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University of Oregon

Eugene. OG 97403-1274

USA

N. Owschimikow

Darmstadt University of Technology

Petersenstraße 23

64287 Darmstadt

Germany

Notker Rösch
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Synthesis Routes for Functional Composites

Based on Nanoporous Materials

Michael Wark

Molecular engineering is reaching highly elaborate levels of sophistication. The

analysis of the cooperative behavior of single molecules or clusters of molecules

within controlled spatial assemblies is a field undergoing continuous progress. The

most common inorganic matrices for the construction of inorganic/inorganic or

inorganic/organic host–guest composites are zeolites, aluminum phosphates, and

mesoporous silicates or aluminum silicates. An overview of their synthesis proce-

dures was recently published by van Bekkum, Flanigan, Jacobs, and Jansen [1].

Over the past 20 years, there has been a dramatic increase in the literature of de-

sign, synthesis, characterization, and property evaluation of zeolites and molecular-

sieve based composites for catalysis and optical applications. In addition to metal

and metal oxide clusters embedded in the regular pore systems of the host mate-

rials, the encapsulation of organic dye molecules and metal organic compounds

has gained particular attention. A summary of novel composite materials based on

zeolites and related structures, including pigments, phosphors, optical hole burn-

ing materials, nonlinear optical materials, quantum size effect materials, molecu-

lar wires, membranes, and sensors, is given by Behrens and Stucky [2].

Reviews summarizing the synthesis procedures leading to the formation of

metal clusters or metal nanoparticles in the pore systems have been written by

Kawi and Gates [3] and by Schulz-Ekloff [4]. Principles important for the intro-

duction of metal oxide or metal sulfide clusters were reviewed by Weitkamp et al.

[5].

Bioinorganic chemistry is profiting from a more and more developed design of

molecular systems and nanoscale mechanisms. For example, bio-inorganic struc-

tural motifs can potentially model metalloenzyme structures and functions in

terms of steric effects imposed by the inorganic edifice. One aim of such model

systems is the mimicking of enzymatic systems. Overviews regarding synthesis

routes and properties of zeolite-based supramolecular assemblies of metal organic

compounds, such as salens or phthalocyanines, are given by De Vos and Jacobs [6],

or very recently by Wark [7]. The preparation and the optical properties of all kinds

of chromophores in zeolites, porous silica, and are described by Schulz-Ekloff et al.

[8].
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The chapters in this section highlight some recent and detailed developments in

the synthesis and construction of host–guest composites with novel optical prop-

erties and high potential for applications such as miniaturized optical switches,

optical gas sensors, or highly effective light emitters.

The first four chapters concentrate on organic dye molecules as guests, mainly

on microporous zeolites or aluminophosphates as matrices providing pores with

diameters less than 2 nm. In the subsequent chapters mesoporous materials with

channel diameters between 2 and 10 nm are mainly used. The synthesis of these

hosts is based on long-chain alkyl amine surfactants [9], block copolymers [10],

or even expanded block-copolymers [11] as structure-directing agents. Recently,

polymer-templated ordered silicas with cage-like mesostructure have been devel-

oped [12].

In the first chapter (Chapter 1.1) Behrens et al. present methods for the prepa-

ration of functional composites based on zeotypes. They incorporated different

chromophors. As synthesis routes they used either an unspecific co-occlusion,

where the guest species is just added to the zeolite synthesis gel containing an ad-

ditional structure-directing agent (SDA), or a direct method, in which the modified

functional guest species directly acts as SDA. The incorporated functional units

obtained are arranged and protected by the inorganic framework leading to altered

optical properties. These first examples concentrated on rather stable guest mole-

cules, however, the development of milder synthesis methods, to introduce species

with new magnetic properties for example, seems to be imminent.

A real ‘‘ship-in-the-bottle’’ synthesis of organic dyes in the cages of faujasite-type

zeolites was carried out by Wöhrle et al. (Chapter 1.2). The developed methods use

the fixation of a first educt with the host by acid–base interactions. Then the syn-

thesis of the chromophore is achieved by reaction of the second educt, also in-

troduced into the pores. The obtained loadings were as high as 10�4 mol dye per

gram zeolite. The host–guest interactions were studied for the encapsulated

photochromic spiropyran as an example. Compared with organic polymer hosts

in the matrix of a dealuminated zeolite Y, a dramatically improved stability of

the switched state against thermal relaxation and an extreme high stability during

photoinduced switching were found.

