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Preface

The book you have in your hands is the result of a thrilling struggle. A struggle to
depict, in a bit more than a handful of chapters, the blooming and multifaceted
world of hybrid materials with functional properties and applications.

Hybrid organic-inorganic materials constitute indeed a remarkable and growing
category within the world of Materials Science. A realm where engineering the
combination of dissimilar components at the nanometric and molecular level leads
both to new challenges and opportunities for the development of novel and impro-
ved materials. This is a field where the boundaries between molecular and exten-
ded materials blur out, a field where ceramics and polymers meet at the chemical
dimension to yield new materials that go well beyond conventional composites, a
domain in which nanocomposites push forward the frontier of discovery. In this
exciting field, remarkable structural materials, halfway between glass and polymers
have been developed. Yet, the hybrid approach also offers great opportunities for
the development of functional materials, a fertile ground to harness the chemical,
physical, electrochemical or biological activity of a myriad organic and inorganic
components and put them to work in the materials of tomorrow.

Collecting a thorough taxonomic list of contents that could fairly represent this
fascinating family of materials would be impossible. Instead, we have strived to
select a few topics that would criss-cross the field revealing in some detail both a
variety of materials and a variety of functional properties and applications. Thus,
beginning with some historical perspective – if that is possible at all in a field that
has developed in the last two or three decades-the book goes from mineral inter-
calates, sol-gel hybrids and polysiloxanes, to other radically different types of
hybrids and approaches, such as hybrids based on conducting polymers. Also very
varied are the functional properties and multifunctional combinations and applica-
tions you will find in these chapters, ranging from optical or magnetic properties,
to energy storage and conversion or from the wealth of electroactive materials used
in sensors, batteries or solar cells, to the fascinating bioactive materials discussed
in the final chapter.

We hope this impressionistic portrait of a very dynamic field will contribute to
give the reader a feeling of the great potential, the multiple possibilities and the
many promising trends behind the development of functional hybrid materials.

August 2003 Pedro Gómez-Romero Clément Sanchez
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1

Pedro Gómez-Romero and Clément Sanchez

1.1
From Ancient Tradition to 21st Century Materials

In 1946, at a site in eastern Chiapas (Mexico) known as Bonampak (painted walls)
a startling archaeological discovery was made. This ancient Maya site contained an
impressive collection of fresco paintings characterized by bright blue and ochre
colors that had been miraculously preserved (Figure 1.1). A specially striking fea-
ture of these wall paintings was precisely their vivid blue hues, characteristic of
what turned out to be an hitherto unknown pigment which came to be known as
Maya blue [1].

In addition to its beautiful tones, that seemed to span all the shades of the Carib-
bean Sea, the most remarkable feature of Maya blue was its durability. Despite the
unavoidable deterioration of the Bonampak painted scenes, that particular blue pig-
ment had withstood more than twelve centuries of a harsh jungle environment 
looking almost as fresh as when it was used in the 8th century. Maya blue is indeed
a robust pigment, not only resisting biodegradation, but showing also unpreced-
ented stability when exposed to acids, alkalis and organic solvents.

Only after half a century from its archaeological discovery and not without scien-
tific controversy [1] could sophisticated analytical techniques uncover the secret of
Maya blue. The pigment is not a copper mineral, nor is it related to natural ultra-
marine, ground Lapis Lazuli or Lazurite as originally thought. Maya blue is a hybrid
organic-inorganic material with molecules of the natural blue dye known as indigo
encapsulated within the channels of a clay mineral known as palygorskite [1]. It is
a man-made material that combines the color of the organic pigment and the resist-
ance of the inorganic host, a synergic material, with properties and performance
well beyond those of a simple mixture of its components.

Maya blue is a beautiful example of a remarkable hybrid material and a very old one
to be sure, but its conception was most likely the fruit of a fortunate accident, an ancient
serendipitous discovery.

More than twelve centuries later, when a deep knowledge of atomic and mole-
cular structure is replacing trial and error tradition in the design of novel useful
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Fig. 1.1 Mayan wall paintings like this at Bonampak are 
twelve centuries old. Yet one of their most remarkable charac-
teristics is the good preservation of tones of blue. This so 
called Maya blue pigment is indeed a hybrid organic-inorganic
material formed by indigo dye molecules entrapped in a 
palygorskite clay mineral, a synergic nanocomposite material
that has passed with excellent marks the test of centuries
(courtesy Professor Constantino Reyes-Valerio)



materials, when our refined analytical techniques have allowed us to understand
the true nature and structure of this pigment, Maya blue stands as an inspiration
and a challenge for the designers of novel hybrid materials, for the explorers of a
technological territory with quickly expanding frontiers of which this book wants to
provide an account.

