Fabian Gerson, Walter Huber

Electron Spin Resonance Spectroscopy of Organic Radicals

F. Gerson, W. Huber Electron Spin Resonance Spectroscopy of Organic Radicals

Related Titles from WILEY-VCH

E. Pretsch, G. Toth, M. E. Munk, M. Badertscher

Computer-Aided Structure Elucidation

Spectra Interpretation and Structure Generation

2002. Ca. 270 pages. Hardcover. ISBN 3-527-30640-4

H.-G. Schmalz, T. Wirth

Organic Synthesis Highlights V

2003. Ca. 320 pages. Hardcover. ISBN 3-527-30611-0

P. Bigler

NMR Spectroscopy: Processing Strategies includes CD-ROM

2003. 271 pages. Hardcover. ISBN 3-527-29990-4

P. Renaud, M. P. Sibi

Radicals in Organic Synthesis 2 Volumes

2001. 1158 pages. Hardcover. ISBN 3-527-30160-7 Fabian Gerson, Walter Huber

Electron Spin Resonance Spectroscopy of Organic Radicals

Prof. Dr. Fabian Gerson

Department of Chemistry University of Basel Klingelbergstraße 80 4056 Basel Switzerland

P. D. Dr. Walter Huber

Hoffmann-La Roche & Cie AG Grenzacherstraße 124 4070 Basel Switzerland This book was carefully produced. Nevertheless, editors, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

A catalogue record for this book is available from the British Library. Bibliographic information published by Die

Deutsche Bibliothek Die Deutsche Bibliothek lists this publica-

tion in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany. Printed on acid-free paper.

TypesettingAsco Typesetters, Hong KongPrintingbetz-druck gmbh, DarmstadtBookbindingLitges & Dopf BuchbindereiGmbH, Heppenheim

ISBN 3-527-30275-1

Contents

Preface *ix*

Abbreviations and Symbols xi

A General Part 1

1 Physical Fundamentals of Electron Spin Resonance 3

- 1.1 Spin and Magnetic Moment of Electron 3
- 1.2 Zeeman Splitting and Resonance Condition 4
- 1.3 Spin-lattice Relaxation 6
- 1.4 Line-width and Line-form 8

2 Paramagnetic Organic Species and Their Generation 10

- 2.1 Spin Multiplicity 10
- 2.2 Neutral Radicals 13
- 2.3 Radical Ions 19
- 2.4 Triplets: Electron–Electron Magnetic Interaction 27

3 Electron-Nuclear Magnetic Interaction 37

- 3.1 Nuclear Magnetism 37
- 3.2 Hyperfine Splitting of ESR Signal 39

4 Spin Density, Spin Population, Spin Polarization, and Spin Delocalization 49

٧

- 4.1 Concepts 49
- 4.2 π Radicals 56
- 4.3 σ Radicals 75
- 4.4 Triplet States 79
- 4.5 Calculations of Spin Populations 80

5 Multiresonance 83

- 5.1 Historical Note 83
- 5.2 ENDOR 84

vi Contents

- 5.3 TRIPLE Resonance 94
- 5.4 ELDOR 96
- 6 Taking and Analyzing ESR Spectra 97
- 6.1 Instrumentation 97
- 6.2 g_e Factor 99
- 6.3 Optimal Conditions 102
- 6.4 Unravelling Hyperfine Pattern 109
- 6.5 Assignment and Sign of Coupling Constants 127
- 6.6 Ion Pairing 141
- 6.7 Intramolecular Dynamic Processes 153
- B Special Part 167

7 Organic Radicals Centered on One, Two, or Three Atoms 169

- 7.1 C-, N-, and O-centered Radicals 169
- 7.2 Si-, P-, and S-centered Radicals 186
- 7.3 CC-, NN-, and OO-centered Radicals 189
- 7.4 NO- and NO₂-centered Radicals 200
- 7.5 PO-, PP-, SO-, SS-, and SO2-centered Radicals 208

8 Conjugated Hydrocarbon Radicals 210

- 8.1 Theoretical Introduction 210
- 8.2 Odd Alternant Radicals 217
- 8.3 Odd Nonalternant Radicals and Radical Dianions 224
- 8.4 Even Alternant Radical Ions 229
- 8.5 Even Nonalternant Radical Ions 254
- 8.6 Radicals and Radical Ions with a Perturbed π Perimeter 261
- 8.7 Radical Ions of Phanes 278
- 8.8 Radical Ions of Radialenes 287
- 9 Conjugated Radicals with Heteroatoms 290
- 9.1 Neutral Radicals 290
- 9.2 Radical Anions of Electron Acceptors 302
- 9.3 Radical Cations of Electron Donors 346
- 9.4 Radical Cations with Special Structures 366
- 9.5 Radical Ions of Multi-redox Systems 372

10 Saturated Hydrocarbon Radicals 375

- 10.1 Radical Cations of Alkanes 375
- 10.2 Structurally Modified Radical Cations 380

11 Biradicals and Triplet-state Molecules 386

11.1 Biradicals 386

Contents vii

- 11.2 Molecules in Photoexcited Triplet State 389
- 11.3 Molecules in Ground or Thermally Accessible Triplet State 393

Appendices 405

- A.1 Nitroxyls as Spin Labels and Spin Adducts 405
- A.2 Hyperfine Splitting by Alkali-Metal Nuclei in Counterions of Radical Anions 409

