
Cellular Proteins and Their Fatty Acids
in Health and Disease

Asim K. Duttaroy and Friedrich Spener (Eds.)





Innodata
File Attachment
3527605282.jpg





Asim K. Duttaroy and Friedrich Spener
(Eds.)

Cellular Proteins and Their Fatty Acids
in Health and Disease





Cellular Proteins and Their Fatty Acids
in Health and Disease

Asim K. Duttaroy and Friedrich Spener (Eds.)



Editors:

Professor Dr. Asim K. Duttaroy
Institute for Nutrition Research
University of Oslo
POB 1046 Blindern
N-0316 Oslo
Norway

Professor Dr. Friedrich Spener
Institut für Biochemie
Universität Münster
Wilhelm-Klemm-Str. 2
48149 Münster
Germany

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from
the British Library.

Bibliographic information published
by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication
in the Deutsche Nationalbibliografie; detailed
bibliographic data is available in the Internet at
<http://dnb.ddb.de>

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation
in other languages). No part of this book may be
reproduced in any form – by photoprinting, mi-
crofilm, or any other means – nor transmitted or
translated into machine language without written
permission from the publishers. Registered
names, trademarks, etc. used in this book, even
when not specifically marked as such, are not to
be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Composition K+V Fotosatz GmbH, Beerfelden
Printing Druckhaus Darmstadt GmbH,
Darmstadt
Bookbinding Buchbinderei Schaumann,
Darmstadt

ISBN 3-527-30437-1

� This book was carefully produced. Nevertheless,
authors and publisher do not warrant the infor-
mation contained therein to be free of errors.
Readers are advised to keep in mind that state-
ments, data, illustrations, procedural details or
other items may inadvertently be inaccurate.



Long-chain fatty acids, in addition to providing the cell with energy, are substrates
for membrane biogenesis and act as signalling molecules. These fatty acids and
their derivatives directly or indirectly regulate cellular processes such as differentia-
tion, development and gene expression as well as the activities of enzymes, mem-
brane receptors and ion channels. Dietary fats have profound effects on gene expres-
sion and fatty acid-activated transcription factors (nuclear receptors) may have a fun-
damental role in regulating energy balance through their sensing of fatty acid flux in
metabolically active tissues. Because of the functional roles of these fatty acids and of
their structural features and physico-chemical properties, it is important to under-
stand the mechanisms that evolved for uptake and retention of these molecules.
The picture emerging is that the cell has multiple binding proteins in the mem-
branes as well as in the aqueous compartments that assure adequate uptake and in-
tracellular movement of long-chain fatty acids and their regulatory action.

This book covers the various aspects of intracellular binding proteins (FABPs,
ACBP, SCP-2), such as structure-function, ligand specificity, delivery of ligands by
membrane-protein and protein-protein interaction, as well as their expression and
roles pertaining to nutrition, health, and disease. Regulation and expression of
membrane fatty acid transporters such as FABPpm, FAT, FATP, and ABC trans-
porters are treated in further chapters. In addition, transcription factors PPARs,
RXRs, RARs, LXR, and HNF4 which bind fatty acids or their derivatives are also
dealt with in depth. They play a central role in regulating the storage and catabo-
lism of dietary fats and essentially all major metabolic paths of lipids appear to be
under control of one or more genes regulated by these transcription factors. Their
roles in inflammatory disorders, obesity, cancers, and atherosclerosis are also dis-
cussed. Since these transcription factors require fatty acids or their derivatives as
ligands, FABPs may play important roles in transporting these ligands.

Many leading investigators have contributed their most recent developments to
this book. We believe that it will prove to be an invaluable reference text for both
those familiar with and those new to the exciting, and ever changing world of cel-
lular proteins whose common denominator is binding of fatty acids.
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Part 1

The Molecular Basis of Protein-Lipid Interaction
and Functional Consequences





1.1
Introduction

CD36 (also known as GPIV, GPIIIb, PAS IV, and FAT) is an integral membrane
glycoprotein with a wide cellular distribution. It has been identified on the surface
of megakaryocytes, erythroid precursors, platelets, monocytes, dendritic cells, adi-
pocytes, myocytes, retinal and mammary epithelial cells, and endothelial cells of
the microvasculature and small intestine. Depending upon the cellular context,
CD36 may perform its primary role as a mediator of fatty acid (FA) uptake, a cell
adhesion molecule, or a class B scavenger receptor. This remarkable versatility
may reflect both the diverse tissue distribution of CD36 and its ability to interact
with a wide variety of ligands.