Aside from serendipity – the fruits of which should never be undervalued – the
deliberate effort to combine properties of organic and inorganic components in a
single composite material is an old challenge starting with the beginning of the
industrial era. Some of the earliest and best known organic-inorganic admixtures
are certainly derived from the paint and polymer industries, where inorganic pig-
ments or fillers are dispersed in organic components (solvents, surfactants, poly-
mers, etc.) to yield or improve optical and mechanical properties. However, the con-
cept of “hybrid organic-inorganic” materials has more to do with chemistry than
with physical mixtures. Thus, as the size of interacting particles gets reduced in
going from mixtures to composite materials, the importance of the interface in
determining final properties grows, and as we move towards nanocomposite mate-
rials, where components interact at a molecular level, the concept of organic-inor-
ganic composites gets a new dimension, a chemical dimension.

The development of hybrid organic-inorganic materials stemmed from several
different areas of chemistry, including intercalation chemistry (see Chapter 2), but
exploded only very recently with the birth of soft inorganic chemistry processes
(“Chimie Douce”), where mild synthetic conditions open a versatile access to che-
mically designed hybrid organic-inorganic materials [2, 3]. Later on, research shif-
ted towards more sophisticated nanocomposites with higher added values [4, 5].
Nowadays the field of organic-inorganic materials has grown to include a large
variety of types, extending to other fields as diverse as molecular and supramole-
cular materials or polymer chemistry [6]. Furthermore, a very significant trend has
been the growing interest in functional hybrids, which broadens the field even furt-
her. Thus, in addition to structural hybrid materials bringing the best of glass and
plastics together, there is a quickly expanding area of research on functional mate-
rials in which mechanical properties are secondary – though certainly not unim-
portant – and the emphasis is on chemical, electrochemical, or biochemical activi-
ty, as well as on magnetic, electronic, optical or other physical properties, or a com-
bination of them [6a].

Numerous new applications in the field of advanced materials science are rela-
ted to functional hybrids. Thus, the combination at the nanosize level of active inor-
ganic and organic or even bioactive components in a single material has made
accessible an immense new area of materials science that has extraordinary im-
plications in the development of multi-functional materials [2–6]. The chemical
nature of this emerging class of hybrids varies wildly, from molecular and supra-
molecular adducts [7] to extended solids, mineral or biomineral phases [8]. These
functional hybrids are considered as innovative advanced materials, and promising
applications are expected in many fields: optics, electronics, ionics, energy storage
and conversion, mechanics, membranes, protective coatings, catalysis, sensors, bio-
logy, etc. [2–6]. Many interesting new materials have already been prepared with
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mechanical properties tunable between those of glasses and those of polymers, with
improved optical properties, or with improved catalytic or membrane based pro-
perties [4, 5]. For example, hybrid materials having excellent laser efficiencies and
good photostability [9a], very fast photochromic response [9b], very high and stable
second order non-linear optical response [9c], or being original pH sensors [9d] and
electroluminescent diodes [9e] have been reported in the past five years. And some
hybrid products have already entered the applied field and the market. Examples
include organically doped sol-gel glassware sold by Spiegelau [10a], sol-gel entrap-
ped enzymes sold by Fluka [10b], or the one million TV sets sold annually by Tos-
hiba, the screens of which are coated with hybrids made of indigo dyes embedded
in a silica/zirconia matrix [10c]; interestingly, a 21st century material which brings
us echoes of ancient Maya Blue.

1.2
Hybrid Materials. Types and Classifications

When it comes to formal classifications hybrid materials tend to resist rigid cate-
gorizing. Their variety is too large – and growing – to allow for a systematic grou-
ping criterion. Figure 1.2 tries to convey this variety by showing examples of gene-
ral types of hybrids spreading on a field of organic and inorganic dimensions. In
this scheme material types are arranged according to the approximate dimensions
of their organic and inorganic components. The limited space prevents an exhau-
stive list of materials and only several representative types are shown. Yet, this visu-
al arrangement provides a first general overview of the area, spanning from mole-
cular to extended organic-inorganic combinations. In this respect the graph also
shows the greater richness of the field in the twilight region of supramolecular and
nanostructured materials, forming a broad continuum between molecular and solid
state chemistry.