References 415

Index 447

Preface

Several years ago, electron spin resonance (ESR) spectroscopy celebrated the 50th anniversary of its discovery in 1944. Its application to organic radicals [1] underwent rapid expansion in the following three decades, with many monographs being published between 1965 and 1978 [2-15]. Among them, a booklet by one of us, entitled High-Resolution ESR Spectroscopy [6], concerned the multiline hyperfine patterns of organic radicals in solution. The radicals discussed were mostly ions readily generated by reduction or oxidation of aromatic compounds. This limitation permitted the number of pages to be kept low, and the comprehensible treatment made the booklet attractive to researchers with a background in organic chemistry. Suggestions for writing a second, updated version have been made repeatedly since then, but for various reasons, they were not implemented. Only recently, after the author's retirement in 1997, was such a project envisaged and, two years later, also tackled. It soon became obvious that supplementing the booklet with a few paragraphs would not suffice to account for the important developments in the field and, particularly, for the enormous amount of data accumulated in the literature during the last third of the 20th century. Thus, an almost completely new and more comprehensive volume had to be written, but we have tried to preserve the lucidity of its modest forerunner.

The term ESR has been retained throughout, even though the more extensive term electron paramagnetic resonance (EPR) has been recommended. As argued in Chapt. 2.1, this is because the magnetism of organic radicals is predominantly due to the electron spin. Also retained has been a division of the contents into a General Part A, serving as an introduction to the field, and a Special Part B, in which organic radicals are classified and characterized by their hyperfine data.

The most important topics added to the first version are as follows.

(1) Organic π radicals, both charged and neutral, as well as σ radicals, have been fully dealt with. (2) Biradicals and triplet molecules have also received consideration. (3) More attention has been given to g_e factors of radicals. (4) The origin and consequences of g_e and hyperfine anisotropies have been described (thus the epithet "high-resolution" is no longer appropriate). (5) New methods for generation of radicals have been introduced, in particular those producing radical cations from compounds with higher ionization energy, either by more efficient reagents in solution or by X- or γ -irradiation in solid matrices. (6) Multiresonance methods

× Preface

have been described, especially electron-nuclear double resonance (ENDOR) spectroscopy [12, 15, 16] and its physical fundamentals. (7) Modern quantum-chemical procedures for calculation of spin distribution in radicals, going beyond the π -electron models, have been briefly presented and their results for particular radicals are quoted. However, the theories underlying these procedures are outside the scope of this monograph; the pertinent computer programs are readily available and can easily be handled by experimentalists.

Several areas in the field, which are less relevant to ESR spectroscopy of organic radicals and thus have not been dealt with, are listed below.

(1) Paramagnetic species in physics and biology, like color centers in crystals and radicals produced by high-energy irradiation of biological material. (2) Chemistry of radicals as such, although we have indicated throughout how radicals are generated and, in many cases, into which secondary paramagnetic species they convert. (3) Complexes of organic ligands with transition metals, because their structure strongly differs from that of organic radicals and their hyperfine interactions are dominated by those with the nuclei of heavy atoms. (4) Instrument conditions other than those at constant waves (CW), namely the pulsed ESR and ENDOR techniques.

A book illuminating the achievements in the ESR field appeared in 1997 [17]. Data relevant to radicals (g_e factors and hyperfine-coupling constants) have been compiled in the Landolt–Börnstein Tables since 1965 [18], and publications on ESR spectroscopy have been reviewed in Chemical Society Special Reports since 1973 [19].

We thank our colleagues, Professors Alwyn G. Davies, London, Harry Kurreck, Berlin, and Ffrancon Williams, Knoxville (Tennessee), and Ms. Marj Tiefert, San Ramon (California), for critical reading the manuscript and suggesting improvements. A constructive collaboration with Drs. Gudrun Walter, Karen Kriese, and Romy Kirsten, and Mr. Hans-Jörg Maier of Wiley-VCH, Weinhheim, is gratefully acknowledged. Our special thanks are also due to Ms. Ruth Pfalzberger for the skilful drawings of the Figures.

Abbreviations and Symbols

ESR	electron spin resonance
EPR	electron paramagnetic resonance
ENDOR	electron-nuclear double resonance
ELDOR	electron-electron double resonance
TRIPLE	electron-nuclear-nuclear triple resonance
NMR	nuclear magnetic resonance
MW	microwaves
RF	radio frequency
SLR	spin-lattice relaxation
SSR	spin-spin relaxation
ZFS	zero-field splitting
AO	atomic orbital
LCAO	linear combination of AOs
MO	molecular orbital
SOMO	singly occupied MO
НОМО	highest occupied MO
LUMO	lowest occupied MO
NHOMO	next highest occupied MO
NLUMO	next lowest occupied MO
NBMO	nonbonding MO
IE	ionization energy
EA	electron affinity
UHF	unrestricted Hartree-Fock
DODS	different orbitals for different spins
INDO	intermediate neglect of differential overlap
MNDO	modified neglect of differential overlap
AM1	Austin model 1 (reparametrized version of
	MNDO)
DFT	density functional theory
ACN	acetonitrile
DME	1,2-dimethoxyethane

