and properties. While the sequence of layers is as strict as the
arrangement of atoms in a molecule, the properties of each layer can only be de-
scribed as an average over a certain area. The most obvious property of an individ-
ual layer is its thickness, which is dependent on the nature of the underlying sur-
face and on the deposition conditions. Parameters presumed to be important with
respect to the underlying surface are, for example, the nature and density of
charged groups, their local mobility (in the case of a polymeric surface) and the
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Fig. 1.5 Summary of some of the advantages of layer-by-layer deposition.
While the structure and properties of each layer depend on certain control
parameters as mentioned above, the deposition is highly reproducible if
these parameters are maintained strictly constant.



surface roughness. The most important reaction parameters or deposition condi-
tions are mentioned in Fig. 1.5. However, the list is somewhat longer including:
solvent, concentration of adsorbing species, adsorption time, temperature, nature
and concentration of added salt, rinsing time, humidity of the surrounding air,
drying, agitation during adsorption or rinsing, dipping speed and so forth. While
the LbL technique generally works very well due to the fact that the processing
window is rather large, it is highly recommended to keep the deposition condi-
tions as constant as possible in order to get highly reproducible results. If this is
done rigorously, one obtains films composed of tens of layers whose thickness for
example, differs by about one percent. When comparing data, one should not
overlook that it is not sufficient only to maintain the deposition conditions exactly,
but also the conditions under which the measurements were taken. Fig. 1.6 shows
an example of how the film thickness of a (PSS/PAH)8 multilayer film, for which
both polyions were deposited from solutions containing 2 M sodium chloride, de-
pends on the temperature and on the relative humidity at the time of the mea-
surement.

Often it is said that polyelectrolyte multilayer films are independent of the un-
derlying substrate. This is an oversimplified statement, of course there is a depen-
dence on the underlying surface as stated above. However, since polyanion and
polycation adsorption is repeated consecutively, each polyanion adsorbs onto a
polycation-covered surface and vice versa. This means that, after a few layers, the
structure and properties of each layer are governed by the choice of polyanion/
polycation pair and by the deposition conditions and that the influence of the sub-
strate is typically lost after a few deposition cycles. The issue of the substrate is ex-
amined again when discussing soft and rigid materials later.

1.3.3
Monitoring Multilayer Buildup

1.3.3.1 Ex-situ Characterisation
The easiest way to follow multilayer buildup is probably by UV/Vis spectroscopy,
which works for all colored materials. Fig. 1.7 is an example for poly(styrene sulfo-
nate)/poly(allyl amine) (PSS/PAH) films which constitute probably the best char-
acterised system at present.

Equivalent to measuring the optical absorbance, one can also determine the
film thickness by ellipsometry or X-ray reflectometry as shown in Fig. 1.8. The re-
flectivity traces on the left were taken on a dry specimen at various stages of mul-
tilayer buildup. Each trace corresponds to a single data point in the diagram on
the right. In this case PSS was deposited from aqueous solutions containing dif-
ferent amounts of salt, while PAH was deposited from pure water. One clearly
sees that the film thickness is slightly, but very precisely, increased with increas-
ing salt concentrations [9]. This effect would be much stronger if both polyions
were deposited from solutions containing salt. The fact that only interference
fringes resulting from the total film thickness are observed in such samples will
be discussed in the section on the structure of multilayer films. The salt concen-
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tration is not the only parameter that allows one to control the thickness of indi-
vidual layers. Rubner has shown that, for the case of weak polyelectrolytes, layer
thickness can be precisely controlled by pH [247].

While the two methods above are simple but sufficient to get some preliminary
ideas on the deposition behaviour, there are numerous additional characterization
methods described in the other chapters of this book. Very recently, nuclear mag-
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Fig. 1.6 Top: Film thickness of the same
multilayer specimen as a function of tempera-
ture and of relative humidity (r.h.). The differ-
ences in thickness at identical temperatures
are entirely due to a difference in water con-
tent within the film and not due to a negative
thermal expansion coefficient. This difference
becomes less pronounced at elevated tem-
perature, when the water is driven out of the

film. Bottom: The same data as above, but
normalised with respect to the initial film
thickness. It becomes obvious that even small
differences in temperature or humidity can
easily account for changes in film thickness of
the order of 5–10% depending on the swell-
ability of the film. (G. Sukhorukov, J. Schmitt
and G. Decher, unpublished results.)