The bidimensionality of this graph could suggest some type of classification
according to the nature of the predominant phase in the hybrid, i.e. organic-inor-
ganic vs. inorganic-organic materials depending on whether the extended, host or
matrix phase were organic or inorganic respectively. Such classification has been
conveniently used to categorize a particular type of polymer-based hybrid (see Chap-
ter 7) although it could be difficult to generalize due to the abundance of interme-
diate cases and to the indistinct use of both terms in the literature, where the label
organic-inorganic is most commonly used in a generic way.

On the other hand, a classification most widely used for all sorts of hybrid mate-
rials relies on the nature of interaction between organic and inorganic components.

The particular nanostructure, the degree of organization and the properties that
can be obtained for hybrid materials certainly depend on the chemical nature of
their components, but they are also heavily influenced by the interaction between
these components. Thus, a key point for the design of new hybrids is the tuning
of the nature, the extent and the accessibility of the inner interfaces. As a conse-
quence, the nature of the interface or the nature of the links and interactions

1 Hybrid Materials, Functional Applications. An Introduction4



1.2 Hybrid Materials. Types and Classifications 5

exchanged by the organic and inorganic components has been used to categorize
these hybrids into two main different classes [3e, h, i]. Class I corresponds to all
the systems where no covalent or iono-covalent bonds are present between the orga-
nic and inorganic components. In such materials, the various components only
exchange weak interactions (at least in terms of orbital overlap) such as hydrogen
bonding, van der Waals contacts, π–π. interactions or electrostatic forces. On the
contrary, in class II materials, at least a fraction of the organic and inorganic com-
ponents are linked through strong chemical bonds (covalent, iono-covalent or Lewis
acid-base bonds).

The chemical strategy followed for the construction of class II hybrid networks
depends of course on the relative stability of the chemical links that associate the
different components. Thus, under hydrolytic conditions Sn–Csp3 and Si–Csp3 are
usually stable bonds that can be used for organic functionalization whereas for tran-
sition metal cations complexing organic ligands (such as carboxylic acids, phos-
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Fig. 1.2 The field of hybrid organic-inorganic materials has 
bloomed at the interface of many conventional disciplines, 
and is producing an amazing variety of materials and applications, 
ranging from molecular and supramolecular structures, to cluster-
polymer adducts, sol-gel hybrids, or to nanocomposite materials 
based on extended phases



phonates, hydroxyacids, polyols or betadiketones etc . . .) could be used to anchor
organic components [3e, 2e, 19].

Finally, the obvious classification of materials according to their properties and
applications and, in particular, into the broad groups of structural and functional
materials will help to put in perspective the scope of this book, which, notwith-
standing the importance of mechanical properties, will put the emphasis on func-
tionality and on functional hybrid materials.

The book includes a solid series of chapters dealing both with the chemistry and
design of hybrids as well as with properties and applications. The emphasis goes
from the former to the latter as we go from the first to the last chapters of the book
but the reader will find a systematic attempt to bridge chemical design with physi-
cal properties and final applications in each single chapter, spanning overall a wide
range of different types of hybrids and their applications. Thus, the book includes
chapters devoted to the description of the synthesis, structure and chemical nature
of several major kinds of hybrids, including intercalation compounds, sol-gel nano-
composite hybrids, polymer-based hybrids, or donor acceptor molecular materials
as well as chapters dealing with the design of mesoporous hybrid materials and
derivatives. Sol-gel chemistry of hybrids [3, 11] and organized matter sol-gel che-
mistry [12–16] have been reviewed extensively very recently [3s, 16] and conse-
quently will not be reported with special detail in the present book. On the other
hand, properties and applications are well covered by several chapters dealing with
mechanical, optical, electrochemical, magnetic and multifunctional properties, as
well as specific applications such as energy storage and solar energy conversion,
electroanalytical, magnetic or microelectronics applications, to finish with a chap-
ter on the novel and fascinating bioactive hybrid materials.