xii	Abbreviations and Symbols	
•	DEE	diethvlether
	DMF	N.N-dimethylformamide
	DMSO	dimethylsulfoxide
	MTHF	2-methyltetrahydrofuran
	TFA	trifluoroacetic acid
	THE	tetrahydrofuran
	Alk	alkali-metal atom
	COT	cyclooctatetraene
	DABCO	1,4-diazabicyclo[2.2.2]octane
	DDQ	2,3-dichloro-5,6-dicyano-p-benzoquinone
	DPPH	2,2-diphenyl-1-picrylhydrazyl
	TCNE	tetracyanoethene
	TCNQ	7,7,8,8-tetracyanobenzo-1,4-quinodimethane
	ТЕМРО	2,2,6,6-tetramethyl-4-oxopiperidin-1-oxyl
	TME	tetramethyleneethane
	ТММ	trimethylenemethane
	TTF	1,4,5,8-tetrahydro-1,4,5,8-tetrathiafulvalene
	e	elementary charge
	- Mra	(rest) mass of electron
	m _p	(rest) mass of proton
	Δ	absorption intensity of ESP line
	B	external magnetic field
	B	strength of magnetic field $\overline{\mathbf{B}}$
		line-width in mT
	A Brue	line-width at half-height
	dA/dB	first derivative of A with respect to B
		nesk-to-peak-distance in dA/dB
	х рр	frequency
	$\omega = 2\pi v$	circular frequency
	v	resonance frequency of electron
	v	resonance frequency of nucleus
	v_n	line-width in MHz
		absolute temperature in K
	+	time
	λt	lifetime of spin state
	<u>т</u> .	SIR time of electron
	- 1е Т.	SSR time of electron
	±2e ┳	SIR time of nucleus
	т Т	SLN unit of indicas
	1 _X	lifetime of an individual form of radical
	ι	memme of an individual form of radical

$ au_{ m r}$	rotational correlation time
Р	transition probability
η	viscosity of the solvent
h	Planck constant
ħ	$\mathrm{h}/2\pi$
k	Boltzmann constant
μ_{o}	permeability of vacuum
→	
S	electron-spin vector
S_x, S_y, S_z	components of S
S	electron-spin quantum number
M_S	magnetic electron-spin quantum number
α	spin function for $M_S = +1/2$ (spin up)
β	spin function for $M_S = -1/2$ (spin down)
$\vec{\mu}_e$	magnetic moment of electron
$\mu_{\rm e,x}, \mu_{\rm e,y}, \mu_{\rm e,z}$	components of $\vec{\mu}_e$
ge	g factor of electron
μ_{B}	Bohr magneton
γ _e	gyromagnetic ratio of electron
Ĭ	nuclear spin vector
Ι	nuclear spin quantum number
M_I	magnetic nuclear spin quantum number
Ie	spin quantum number of a subset of equivalent
5	nuclei
Ū.	magnetic moment of nucleus
F n // // //	components of $\vec{\mathbf{n}}$
σ	σ factor of nucleus
6n Ura	nuclear magneton
μ _N	gromagnetic ratio of nucleus
γ _n	gyromagnetic ratio of nucleus
T_x, T_y, T_z	components of triplet spin state
T_{+1}, T_0, T_{-1}	components of triplet spin state in a relatively
	strong field $\overline{\mathbf{B}}$
D	ZFS tensor
$D_{\rm x}, D_{\rm y}, D_{\rm z}$	principal values of D
D and E	ZFS parameters in cm^{-1}
D' and E'	ZFS parameters in mT
ř	vector joining $\vec{\mathbf{u}}$ and $\vec{\mathbf{u}}$ or $\vec{\mathbf{S}}$ and $\vec{\mathbf{I}}$
r	length of \vec{r}
	angle between \vec{r} and \vec{B} in a relatively strong field
Ψ	$\vec{\mathbf{B}}$
J	exchange integral over two SOMOs