Ganschow et al. (Chapter 1.3) established a one-step procedure for the covalent

anchorage of dyes at the pore walls of the mesoporous Si-MCM-41 and they

achieved the stable crystallization inclusion of highly fluorescing dye molecules

during the synthesis of microporous AlPO4-5 by using microwave radiation. It

turned out that during the rapid microwave-assisted crystallization, a preferential

accommodation of smaller chromophores takes place. Larger dye molecules enter

later. Such accommodation enables directed energy transfer between the hosted

dye molecules. The dye accommodation in porous minerals can be analyzed by bi-

focal microscopy (Chapter 4.3 by Seebacher et al.). In order to obtain optimized

crystal geometries for micro-lasing (Chapter 4.6 by Benmohammadi et al.) the

synthesis conditions were varied so that AlPO4-5 crystals with low length-to-width

aspect rations were formed.

The chapter of Kornatowski and Zadrozna (Chapter 1.4) deals also with the con-
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trol of the crystal morphology of the AlPO4-5 molecular sieve and its derivatives.

Their growth can be controlled to a high extent and extremely flat crystals with

length-to-width aspect ratios reduced to about 0.1 and the crystal width enlarged to

about 120 mm were obtained for the first time for CrAPO-5. The crystal length is

reduced owing to the adsorption of organic and inorganic additional components/

co-templates on the growing crystals.

Nanoporous crystals can also be used for the confinement of liquid crystals. This

is demonstrated by Frunza et al. (Chapter 1.5) who studied the influence of the

molecular sieve pore/cavity system on the phase transition characteristic and the

host–guest interactions that stabilize the cyanobiphenyl liquid crystal molecules

inside the pores. It has been found that size as well as shape and interconnectivity

of the pores play an important role for the modification of properties of liquid

crystals. Phase transitions characteristic of liquid crystals were only observed if the

nanoporous hosts provide interconnected pores larger than 3 nm as they exist in

extra large pore SBA-15 material.

Hybrid materials with adjustable content and molecular weight of the loaded or-

ganic polymer fraction can be synthesized by cationic host–guest polymerization

of vinyl ether monomers within MCM-41 materials. The synthesis routes to reach

this goal are discussed by Spange et al. in Chapter 1.6. The structures of the poly-

mer chains in MCM-41 are identical to the pure, bulk polymers, whereas the glass-

transition temperature is significantly different from those of the bulk fraction.

The given synthesis procedures are suitable for producing flexible polymer chains

within pores of inorganic materials to study their dynamics in confined geometry

(compared to chapter 3.2 by Kremer et al.).

The next chapter by Behrens et al. (Chapter 1.7) report that it is possible to ob-

tain functional mesostructured organic/inorganic hybrid materials directly by a

self-assembly process in which the functional organic molecules act themselves as

amphiphilic SDAs in a synthesis approach analogous to the preparation of M41S

mesophases. Special structure-directing effects that cannot be observed with non-

functional amphipihiles become apparent: aggregation tendencies between the

functional amphiphiles can lead to a clear preference for only one type of meso-

structure and the possibility of forming aggregates of different type can give rise to

different mesostructures for different surfactants with similar lengths. The aggre-

gation phenomena are influenced by interactions between the aromatic systems of

the chromophore amphipihiles.

Besides organic dye molecules, various inorganic guest species also can be ar-

ranged and stabilized by encapsulation in nanoporous materials. The next two

chapters give some examples of the development of composite materials with pro-

spective new physical and especially optical properties.

In Chapter 1.8. Wark et al. discuss the arrangement of metal oxide species in the

pores of molecular sieves either in mononuclear dispersion or as clusters or nano-

particles. The encapsulation was predominately achieved by post-synthetic treat-

ment using chemical vapor deposition (CVD), ion exchange, and impregnation.

The stabilized differently sized metal oxide species differ drastically in their be-

havior against reductive gases. The composites can be used for a sensing of gases
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