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A: adenosine
ACA: acetamidocinnamic acid
ACL: -amino- -aprolactam
ADH: alcohol dehydrogenase
ADI: acceptable daily intake
ADP: adenosine 5́ -diphosphate
Ala: alanine
Arg: arginine
AMP: adenosine 5́ -monophosphate
ATC: d,l-2-amino-D2-thiazoline-4-carboxylic acid
ATP: adenosine 5́ -triphosphate

C: cytidine
cDNA: copy DNA
CL: citrate lyase
CMP: cytidine 5́ -monophosphate
CoA: coenzyme A
CS: citrate synthetase
CTP: cytidine 5́ -triphosphate

d: deoxy
dam: gene locus for E. coli DNA adenine methylase (N6-methyladenine)
dcmI: gene locus for E. coli DNA cytosine methylase(5-methylcytosine)
dd: dideoxy
ddNTP: dideoxynucleoside 5́-triphosphate
DE: dextrose equivalent
DEAE: diethylaminoethyl
DNA: deoxyribonucleic acid
DNase: deoxyribonuclease
dNTP: deoxynucleoside 5́-triphosphate
DOPA: 3-(3,4-dihydroxyphenylalanine) [3-hydroxy-l-tyrosine]
dpm: decays per minute
ds: double-stranded
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E.C.: Enzyme Commission

F6P: fructose 6-phosphate
FAN: free alpha amino nitrogen, i.e., a measure of peptides/amino acids

available for yeast to be used as nutrient
fMet:
FMN: flavin mononucleotide
FMNH2: flavin mononucleotide, reduced

G: guanosine
GDP: guanosine 5 -́diphosphate
Glu: glutamic acid
Gly: glycine
GMP: guanosine 5 -́monophosphate
GOD: glucose oxidase
GOT: glutamate oxaloacetate transaminase
G6P: glucose 6-phosphate
GPT: glutamate pyruvate transaminase
GTP: guanosine 5 -́triphosphate

3-HBDH: 3-hydroxybutyrate dehydrogenase
HFCS: high-fructose corn syrup
hsdM: E. coli gene locus for methylation
hsdR: E. coli gene locus for restriction
hsdS: E. coli gene locus for sequence specificity

IDP: inosine 5́ -diphosphate
Ile: isoleucine
INT: iodonitrotetrazolium chloride
ITP: inosine 5́ -triphosphate

LDH: lactate dehydrogenase
Lys: lysine

m(superscript): methylated
MDH: malate dehydrogenase
Met: methionine
M6P: mannose 6-phosphate
mRNA: messenger RNA
MTT: 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide

N: any nucleotide
NAD: nicotinamide – adenine dinucleotide
NADH: nicotinamide – adenine dinucleotide, reduced
NADP: nicotinamide – adenine dinucleotide phosphate
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NADPH: nicotinamide – adenine dinucleotide phosphate, reduced
NMN: nicotinamide mononucleotide
NTP: nucleoside 5́-triphosphate

p: phosphate groups
32P: phosphate groups containing 32P phosphorus atoms
pi: inorganic phosphate
°P: degree Plato; i.e., sugar content equivalent to 1 % sucrose by weight
PEP: phosphoenolpyruvate
6-PGDH: 6-phosphogluconate dehydrogenase
Phe: phenylalanine
PMS: 5-methylphenazinium methyl sulfate
poly(dA): poly(deoxyadenosine 5́-monophosphate)
ppi: inorganic pyrophosphate
Pro: proline
PRPP: phosphoribosyl pyrophosphate
Pu: purine
Py: pyrimidine

r: ribo
RNA: ribonucleic acid
RNase: ribonuclease

SAM:
SMHT: serine hydroxymethyltransferase
ss: single-stranded

T: thymidine
TMP: thymidine 5́ -monophosphate
tRNA: transfer RNA
TTP: thymidine 5́ -triphosphate

U: uridine
UMP: uridine 5́-monophosphate
UTP: uridine 5́-triphosphate

Val: valine

Plasmids:
pBR322
pBR328
pSM1
pSP64
pSP65
pSPT18, pSPT19
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Enzymes are the catalysts of biological processes. Like any other catalyst, an enzyme
brings the reaction catalyzed to its equilibrium position more quickly than would
occur otherwise; an enzyme cannot bring about a reaction with an unfavorable
change in free energy unless that reaction can be coupled to one whose free energy
change is more favorable. This situation is not uncommon in biological systems,
but the true role of the enzymes involved should not be mistaken.