xiv	Abbreviations and Symbols	
•	E _{hf}	energy of hyperfine interaction
	Edin	energy of dipolar hyperfine interaction
	E _E	energy of Fermi-contact term
	Δ _F	NMR shift due to Fermi-contact term
	OFC	home shift due to remin conduct term
	$ ho(\mathbf{x},\mathbf{y},\mathbf{z})$	electron density
	$\rho_{\rm S}({\rm x},{\rm y},{\rm z})$	spin density
	$ ho^\psi_{ m X}$	spin population in an orbital ψ (AO or MO) centered at the nucleus X
	$\rho_{}^{\pi}$	π -spin population at π -center μ
	νμ Ψ:	π-ΜΟ
	т ј ф	$n_{-}AO$ at π -center μ
	φ_{μ}	Γ_{2} Γ_{2
	C],μ	ECATO Coefficient at center μ for ϕ_j
	Х	nucleus or the atom pertinent it
	$X(\alpha), X(\beta), X(\gamma), X(\delta), X(\varepsilon), \ldots$	X separated from the spin-bearing center (usually
		π -center) by 1, 2, 3, 4, 5, sp ³ -hybridized atoms
	$a_{\rm X}$	isotropic hyperfine-coupling constant of X in mT
	$a'_{\rm x}$	isotropic hyperfine-coupling constant of X in
	Λ	MHz
	$a_{\rm N}$	isotropic hyperfine-coupling constant of X in or
	$\lambda_{A\mu}$	at π -center μ in mT
	a'	isotropic hyperfine coupling constant of V in or
	$u_{\mathrm{X}_{\mu}}$	at a contor win MUZ
	•	at π -center μ in MHZ
	AX	i i i i i i i i i i i i i i i i i i i
	$A_{X,x}, A_{X,y}, A_{X,z}$	principal values of A_X in m I
	$A'_{X,x}, A'_{X,y}, A'_{X,z}$	principal values of A_X in MHz
	$A_{ m H\parallel}, A_{ m H\perp}$	principal values of an axial tensor A_X in mT
	$A_{ m H\parallel}^{\prime},A_{ m H\perp}^{\prime}$	principal values of an axial tensor A_X in MHz
	$\mathbf{A}_{\mathrm{X,dip}}$	(traceless) hyperfine-anisotropy tensor of X
	$2B_{\rm X,dip},-B_{\rm X,dip}$	principal values of an axial tensor $\mathbf{A}_{X,dip}$ in mT
	$2B'_{\rm X,dip},-B'_{\rm X,dip}$	principal values of an axial tensor $A_{X,dip}$ in MHz
	G _e	tensor of the g _e factor
	$g_{\rm e,x}, g_{\rm e,y}, g_{\rm e,z}$	principal values of G _e
	$g_{\rm e\parallel}, g_{\rm e\perp}$	principal values of an axial G_e tensor
	$\Delta g_{\rm e}$	$g_{e\parallel} - g_{e\perp} = g_{e,z} - 1/2(g_{e,x} + g_{e,y})$
	G _{e aniso}	(traceless) tensor with anisotropic contributions
	c, unite	to $g_{\rm e}$ as principal values
	$\mathrm{Q}_{\mathrm{H}}^{\mathrm{X}_{\mu}\mathrm{H}_{\mu}}$	π,σ -spin polarization parameter for α -protons
	$B_{II}^{X_{\mu'}H_{\mu'}}$	$\pi.\sigma$ -spin delocalization parameter for β -protons
	$O_{\mathbf{y}}^{\mathbf{n}}, O_{\mathbf{y}}^{\mathbf{X}_{\mu}\mathbf{X}_{\nu}}, O_{\mathbf{y}}^{\mathbf{X}_{\nu}\mathbf{X}_{\mu}}$	$\pi.\sigma$ -spin polarization parameters for nuclei X
	$\mathbf{x}_{\Delta}, \mathbf{x}_{\mathbf{X}}, \mathbf{x}_{\mathbf{X}}$	other than protons
	Sc	π -1s spin polarization parameter for C
	<i>с</i>	" is spin polutization parameter for G

heta	dihedral angle between pz-axis at the spin-
	bearing center and direction of $C-H(\beta)$ bond of an alkyl substituent, in particular, and of $X(\alpha)-X(\beta)$, in general.
U, V, W	parameters for anisotropy contributions to ΔB in solution

A General Part

Part A, comprising Chapters 1.1 through 6.7, is an introduction to electron spin resonance (ESR) spectroscopy of organic radicals. It is amply garnished with examples illustrating how ESR spectra are obtained and what information they provide on the structure of these paramagnetic species. A large number of cited references and most of the illustrating examples have been taken from our work, because we are best familiar with them. This selection has been made by convenience and it does not claim to be guided by criteria of quality.

1 Physical Fundamentals of Electron Spin Resonance

1.1

Spin and Magnetic Moment of Electron

Spin is an intrinsic, nonclassical, orbital angular momentum. If one considers electron spin to be a kind of motion about an axis of the electron, an analogy may be drawn between an atom (microcosmos) and the solar system (macrocosmos), as illustrated in Figure 1.1.

The concept of spin was suggested by Uhlenbeck and Goudsmit in 1925 [17a, 20] to account for the splitting of lines in the electronic spectra of alkali-metal atoms in a magnetic field. Such splitting, known as the *Zeeman effect*, could not arise from an orbital angular momentum, which is zero for electrons in the s orbitals of an alkali-metal atom. Spin functions were introduced theoretically in 1926 by Pauli, as a complement of spatial functions [21]. Later, Dirac [22] showed that spin emerges without additional postulates from a relativistic treatment of quantum mechanics.

Pauli's procedure is generally followed, according to which a spin quantum number S = 1/2 is assigned to an electron. In the presence of a strong external magnetic field $\vec{\mathbf{B}}$, a second (magnetic) quantum number $M_S = +1/2$ or -1/2 becomes effective, and the functions associated with M_S are denoted α and β , respectively. The spin can then be represented by a vector $\vec{\mathbf{S}}$ precessing about $\vec{\mathbf{B}}$ in the z direction (Figure 1.2). The length of this vector is $|\vec{\mathbf{S}}| = \hbar\sqrt{S(S+1)} = \hbar\sqrt{3}/2$, where $\hbar = h/2\pi$ and $h = 6.6262 \cdot 10^{-34}$ J·s is Planck's constant. The component S_z in the z direction is $\hbar M_S = +\hbar/2$ or $-\hbar/2$, with the former

Fig. 1.1. Analogy between an atom and the solar system.

4 1 Physical Fundamentals of Electron Spin Resonance

Fig. 1.2. Precession of the spin vector \vec{S} about the magnetic field \vec{B} in the z direction.

being parallel and the latter antiparallel to the z direction. The spin with $M_S = +1/2$ is also denoted spin up (\uparrow) and α , and its counterpart with $M_S = -1/2$ is named spin down (\downarrow) and β . While precessing about $\mathbf{\vec{B}}$, the vector $\mathbf{\vec{S}}$ traces a conic area with a half-opening angle of $\arccos(1/\sqrt{3}) = 54.73^{\circ}$. The components S_x and S_y , perpendicular to the z direction of $\mathbf{\vec{B}}$, cannot be determined individually; however, the sum of their squares, $S_x^2 + S_y^2 = |\mathbf{\vec{S}}|^2 - S_z^2 = \hbar[S(S+1) - M_S^2] = \hbar[3/4 - 1/4] = \hbar/2$ is an observable quantity.

