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Historically, main-group organometallics and metallorganics have played a major
role in modern organic synthesis. The Grignard reagent has played quite a signifi-
cant role in this field of chemistry for more than one hundred years. For most
chemists, this type of magnesium compound is probably the first organometallic
reagent that is encountered in their first organic-chemistry course. Although the
use of Grignard reagents is truly impressive, the actual mechanistic details of re-
actions of these well-known organometallic compounds are still vague. Recent ad-
vances in various analytical technologies have allowed us to understand some of
details of reactions that use the classical reagent. In light of the elucidation of var-
ious mechanisms, we now recognize the role of Grignard reagents in organic syn-
thesis to be even greater than first anticipated.

Now that we are able to understand the chemical behavior of many main-group
elements such as lithium, silicon, boron, and aluminum, the purpose of this book
is to summarize these recent developments and show the promising future roles
of complexes of these metals in modern organic synthesis. In fact, these reagents
are both useful and much safer than most transition-metal compounds.

This volume focuses on areas of main-group organometallic and metallorganic
reagents selected for their significant development during the last decade. Each
author is very knowledgeable in their particular field of chemistry, and is able to
provide a valuable perspective from a synthetic point of view. We are grateful to
the distinguished chemists for their willingness to devote their time and effort to
provide us with these valuable contributions.

Hisashi Yamamoto and Koichioro Oshima
Chicago and Kyoto
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1.1
Introduction

Organolithium compounds are central to many aspects of synthetic organic chem-
istry and are primarily used as carbanions to construct carbon skeletons of a wide
variety of organic compounds. Despite the strictly anhydrous conditions generally
required for successful performance of reactions using organolithium com-
pounds, their fundamental significance in synthetic organic chemistry remains
unchanged. Tremendous efforts have therefore been devoted to the development
of convenient methods for generation of tailor-made organolithium compounds
and useful reactions using conventional organolithium compounds.

Because comprehensive literature [1–8] covering various aspects of organo-
lithium chemistry has recently become available, the purpose of this chapter is to
highlight “powerful synthetic tools” involving organolithium compounds. The
definition of “organolithium” is here limited to those compounds in which there
is a clear C–Li bond; compounds with enolate or ynolate structures or with hetero-
atom (Y)–Li bonds, etc., have been excluded.

This chapter is roughly divided into three sections. The nature of organolithium
compounds, their structures, the configurational stability of their C–Li bond, and
general guidelines regarding the handling organolithium compounds are briefly
considered first (Section 1.2). The next section concerns the classification of useful
methods for generation of organolithium compounds in which new C–Li bonds
are created either by reduction, using lithium metal itself, or by the conversion of
a C–Li bond into a less reactive C–Li bond (Section 1.3). The last section primarily
describes potential methods for construction of the carbon framework, driven by
conversion of a C–Li bond into a less reactive Y–Li bond (Section 1.4). All the ex-
amples dealt with in the last two sections have been selected on the basis of the
distinct advantages of employing organolithium compounds compared with other
organometallic reagents. We will not detail pioneering works underlying the estab-
lishment of selected examples, because we are concerned that excessive compre-
hensiveness might obscure their marked synthetic importance. There is no doubt,
however, that modern synthetic technology has been developed on the basis of the
considerable efforts of our forefathers, and readers are strongly recommended to
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refer to other books or reviews cited in this chapter for historical aspects and
other issues regarding organolithium chemistry.

1.2
Nature of Organolithium Compounds

1.2.1
Overview

Because organolithium compounds are generally sensitive to oxygen and mois-
ture, rigorous exclusion is required to prevent decomposition. They are, however,
stable in anhydrous hydrocarbons under a nitrogen or, preferably, argon atmo-
sphere at ambient temperature, and the solutions can be stored for longer at low-
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Tab. 1.1 Commercially available organolithium compounds

Organolithium compound Abbreviation Solvent Concn
(M)

Methyllithium MeLi Diethyl ether 1.0 a)

1.4 c)

Methyllithium-lithium MeLi–LiBr Diethyl ether 1.5 c)

bromide complex 2.2 b)

Methyllithium-lithium
iodide complex

MeLi–LiI Diethyl ether 1.0 c)

n-Butyllithium n-BuLi Hexane 1.6 a–c)

2.5 b, c)

2.6 a)

3.0 a)

10.0 c)