CD36 binds long-chain FA with high affinity and is a major facilitator of FA up-
take in muscle and adipose tissues. As a receptor for the extracellular matrix pro-
teins thrombospondin 1 (TSP-1) and collagens type I and IV, CD36 acts as an ad-
hesion molecule modulating platelet aggregation and the cell–cell interactions im-
portant for recruitment and trafficking of monocytes to damaged tissues. In a
pathological context, CD36 is the receptor in the microvasculature for the Plasmo-
dium falciparum protein expressed on the surface of malaria-infected erythrocytes
and as a result contributes to the virulence of this form of malaria. In macro-
phages and dendritic cells, CD36 is a scavenger receptor important to recognition
and phagocytosis of apoptotic cells. On macrophages it is also the major receptor
mediating binding and internalization of oxidized low-density lipoproteins
(oxLDL), a role reflecting its ability to bind anionic phospholipids as well as lipids
or proteins modified by lipid peroxidation.

Because of the varied roles of CD36, a great deal has been discovered about this
protein. With functions impacting on lipid metabolism, atherogenesis and throm-
bosis, inflammation, platelet function, the pathogenesis of malaria and even an-
giogenesis, further study of the physiology and molecular interactions of CD36
will no doubt continue to progress at a rapid pace. This chapter presents an over-
view of current knowledge with particular emphasis given to the role of CD36 in
lipid metabolism and metabolic homeostasis.
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1.2
Primary Structure

CD36 is the founder member of a gene family of structurally related glycoproteins
expressed at the cell surface and within lysosomes. Known members include, in
addition to CD36, the high-density lipoprotein receptor SR-B1 (also CLA-1), Droso-
phila plasma membrane proteins emp and croquemort, the ubiquitously ex-
pressed lysosomal integral membrane protein LIMPII, and the recently identified
amoeboid endolysosomal proteins LmpA, LmpB, and LmpC. All are believed to
share a “hairpin” topology defined by two transmembrane domains with both ter-
mini in the cytoplasm (Fig. 1.1). In this configuration, the intervening amino
acids localize either to the cell surface (CD36) or to the lumen of lysosomal vesi-
cles (LIMPII). This arrangement is exceedingly rare among membrane proteins
but has been experimentally confirmed for both CD36 and SR-B1 [1, 2].

Numerous studies have contributed to the development of a detailed model for
the primary structure of CD36 (Fig. 1.1). The human cDNA predicts a sequence
of 472 amino acids with an N-terminal signal peptide directing transcription to
the endoplasmic reticulum (residues 1–30). Limited N-terminal sequencing of pu-
rified CD36 shows that the signal peptide is uncleaved but the initiating methio-
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Fig. 1.1 Cartoon of CD36 in the membrane, highlighting the major structural
features. N-linked glycosylations are shown as triangles. Disulfide bonds are
shown in green.



nine is removed. Residues 2–7 are in the cytoplasm while 8–30 form the N-termi-
nal membrane-spanning domain. The second transmembrane domain (440–463)
is near the C-terminus. An uninterrupted hydrophobic segment (186–204) is cen-
trally located but not long enough to span the bilayer. This segment, which may
form a hydrophobic pocket or may be associated with the outer leaflet, is not con-
served in other known members of the CD36/LIMPII family.

The cytoplasmic domain of CD36 consists of only 15 amino acids (6 at the N-
terminus and 9 at the C-terminus). It contains four cysteines (N residues 3 and 7
and C residues 464 and 466), which were shown to undergo palmitoylation, con-
firming the membrane topology [1]. From examples of other acylated proteins, it
can be speculated that palmitoylation of the cytoplasmic domain may play an im-
portant role in modulating interactions with other proteins and/or membrane lo-
calization. Since palmitoylation is reversible, a variable palmitoylation state may
also serve to acutely regulate CD36 function. In this respect, in isolated rat adipo-
cytes, insulin or energy depletion with 2,4-dinitrophenol was shown to rapidly in-
crease CD36 palmitoylation by about 3- and 12-fold, respectively [3].