Due to its spin (classically, a rotating charge), an electron possesses a *magnetic* moment $\vec{\mu}_{e}$ which is proportional to \vec{S} (Figure 1.2).

$$\vec{\mathbf{\mu}}_{\mathrm{e}} = [g_{\mathrm{e}}(-\mathrm{e})/(2m_{\mathrm{e}})]\vec{\mathbf{S}} \tag{1.1}$$

with $|\vec{\mathbf{\mu}}_e| = [g_e e/(2m_e)]\hbar\sqrt{S(S+1)}$ and $\mu_{e,z} = [g_e(-e)/(2m_e)]\hbar M_S$. Here, g_e is the (dimensionless) *g factor* of the electron, which is 2.0023 for a free electron (0.0023 is the relativistic correction), $e = 1.6022 \cdot 10^{-19}$ C is the elementary charge, and $m_e = 9.1096 \cdot 10^{-31}$ kg is the rest mass of the electron. Setting $\hbar e/(2m_e) = \mu_B = 9.2741 \cdot 10^{-24}$ A·m² or J·T⁻¹, where μ_B is the *Bohr magneton*, and T = Tesla = V·s·m² is the unit of magnetic field $\vec{\mathbf{B}}$, Eq. 1.1 becomes

$$\vec{\mu}_{\rm e} = -[g_{\rm e}\mu_{\rm B}/\hbar]\vec{S} \tag{1.2}$$

with $|\vec{\mu}_{e}| = g_{e}\mu_{B}\sqrt{S(S+1)} = g_{e}\mu_{B}\sqrt{3}/2$ and $\mu_{e,z} = -g_{e}\mu_{B}M_{S} = -g_{e}\mu_{B}(\pm 1/2)$. As $g_{e} \approx 2$, $|\vec{\mu}_{e}| \approx \mu_{B}\sqrt{3}$ and $\mu_{e,z} \approx \mp \mu_{B}$. Due to the negative charge of the electron, the direction of $\vec{\mu}_{e}$ is opposite to that of \vec{S} (Figure 1.2).

1.2 Zeeman Splitting and Resonance Condition

By virtue of its magnetic moment $\vec{\mu}_{e}$, the electron interacts with the external magnetic field \vec{B} , the interaction energy E being equal to the negative value of the scalar

Fig. 1.3. Electron-Zeeman splitting as a function of the strength, *B*, of the magnetic field and the resonance condition.

product of $\vec{\mu}_{e}$ and \vec{B} . Accordingly, this energy is

$$\mathbf{E} = -\vec{\mathbf{\mu}}_{\mathrm{e}} \cdot \vec{\mathbf{B}} = -\mu_{\mathrm{e},z} B = -(-g_{\mathrm{e}}\mu_{\mathrm{B}}M_{S})B = +g_{\mathrm{e}}\mu_{\mathrm{B}}M_{S}B \tag{1.3}$$

where $|\vec{\mathbf{B}}| = B$ the field strength, and $\mu_{e,z} = -g_e \mu_B M_s$. Therefore, E is different for the two sorts of spin (Figure 1.3), namely:

$$\begin{split} E_{+} &= (+1/2)g_{e}\mu_{B}B \quad \text{for } M_{S} = +1/2 \quad (\text{spin up; } \alpha) \\ E_{-} &= (-1/2)g_{e}\mu_{B}B \quad \text{for } M_{S} = -1/2 \quad (\text{spin down; } \beta) \end{split}$$
(1.4)

The difference $E_+ - E_- = g_e \mu_B B$ is the electron-Zeeman splitting, which is proportional to the strength, *B*, of the applied external magnetic field $\vec{\mathbf{B}}$ (Figure 1.3). Transitions $E_+ \leftrightarrows E_-$ between the two levels, i.e., spin inversions $\alpha \leftrightarrows \beta$, comply with the selection rule $\Delta M_S = \pm 1$. These transitions can be induced by electromagnetic radiation $h\nu$, provided that

- (i) the direction of the magnetic field associated with this radiation is perpendicular to that (z) of the external magnetic field \vec{B} , i.e., it lies in the xy plane (Figure 1.2), and
- (ii) the energy of the radiation is equal to that of the Zeeman splitting

$$hv = E_{+} - E_{-} = g_{e}\mu_{B}B \tag{1.5}$$

a relation known as the *resonance condition* (Figure 1.3). This condition can be expressed as

$$v = g_e(\mu_B/h)B = \gamma_e B$$
 or $\omega = g_e(\mu_B/\hbar)B = 2\pi\gamma_e B$ (1.6)

6 1 Physical Fundamentals of Electron Spin Resonance

where ν (in Hz = s⁻¹) is the frequency of the electromagnetic radiation, and $\omega = 2\pi\nu$ is the circular frequency, which is also the frequency of the spin \vec{S} precessing about \vec{B} (the *Larmor frequency*) at resonance. The conversion factor of the frequency ν into the field strength *B*, $\gamma_e = \nu/B = g_e \mu_B/h$, is called the *gyromagnetic* ratio of the electron. For $g_e = 2.0023$, $\gamma_e = 2.8024 \cdot 10^{10}$ Hz/T = 28.024 MHz/mT.