The activities of enzymes have been recognized for thousands of years; the fer-
mentation of sugar to alcohol by yeast is among the earliest examples of a biotechno-
logical process. However, only recently have the properties of enzymes been under-
stood properly. Indeed, research on enzymes has now entered a new phase with the
fusion of ideas from protein chemistry, molecular biophysics, and molecular biol-
ogy. Full accounts of the chemistry of enzymes, their structure, kinetics, and techno-
logical potential can be found in many books and series devoted to these topics
[1–5]. This chapter reviews some aspects of the history of enzymes, their nomencla-
ture, their structure, and their relationship to recent developments in molecular
biology.

1.1
History

Detailed histories of the study of enzymes can be found in the literature [6], [7].

Early Concepts of Enzymes. The term “enzyme” (literally “in yeast”) was coined by
Kühne in 1876. Yeast, because of the acknowledged importance of fermentation,
was a popular subject of research. A major controversy at that time, associated most
memorably with Liebig and Pasteur, was whether or not the process of fermenta-
tion was separable from the living cell. No belief in the necessity of vital forces, how-
ever, survived the demonstration by Buchner (1897) that alcoholic fermentation
could by carried out by a cell-free yeast extract. The existence of extracellular
enzymes had, for reasons of experimental accessibility, already been recognized. For
example, as early as 1783, Spallanzani had demonstrated that gastric juice could
digest meat in vitro, and Schwann (1836) called the active substance pepsin.
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Kühne himself appears to have given trypsin its present name, although its exis-
tence in the intestine had been suspected since the early 1800s.

Enzymes as Proteins. By the early 1800s, the proteinaceous nature of enzymes had
been recognized. Knowledge of the chemistry of proteins drew heavily on the
improving techniques and concepts of organic chemistry in the second half of the
1800s; it culminated in the peptide theory of protein structure, usually credited to
Fischer und Hofmeister. However, methods that had permitted the separation
and synthesis of small peptides were unequal to the task of purifying enzymes.
Indeed, there was no consensus that enzymes were proteins. Then, in 1926, Sum-
ner crystallized urease from jack bean meal and announced it to be a simple pro-
tein. However, Willstätter argued that enzymes were not proteins but “colloidal
carriers” with “active prosthetic groups”. However, with the conclusive work by
Northrop et al., who isolated a series of crystalline proteolytic enzymes, beginning
with pepsin in 1930, the proteinaceous nature of enzymes was established.

The isolation and characterization of intracellular enzymes was naturally more
complicated and, once again, significant improvements were necessary in the sepa-
ration techniques applicable to proteins before, in the late 1940s, any such enzyme
became available in reasonable quantities. Because of the large amounts of accessi-
ble starting material and the historical importance of fermentation experiments,
most of the first pure intracellular enzymes came from yeast and skeletal muscle.
However, as purification methods were improved, the number of enzymes obtained
in pure form increased tremendously and still continues to grow. Methods of pro-
tein purification are so sophisticated today that, with sufficient effort, any desired
enzyme can probably be purified completely, even though very small amounts will
be obtained if the source is poor.

Primary Structure. After the protein nature of enzymes had been accepted, the way
was clear for more precise analysis of their composition and structure. Most amino
acids had been identified by the early 20th century. The methods of amino acid anal-
ysis then available, such as gravimetric analysis or microbiological assay, were quite
accurate but very slow and required large amounts of material. The breakthrough
came with the work of Moore and Stein on ion-exchange chromatography of
amino acids, which culminated in 1958 in the introduction of the first automated
amino acid analyzer [8].