The extracellular domain of CD36 contains 10 potential glycosylation sites and
glycosylation increases the apparent protein mass from 53 kDa (non-glycosylated)
to between 78 and 88 kDa, depending on the tissue source. Extensive glycosyla-
tion is a characteristic of the CD36/LIMPII family of proteins perhaps affording
protection in the protease-rich environments of lysosomes or at sites of inflamma-
tion and tissue injury. Indeed, CD36 was initially identified in platelets based on
its resistance to protease digestion [4] and deglycosylation with endoglycosidase F
yields a protein that is susceptible to a range of proteases [5]. A cursory examina-
tion of the primary structure of CD36 shows a natural division between the N-
and C-terminal halves of the extracellular domain. The N-terminal half contains 7
of the 10 potential N-linked glycosylation sites as well as the internal hydrophobic
domain, while the C-terminal half is proline-rich and contains all of the extracellu-
lar cysteines and subsequent interchain disulphide bonds. Whether this may
translate into separate functional domains remains to be determined.

In megakaryocytes and in CD36-transfected COS cells, Thr92, which fits within
a protein kinase C consensus site, is constitutively phosphorylated during matura-
tion of the protein in the Golgi apparatus [6]. The phosphorylation state of this re-
sidue appears to modulate the selectivity of CD36 on platelets for TSP-1 or col-
lagen binding. A cAMP-dependent ectoprotein kinase A on the surface of platelets
has also been shown to phosphorylated CD36 [7]. The phosphorylated residue was
not determined but most likely occurs within a protein kinase A (PKA) consensus
site around Ser237, though PKA phosphorylation of Thr92 cannot be ruled out.
No functional change in CD36 activity has yet been attributed to this phosphoryla-
tion event.
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1.3
Ligand Binding Domains

Monoclonal antibodies have been used to identify CD36 domains involved in li-
gand binding. Amino acids 155–183 define an immunodominant region shown to
bind a number of anti-CD36 monoclonal antibodies, including the widely used
OKM5 [8]. These antibodies block interactions of CD36 with TSP-1, OxLDL, ma-
laria-infected red blood cells, apoptotic neutrophils, and phosphatidylserine [9–13].
Since antibody binding to CD36 might sterically hinder ligand interaction, syn-
thetic and recombinant peptides have been used to more closely define the bind-
ing domains. These studies have shown that OxLDL and TSP-1 bind to sequences
outside of the immunodominant domain. OxLDL binds with high affinity to
CD36 amino acids 28–93 [14]. TSP-1 binds in a two-step process interacting first
with CD36 residues 139–155. This induces a conformational change in TSP-1 un-
masking a high-affinity site for amino acids 93–120 of CD36 [15]. Malaria-infected
erythrocytes also bind within this region (residues 97–110) [6].

A possible site for long-chain FA binding in the extracellular domain of CD36
has been identified with an alignment comparing CD36 sequence with that of a
representative member of the lipocalin family of cytosolic FA binding proteins
[16]. Members of this family may exhibit as little as 20% sequence identity but
share a common and distinct structural motif. The region comprising amino
acids 127–279 of CD36 exhibits homology to human muscle FA binding protein
(M-FABP) throughout 73% of its sequence, although identity is only 14.5%. Sec-
ondary structure predictions indicate this sequence may consist of a single �-heli-
cal region interposed between regions of sheets similar to the known structure of
M-FABP and other lipocalin family members. It is also of interest that of the ami-
no acids conserved throughout the lipocalin family, Arg126 and Tyr128 of M-
FABP, which interact with the FA carboxyl group and are necessary for FA bind-
ing, are conserved in this alignment (Arg272 and Tyr275 of CD36). It may be no-
teworthy that this region includes the hydrophobic domain of CD36 (186–204),
thought to be membrane associated or to form a hydrophobic pocket.

1.4
Membrane Localization and Role in Cell Signaling

CD36 in many cells is associated with membrane microdomains rich in cholester-
ol and sphingolipid and known as rafts or caveolae. The long, largely saturated
acyl chains of the sphingolipids favor tight packing with cholesterol and promote
formation of small freely floating domains (hence rafts) within the membrane
(reviewed in Ref. [17]). These detergent-resistant membranes (DRM), which can
be biochemically isolated from the rest of the membrane by virtue of their insolu-
bility in Triton X-100 at 4 �C, typically account for about 5% of the plasma mem-
brane of mammalian cells. Although sphingolipid-rich rafts are mostly confined
to the outer leaflet they are coupled to similar domains incorporating mono-un-
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