To satisfy the resonance condition, one can vary v or B or both. For technical reasons, the frequency v is kept constant and the field strength B is varied to bring it to the value at which the resonance condition is fulfilled. One generally uses the microwave (MW) X band with a frequency v of ca. 9500 MHz, which requires a field strength B of ca 340 mT.

1.3 Spin-lattice Relaxation

Besides the resonance condition, other prerequisites must be met for a successful electron spin resonance experiment. To observe an ESR signal, a single electron is not sufficient, but many of them (an *ensemble*) are needed. Also, the electrons should not be isolated but must be embedded in a suitable environment (a *lattice*), which is usually provided by atoms and molecules.

The numbers of electrons in the two Zeeman levels, E_+ and E_- , are their *populations* n_+ and n_- , respectively. According to the Boltzmann distribution law, the ratio of these populations is

$$n_{+}/n_{-} = \exp[-(E_{+} - E_{-})/(kT)] = \exp[-(g_{e}\mu_{B}B)/(kT)]$$
(1.7)

where $k = 1.3806 \cdot 10^{-23}$ J·K⁻¹ is the Boltzmann constant, and *T* is the absolute temperature in K. In the absence of an external magnetic field (B = 0), n_+ is equal to n_- , but for B > 0, n_- is larger than n_+ , i.e., there is an excess, $\Delta n = n_- - n_+$, of spins in the lower level E_- relative to the higher level E_+ . To bring about this excess, some "hot" spins in E_+ ($M_S = +1/2$; spin up; α) must be converted into spins in E_- ($M_S = -1/2$; spin down; β). Such a "cooling" process, leading to magnetization, requires energy transfer from the spin ensemble to the lattice and is effected by *spin-lattice relaxation* (SLR). The excess Δn_m , at full magnetization at *B*, is

$$\Delta n_{\rm m} \approx (n/2) (g_{\rm e} \mu_{\rm B} B) / (kT) \tag{1.8}$$

where $n = n_+ + n_-$ is the total number of spins in the ensemble. This excess is only slight: for $g_e = 2$, B = 340 mT, and T = 298 K, it amounts to merely 0.00077n. However, because the probability for an $E_+ \rightarrow E_-$ and an $E_- \rightarrow E_+$ transition is the same, it is due to an excess of this size that the radiation $h\nu$ gives rise to net ESR absorption.

When the magnetic field is switched on, Δn should increase from 0 to Δn_m as a function of time t (Curve ①, Figure 1.4):

Fig. 1.4. Population excess, $\Delta n = n_{-} - n_{+}$ as a function of time t. Curve (1), magnetization upon switching on \vec{B} ; curve (2), partial decay of magnetization as a consequence of starting $h\nu$; curve (3), magnetization upon simultaneous application of \vec{B} and $h\nu$.

$$\Delta n = \Delta n_m (1 - \exp[-t/T_{1e}]) \tag{1.9}$$

At t = 0 (switching on of $\vec{\mathbf{B}}$), $\Delta n = 0$, for $t \to \infty$, $\Delta n \to \Delta n_m$, and for $t = T_{1e}$, $\Delta n = \Delta n_m (1 - \exp[-1]) \approx \Delta n_m (2/3)$. T_{1e} is called the *SLR time* of an electron, in which the number of hot spins drops to 1/e or to ca 1/3. A short (or long) T_{1e} means an efficient (or inefficient) SLR. This relaxation provides not only the means for magnetization in the field $\vec{\mathbf{B}}$ but it also takes care that Δn does not vanish upon continuous radiation $h\nu$. When $h\nu$ is applied, and if SLR was ineffective, the populations n_+ and n_- would equalize, with Δn decreasing from Δn_m to 0. This is because the number of transitions $E_- \to E_+$ exceeds that of $E_+ \to E_-$. The decrease of Δn , known as *saturation*, follows the equation

 $\Delta n = \Delta n_m \exp(-2Pt) \tag{1.10}$

where P is the transition probability, common to $E_- \rightarrow E_+$ and $E_+ \rightarrow E_-$. At t = 0 (start of $h\nu$ in \vec{B}), $\Delta n = \Delta n_m$, and for $t \rightarrow \infty$, $\Delta n \rightarrow 0$.

Fortunately, SLR counteracts this effect and, consequently, equilibrium is achieved at $0 < \Delta n_{eq} < \Delta n_m$ (Curves (2) and (3), Figure 1.4):

$$\Delta n_{eq} = \Delta n_{\rm m} / (1 + 2PT_{1e}) \tag{1.11}$$

The denominator $1 + 2PT_{1e}$, referred to as the saturation term, is large when P is high and/or T_{1e} is long and small when P is low and/or T_{1e} is short.