Cyclohexane 2.0 c)

Pentane 2.0 c)

s-Butyllithium s-BuLi Cyclohexane 1.0 a)

1.3 c)

1.4 b)

t-Butyllithium t-BuLi Pentane 1.5 a)

1.7 c)

Phenyllithium PhLi Cyclohexane-diethyl 1.0 a)

ether 1.8 c)

1.9 b)

Dibutyl ether 2.0 b)

Lithium acetylide-ethylene-
diamine complex

HC�CLi–H2NC2H4NH2 None
(powder ca. 90% purity)

–a–c

Toluene
(suspension 25%, w/w)

–b,c

a) Kanto Kagaku. b) Wako Chemicals. c) Sigma-Aldrich.



er temperatures [1, 2]. Simple organolithium starting materials listed in Tab. 1.1
are commercially available as solutions in such solvents. Exceptionally, the lithium
acetylide-ethylenediamine complex is available as a solid. Hydrocarbon solutions
of n-, s-, and t-BuLi are the ultimate source of most organolithium compounds,
and their availability has greatly contributed to the advancement of organolithium
chemistry. In general, ethereal solvents such as diethyl ether or tetrahydrofuran
are most frequently used either in the preparation of organolithium compounds
or in their reactions, because they reduce the extent of aggregation of organo-
lithium compounds and hence increase their reactivity (Section 1.2.2). To in-
crease their reactivity further, N,N,N�,N�-tetramethylethylenediamine (TMEDA),
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidine (DMPU), or hexamethylphos-
phoramide (HMPA) are effective co-solvents, because of their high coordinating
ability. It should be noted that organolithium compounds are thermally unstable
in ethereal solvents; their half-lives [1, 9, 10] are summarized in Tab. 1.2. Thermal
decomposition arises as a result of deprotonation of ethereal solvents by organo-
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Tab. 1.2 Half-lives of organolithium compounds in common ethereal solvents

RLi Solvent –70 �C –40 �C –20 �C 0 �C +20 �C +35 �C

t-BuLi DME 11 min
THF 5.6 h 42 min
ether 8 h 1.0 h

s-BuLi DME 2.0 h 2 min
THF 1.3 h
ether 20 h 2.3 h

n-BuLi DME 1.8 h <5 min
THF 17 h 1.8 h 10 min
ether 153 h 31 h

PhLi ether 12 days

MeLi ether 3 months

Scheme 1.1



lithium compounds, because of their high basicity, leading to a variety of decom-
position products with Li–O bonds, as illustrated in Scheme 1.1.

1.2.2
Structural Features

The electron-deficient lithium atom of an organolithium compound requires
greater stabilization than can be provided by a single carbanionic ligand, and
freezing measurements indicate that in hydrocarbon solution organolithium com-
pounds are invariably aggregated as hexamers, tetramers, or dimers [11] (Tab. 1.3).
The structures of these aggregates in solution can be deduced to some extent
from the crystal structures of organolithium compounds [12] or by calculation
[13]: the tetramers approximate to lithium atom tetrahedra unsymmetrically
bridged by the organic ligands [4, 5]. The aggregation state of simple, unfunctio-
nalized organolithium compounds depends primarily on steric hindrance. Pri-
mary organolithium compounds are hexamers in hydrocarbons, except when
branching � to the lithium atom leads to tetramers. Secondary and tertiary orga-
nolithium compounds are tetramers whereas benzyllithium and very bulky alkyl-
lithium compounds are dimers [1, 11].

Coordinating ligands such as ethers or amines, or even metal alkoxides can pro-
vide an alternative source of electron density for the electron-deficient lithium
atoms. These ligands can stabilize the aggregates by coordinating to the lithium
atoms at their vertices; this enables the organolithium compounds to shift to an
entropically favored lower degree of aggregation. As shown in Tab. 1.3, the pres-
ence of ethereal solvents typically causes a shift down in the aggregation state, but
only occasionally results in complete deaggregation to the monomer [1]. Methyl-
lithium and butyllithium remain tetramers in diethyl ether, THF, or DME, with
some dimers forming at low temperatures; t-BuLi becomes dimeric in diethyl
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Tab. 1.3 Aggregation states of typical organolithium compounds

RLi In hydrocarbon solvent In ethereal solvent

MeLi – Tetramer
EtLi Hexamer Tetramer
n-BuLi Hexamer Tetramer

i-BuLi Tetramer –
BnLi Dimer Monomer

i-PrLi Tetramer Dimer
s-BuLi – Dimer

PhLi – Dimer
t-BuLi Tetramer Dimer



ether and monomeric in THF at low temperatures [14–17]. Coordinating solvents
also greatly increase the reactivity of the organolithium compounds, and an ether
or amine solvent is indispensable in almost all organolithium reactions.