1.3
General Strategies for the Design of Functional Hybrids

Independently of the types or applications, and in addition to the nature of the
interface between organic and inorganic components, a second important feature
in the tailoring of hybrid networks concerns the chemical pathways that are used
to design a given hybrid material. But, as has been hinted in the previous section,
the design and synthesis of hybrid materials depend markedly on the type of hybrid
sought. Class I and II hybrids differ radically in the type of synthetic approaches
adequate to their successful preparation. In the same way, the widely varied types
of hybrids shown in Figure 1.2 will require equally varied strategies for their syn-
thesis.

Yet, general strategies can be considered within each subfield. For instance, we
could point out several general approaches for the synthesis of sol-gel derived
hybrid materials. These main chemical routes are schematically represented in
Figure 1.3.
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1.3 General Strategies for the Design of Functional Hybrids 7

Path A corresponds to conventional sol-gel chemistry. Hybrid networks are obtai-
ned through hydrolysis of organically modified metal alkoxides or metal halides
condensed with or without simple metallic alkoxides. Examples of such compounds
are R¢nSi(OR)4–n (n = 1, 2) OR3Si–R¢–SiOR3, or R¢nSn(OR)4–n, with R¢ being a simple
non-hydrolyzable group. R’ will have a network modifying effect if it contains for
example a phenyl, an alkyl group or an organic dye. R¢ will act as a network former
if it bears any reactive group which can, for example, polymerize or copolymerize,
(e. g. pyrrol, methacryl, epoxy or styryl groups) or M(OR)m–n(LZ)n, (where LZ is a
functional complexing organic ligand with L an anchoring function and Z a gene-
ral organic group)[19].

The solvent may or may not contain a specific organic molecule, a biocomponent
or polyfunctional polymers that can be crosslinkable or that can interact or be trap-
ped within the inorganic components through a large set of fuzzy interactions 
(H-bonds, π–π interactions, Van der Waals). These strategies are simple, low cost
and yield amorphous nanocomposite hybrid materials. These materials that exhibit
an infinity of microstructures can be transparent and easily shaped as films or

Fig. 1.3 a) One key factor in the development of hybrid materials 
is the understanding and control of synthetic mechanisms and 
approaches, which allows the design of tailor-made materials with 
predictable properties for specific applications. This figure summarizes 
several general approaches for the design of sol-gel derived hybrid 
materials (see text)
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bulks. However, they are generally polydisperse in size and locally heterogeneous
in chemical composition.

Better understanding and control of the local and semi-local structure of these
materials and their degree of organization are important issues, especially if tailo-
red properties are sought for.

Five main approaches may be conceived to achieve such a control of the materi-
als structure; they are schematized in Figure 1.3:
1. The use of bridged precursors of silsesquioxanes X3Si–R¢–SiX3 (R¢ is an organic

spacer, X=Cl, Br, –OR), following the route A, allows the making of homo-
geneous molecular hybrid organic-inorganic materials [17].

2. Self assembling procedures (route B) [12–16]:
In the last ten years, a new field has been explored, which corresponds to the
organization or the texturation of growing inorganic or hybrid networks, tem-
plated by organic structure-directing agents (Figure 1.3, routes B, D). The suc-
cess of this strategy is also clearly related to the ability that materials scientists
have to control and tune hybrid interfaces. In this field, hybrid organic-inorga-
nic phases are very interesting, due to the versatility they demonstrate in the
building of a whole continuous range of nanocomposites, from ordered disper-

Fig. 1.3 b)



sions of inorganic bricks in a hybrid matrix to highly controlled nanosegregation
of organic polymers within inorganic matrices. In the latter case, one of the most
striking examples is the synthesis of mesostructured hybrid networks (routes B
and D).

3. The assembling of well-defined nanobuilding blocks (NBB, route C) [3s]:
A suitable method to reach a better definition of the inorganic component con-
sists in the use of perfectly calibrated preformed objects that keep their integri-
ty in the final material. These NBB can be clusters, organically pre- or post- func-
tionalized nanoparticles (metallic oxides, metals, chalcogenides, etc . . .), nano-
core-shells [3s, 11] or layered compounds able to intercalate organic components
[18]. NBB can be capped with polymerizable ligands or connected through orga-
nic spacers, like telechelic molecules or polymers, or functional dendrimers
(Figure 1.3, route C) [2 m]. The use of highly pre-condensed species presents
several advantages:

They exhibit a lower reactivity towards hydrolysis or attack of nucleophilic
moieties than metal alkoxides.