The most important mechanism of SLR is *spin-orbit coupling*, which is substantial for heavy atoms. For organic radicals lacking such atoms, SLR is not very effi-

8 1 Physical Fundamentals of Electron Spin Resonance

cient and T_{1e} is rather long. Therefore, to keep the saturation term PT_{1e} as small as possible, P must be relatively low, which is achieved by attenuating the intensity of $h\nu$. However because the ESR absorption is proportional to both P and Δn_{eq} , i.e. to $P/(1 + 2PT_{1e})$, the attenuation should be carried on until the P value is optimal for observing a strong signal. Such P value is not the same for different samples investigated: the shorter (or longer) T_{1e} is, the larger (or smaller) it is and the higher (or lower) is the allowed intensity of $h\nu$. T_{1e} can be determined by saturation experiments, in which the term PT_{1e} is measured as a function of the applied intensity of $h\nu$.

1.4 Line-width and Line-form

The Heisenberg uncertainty relation, $\Delta E \cdot \Delta t \approx \hbar$, can be expressed by an equivalent formula:

$$\Delta v \cdot \Delta t = \gamma_{\rm e} \Delta B \cdot \Delta t \approx 1/(2\pi) \tag{1.12}$$

where $\Delta v (=\gamma_e \Delta B)$ (in Hz) or ΔB (in mT) stands for the width of the ESR signal, and Δt (in s) is the lifetime of a spin state. A long- (or short-) lived state thus gives thus rise to a narrow (or broad) ESR signal.

The lifetime, Δt , of the spin state α ($M_S = +1/2$; spin up) or β ($M_S = -1/2$; spin down) is determined by the relaxation times T_{1e} and T_{2e}:

$$1/\Delta t \approx (1/T_{1e}) + (1/T_{2e}) \tag{1.13}$$

where T_{1e} is the spin-lattice relaxation (SLR) time, introduced in Chapt. 1.3, and T_{2e} is the *spin-spin-relaxation* (SSR) *time* of electron. Whereas SLR governs energy exchange between the spin ensemble and the environment (lattice), SSR comprises interactions within the ensemble itself without such an exchange. For instance, two radicals, 1 and 2, may interchange the different states of their electron spins ("flip-flop"), so that their total energy is not changed, but, nevertheless, the lifetime of an individual spin is reduced:

$$\begin{array}{ll} \text{Radical} & \begin{pmatrix} 1 & 2 \\ \alpha & \beta \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 \\ \beta & \alpha \end{pmatrix}$$

Such a phenomenon, referred to as *Heisenberg exchange*, is particularly effective when the spin-bearing orbitals of the radicals overlap, which occurs with high radical concentrations. As mentioned above, T_{1e} is long for organic radicals without heavy atoms (10^{-3} to 10^{-1} s). Because T_{2e} is much shorter (10^{-5} to 10^{-7} s), the relations $T_{1e} \gg T_{2e}$ and $1/T_{1e} \ll 1/T_{2e}$ generally hold, leading to

$$1/\Delta t \approx 1/T_{2e} \tag{1.14}$$

Fig. 1.5. ESR absorption A and its first derivative, dA/dB, as a function of the strength, *B*, of the magnetic field.

Hence, according to the uncertainty principle, the line-width becomes

$$\Delta v = \gamma_{\rm e} \Delta B \propto 1/\Delta t \approx 1/T_{2\rm e} \tag{1.15}$$

with $\Delta v \approx 10^5$ to 10^7 Hz and ΔB lies roughly in the range between 0.001 and 0.1 mT. Thus, T_{2e} can be determined from the measurements of the line-width ΔB .

The ESR signal is usually recorded as the first derivative, dA/dB, of the absorption *A* with respect to *B* as a function of *B* (Figure 1.5). The form of *A* can be approximated by a *Gaussian* or a *Lorentzian* curve or by an appropriate mixture of both, in which T_{2e} is multiplied by a function of T_{1e}^2 , with T_{2e}^2 either in the exponent (Gaussian) or in the denominator (Lorentzian). The characteristic values are A_{max} , the maximum of *A*, and $\Delta B_{1/2}$, the peak width at its half-height ($A_{max}/2$), and ΔB_{pp} , the peak-to-peak distance of the derivative curve dA/dB (Figure 1.5). For the Gaussian, $A_{max} = \gamma_e 2T_{2e}$, with $\Delta B_{1/2} \approx 0.47/(\gamma_e T_{2e})$ and $\Delta B_{pp} \approx 0.85\Delta B_{1/2} \approx 0.40/(\gamma_e T_{2e})$, and for the Lorentzian, $A_{max} = \gamma_e 2T_{2e}$, with $\Delta B_{1/2} \approx 0.32/(\gamma_e T_{2e})$ and $\Delta B_{pp} \approx 0.58\Delta B_{1/2} \approx 0.18(\gamma_e T_{2e})$. The bell-like form of the Gaussian curve thus has a broader waist and shorter tails than its Lorentzian counterpart.

2 Paramagnetic Organic Species and Their Generation

2.1 Spin Multiplicity

Radicals are a special class of *paramagnetic* molecules [17b], i.e., those which are amenable to ESR spectroscopy. Although *diamagnetism* is a general property of matter, *paramagnetism* is diagnostic of molecules with an overall nonzero magnetic moment of their electrons. In such molecules, the paramagnetism masks the diamagnetism, because the contribution of the former is two orders of magnitude larger than that of the latter. In atoms, magnetic moments are due to the electron spins described in Chapt. 1.1, as well as to nonzero orbital angular momenta characteristic of electrons in other than the spherically shaped s orbitals. However, in molecules generally, and in organic molecules particularly, the orbital angular momenta are essentially ineffective ("quenched"), although they can slightly alter the g_e factor via spin-orbit coupling. The paramagnetism of organic molecules thus arises almost entirely from the electron spins.