1.2.3
Configurational Stability

In principle, the configurational stability at the metal-bearing stereogenic carbon
in organometallic compounds decreases as the ionic character of the carbon–me-
tal bond increases. Because organolithium compounds contain one of the most
electropositive elements some charge separation occurs in their C–Li bonds. Coor-
dinating solvents greatly enhance the extent of charge separation. Enantio-en-
riched organolithium compounds, if successfully generated, usually, therefore, un-
dergo racemization, which can be explained by migration of the Li cation from
one face of the anion to the other. For example, the half-lives for racemization of
secondary, unfunctionalized organolithium compounds in diethyl ether are only
seconds at –70 �C, even though those in non-polar solvents can be lengthened to
hours at –40 �C and to minutes at 0 �C [18]. Accordingly, the design of stereoselec-
tive reactions with enantio-enriched organolithium compounds has long been un-
attractive to the synthetic organic community. The last decade, however, has wit-
nessed a significant advance in this area, and a number of functionalized organo-
lithium compounds with a configurationally stable C–Li bond have been found by
taking advantage of the Hoffmann test [19], which provides a qualitative guide to
the configurational stability of an organolithium compound.

The Hoffmann test, the essence of which is described briefly below, comprises
of two experiments using a suitable chiral electrophile such as an aldehyde in
either the racemic or enantiomerically pure form. The occurrence of sufficient ki-
netic resolution on reaction of a racemic organolithium compound (±)-1 with a
chiral electrophile 2 is established in the first experiment by using 2 in the race-
mic form. In a second experiment the organolithium compound (±)-1 is added to
the enantiomerically pure 2 and the ratios (a and a�) of the diastereomeric prod-
ucts 3 and 4 resulting from the two experiments are compared. If they are identi-
cal (a = a�) at conversions of > 50%, the organolithium compound 1 is configura-
tionally labile on the time-scale set by the rate of its addition to 2. If there is an
analytically significant difference between the diastereomer ratios (a�a�), enantio-
mer equilibration of the organolithium compound is slower than its addition to
the electrophile (Chart 1.1).
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1.2.4
Titration of Organolithium Compounds

One can easily and reliably check the identity, purity, and concentration of an orga-
nolithium compound in solution by several methods. One of the most standard meth-
ods is titration of the organolithium solution with alcohols such as 2-butanol (5) or
(–)-menthol (6) in the presence of a small amount of 2,2�-bipyridine (7) or 1,10-phe-
nanthroline (8) as a color indicator. This method is based on the color difference
between the C–Li and O–Li compounds, with the ligands used as color indicators
(Scheme 1.2). For example, addition of a spatula tip of 8 to a solution of an organo-
lithium species in an ether or a hydrocarbon produces a characteristic rust-red charge-
transfer (CT) complex. Titration with a standardized solution of 5 in xylene until com-
plete decoloration enables determination of the concentration of the organolithium
compound [20]. To minimize the experimental complexity a variety of indicators [21–
25] bearing a functional group to coordinate to lithium and another to develop a color
within the same molecule have been developed, as shown in Tab. 1.4. However, one
should select appropriate color indicators depending on the structure of the organo-
lithium compounds that correlate with the sharpness of color development.
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Chart 1.1 The Hoffmann test
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Tab. 1.4 Color indicators in titration

Color indicator Color change Suitable
RLi

Refer-
ence



1.3
Methods for the Preparation of Organolithium Compounds

1.3.1
Overview

A C–Li bond can be created by one of two principally different methods. One is
the de novo creation of C–Li bonds in which the lithium metal undergoes reduc-
tive insertion to an organic compound with the leaving group Z; the other
involves construction of new C–Li bonds by another organolithium reagent
(Scheme 1.3). The former method, detailed in Section 1.3.2, is still the most
straightforward and often also the most rational approach; it is therefore used in
the industrial production of typical organolithium compounds. The latter method
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Scheme 1.2

Scheme 1.3