The nanobuilding components are nanometric and monodispersed, and with
perfectly defined structures, which facilitate the characterization of the final
materials.

The variety found in the nanobuilding blocks (nature, structure, and functio-
nality) and links allows one to build an amazing range of different architectures
and organic-inorganic interfaces, associated with different assembling strategies.
Moreover, the step-by-step preparation of the materials usually allows for a high
degree of control over their semi-local structure.

4. The combination of self-assembly and NBB approaches (route D)[3s]:
Strategies combining the nanobuilding blocks approach with the use of organic
templates that self-assemble and allow one to control the assembling step are
also appearing (Figure 1.3, route D). This combination between the “nanobuil-
ding block approach” and “templated assembling” will have a paramount impor-
tance in exploring the theme of “synthesis with construction”. Indeed, such
materials exhibit a large variety of interfaces between the organic and the inor-
ganic components (covalent bonding, complexation, electrostatic interactions,
etc.). These NBB with tunable functionalities can, through molecular recognition
processes, permit the development of a new vectorial chemistry.

5. Integrative synthesis (route E) [13–16]:
The strategies reported above mainly allow control of the design and the assem-
bly of hybrid materials in the 1 Å to 500 Å range. Recently, micro-molding
methods have been developed, in which the use of controlled phase separation
phenomena, emulsion droplets, latex beads, bacterial threads, colloidal templa-
tes or organogelators leads to controlling the shapes of complex objects on the
micron scale [16]. The combination between these strategies and those descri-
bed along routes A, B, C and D allows the construction of hierarchically organi-
zed materials, in terms of structure and functions [16, 8c]. Such synthesis pro-
cedures are inspired by those observed to take place in natural systems for some
hundreds of million years. Learning the “savoir faire” of hybrid living systems
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and organisms from understanding their rules and transcription modes could
enable us to design and build ever more challenging and sophisticated novel
hybrid materials.

1.4
The Road Ahead

Looking forward to the 21st century, nano-sciences will be, as well as biology, one
of the fields that will contribute to a high level of scientific and technological deve-
lopment. Hybrid (organic-bio-inorganic) materials must play a major role in the
development of advanced functional materials.

Nowadays the molecular approaches of solid state chemistry and nanochemistry
have reached a high level of sophistication. Today the synthesis of many or any
organic ligands or molecules, coordination metal complexes, functional organo or
functional metalo-organic precursors, functional nanobuilding units carrying mag-
netic, electrical, optical or catalytic properties, is very close to being mastered.

On the other hand, a large amount of research has been carried out to obtain
organic templates (surfactants, dendrimers, organogelators, polymers, block copo-
lymers, multifunctional organic connectors, biopolymers etc . . .) and to understand
and rationalize their physicochemical properties. Indeed, many research programs
or research actions have been devoted to OMS (Organized Molecular Systems) or
OPS (Organized Polymeric Systems).

As a consequence, nowadays, chemists can practically tailor-make any molecular
species from molecules to clusters or even to nanosized particles, nanolamellar
compounds, nanotubes etc. Clusters are mainly used as model compounds while
nanoobjects can directly enter into more applied research fields.

In the near future, original materials will be designed through the synthesis of
new hybrid nanosynthons (hybridons), selectively tagged with complementary con-
nectivities, allowing for the coding of hybrid assemblies presenting a spatial orde-
ring at different length scales. Hybridons carrying chirality or/and dissymmetry,
and multiple or complementary functionalities will open new pathways for the syn-
thesis of these materials.

Numerous scientific breakthroughs can be expected in this field through a closer
involvement of skilled chemists in original pathways of materials processing. The
synergy between chemistry and chemical engineering will permit access to materi-
als having complex structures allowing a high degree of integration.

In particular, the synthesis and construction of materials through the simultane-
ous use of self-assembly processes and morphosynthesis (exploiting chemical trans-
formation in spatially restricted reaction fields) together with external factors like
gravity, electrical or magnetic fields, mechanical stress, or even through the use of
strong compositional flux variations of the reagents during the synthesis (open
systems) are particularly interesting to explore. The chemical strategies offered by
such coupled processes allow, through an intelligent and tuned coding, to develop
a new vectorial chemistry, able to direct the assembling of a large variety of struc-
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