When speaking about magnetic resonance of such molecules, one is, therefore, justified in using the name *electron spin resonance* (ESR) instead of more general expression electron paramagnetic resonance (EPR). Because organic molecules contain many electrons, the total spin function is derived from contributions by all electrons. These contributions cancel for most electrons (which occupy orbitals pairwise and have opposite spins). Thus, only electrons with unpaired spins in the singly occupied, usually uppermost, orbitals are relevant to the total spin function. The spin-quantum number S then becomes a positive algebraic sum of the corresponding numbers, 1/2, of the unpaired electrons; and the spin multiplicity, 2S + 1, which is even (or odd) for an odd (or even) number of electrons, represents the multitude of the magnetic spin-quantum numbers, $M_S = S, S - 1, \ldots - S$, associated with S. A single unpaired electron thus gives rise to a doublet, because 2S + 1 = 2 for S = 1/2 and $M_S = +1/2$ or -1/2. Two unpaired electrons have either S = (1/2) - (1/2) = 0 or S = (1/2) + (1/2) = 1, i.e., they lead to a singlet with 2S + 1 = 1 and $M_S = 0$ or to a triplet with 2S + 1 = 3 and $M_S = +1, 0$, or -1.

The pertinent singlet-spin function is

$$(1/\sqrt{2})(\alpha\beta - \beta\alpha)$$
 for $S = 0$ and $M_S = 0$ (2.1)

and the analogous triplet functions are

$$\alpha \alpha \qquad \text{for } S = 1 \text{ and } M_S = +1$$

$$(1/\sqrt{2})(\alpha \beta + \beta \alpha) \quad \text{for } S = 1 \text{ and } M_S = 0$$

$$\beta \beta \qquad \text{for } S = 1 \text{ and } M_S = -1 \qquad (2.2)$$

where the first and the second letters in $\alpha\alpha$, $\alpha\beta$, $\beta\alpha$, and $\beta\beta$ refer to the first and the second unpaired electron. The singlet function is *antisymmetric*, whereas the three components of the triplet are *symmetric* with respect to the exchange of the two electrons. Because the spin orbital, which is the product of the spin and the space (orbital) functions of electron, must be antisymmetric in this respect, the total function must be symmetric for the singlet and antisymmetric for the triplet.

The formalism introduced in Chapts. 1.1 and 1.2 holds for the spin vectors $\vec{\mathbf{S}}$ and magnetic moments $\vec{\boldsymbol{\mu}}_e$ and their interaction with $\vec{\mathbf{B}}$ for any multiplicity 2S + 1. Thus, for a doublet with S = 1/2 and $M_S = +1/2$ or -1/2, the resulting values are essentially the same as those given in this chapters, and the illustration of $\vec{\mathbf{S}}$ precessing about $\vec{\mathbf{B}}$ (Figure 1.2) is also valid. For a singlet, with $S = M_S = 0$, the vectors $\vec{\mathbf{S}}$ and $\vec{\boldsymbol{\mu}}_e$ vanish, and so does the interaction of $\vec{\boldsymbol{\mu}}_e$ with $\vec{\mathbf{B}}$. On the other hand, for a triplet, with S = 1 and $M_S = +1, 0$, or -1, one obtains

$$|\vec{\mathbf{S}}| = \hbar\sqrt{2}, \quad S_z = +\hbar, 0, \text{ or } -\hbar; \quad |\vec{\mu}_e| = g_e \mu_B \sqrt{2}; \text{ and}$$

 $\mu_{e,z} = g_e \mu_B M_S = +g_e \mu_B, 0, \text{ or } -g_e \mu_B$ (2.3)

As $g_e \approx 2$, $|\vec{\mu}_e| \approx 2\mu_B\sqrt{2}$ and $\mu_{e,z} \approx +2\mu_B, 0$, or $-2\mu_B$. The interaction of $\vec{\mu}_e$ with \vec{B} is

$$E = -\mu_{e,z}B = +g_e\mu_B M_S B = +g_e\mu_B B, 0, \text{ or } -g_e\mu_B B$$
(2.4)

for $M_S = +1, 0$, or -1, respectively.

The precessions of the spin vectors $\hat{\mathbf{S}}$ of the singlet and the three components of the triplet in the magnetic field $\vec{\mathbf{B}}$ are shown in Figure 2.1.

According to the ESR-selection rule, $\Delta M_S = \pm 1$, transitions should be allowed between the energy levels with $M_S = +1$ and 0, as well as between those with $M_S = 0$ and -1 when the resonance condition, $h\nu = g_e \mu_B B$, is fulfilled for both kinds of transition. In fact, the transition scheme is more complicated, because of interaction between the spin vectors $\vec{\mathbf{S}}_1$ and $\vec{\mathbf{S}}_2$ of the unpaired electrons (Chapt. 2.4).

The spin multiplicities for any number of unpaired electrons in a molecule can be derived from a branching diagram (Figure 2.2). For example, three electrons yield one quartet and two doublets, and four electrons give rise to one quintet, three triplets, and one singlet. Clearly, singlets with $|\vec{\mathbf{\mu}}_e| = 0$ are, diamagnetic,

12 2 Paramagnetic Organic Species and Their Generation

Fig. 2.1. Precession of the spin vector \vec{S} about the magnetic field \vec{B} in the z direction for the singlet (top) and the three components of the triplet.