The more complex question – the arrangement of the constituent amino acids in
a given protein, generally referred to as its primary structure – was solved in the late
1940s. The determination in 1951 of the amino acid sequence of the -chain of insu-
lin by Sanger and Tuppy [10] demonstrated for the first time that a given protein
does indeed have a unique primary structure. The genetic implications of this were
enormous. The introduction by Edman of the phenyl isothiocyanate degradation of
proteins stepwise from the N-terminus, in manual form in 1950 and subsequently
automated in 1967 [11], provided the principal chemical method for determining
the amino acid sequences of proteins. The primary structures of pancreatic ribonu-
clease [12] and egg-white lysozyme [13] were published in 1963. Both of these
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enzymes, simple extracellular proteins, contain about 120 amino acids. The first
intracellular enzyme to have its primary structure determined was glyceraldehyde
3-phosphate dehydrogenase [14], which has an amino acid sequence of 330 residues
and represents a size (250 – 400 residues) typical of many enzymes. Protein sequen-
cing is increasingly performed by liquid chromatography/mass spectrometry
(LC/MS) techniques, and several tools and software packages are now available for
protein identification and characterization. The methods of protein sequence analysis
are now so well developed that no real practical deterrent exists, other than time or
expense, to determination of the amino acid sequence of any polypeptide chain [9].

A more recent fundamental concept called proteome (protein complement to a
genome) will enable researchers to unravel biochemical and physiological mecha-
nisms of complex multivariate diseases at the functional molecular level. A new dis-
cipline, proteomics, complements physical genome research. Proteomics can be
defined as “the qualitative and quantitative comparison of proteomes under differ-
ent conditions to further unravel biological processes” [15].

Active Site. The fact that enzymes are highly substrate specific and are generally
much larger than the substrates on which they act quickly became apparent. The
earliest kinetic analyses of enzymatic reactions indicated the formation of transient
enzyme – substrate complexes. These observations could be explained easily if the
conversion of substrate to product was assumed to occur at a restricted site on an
enzyme molecule. This site soon became known as the active center or, as is more
common today, the active site.

Particular compounds were found to react with specific amino acid side chains
and thus inhibit particular enzymes. This suggested that such side chains might
take part in the catalytic mechanisms of these enzymes. An early example was the
inhibition of glycolysis or fermentation by iodoacetic acid, which was later recog-
nized as resulting from reaction with a unique cysteine residue of glyceraldehyde 3-
phosphate dehydrogenase, which normally carries the substrate in a thioester link-
age [16].

Many such group-specific reagents have now been identified as inhibitors of indi-
vidual enzymes; often they are effective because of the hyper-reactivity of a function-
ally important side chain in the enzyme's active site. However, a more sophisticated
approach to the design of enzyme inhibitors became possible when the reactive
group was attached to a substrate; in this way, the specificity of the target enzyme
was utilized to achieve selective inhibition of the enzyme [17]. Such active-site-direct-
ed inhibitors have acquired major importance not only academically in the study of
enzyme mechanisms but also commercially in the search for a rational approach to
selective toxicity or chemotherapy.

Three-Dimensional Structure. Chemical studies showed that the active site of an
enzyme consists of a constellation of amino acid side chains brought together spa-
tially from different parts of the polypeptide chain. If this three-dimensional struc-
ture was disrupted by denaturation, that is, without breaking any covalent bonds,
the biological activity of the enzyme was destroyed. In addition, it was found that all
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the information required for a protein to fold up spontaneously in solution and
reproduce its native shape was contained in its primary structure. This was part of
the original “central dogma” of molecular biology.

The X-ray crystallography of proteins [18] demonstrated unequivocally that a given
protein has a unique three-dimensional structure. Among the basic design princi-
ples was the tendency of hydrophobic amino acid side chains to be associated with
the hydrophobic interior of the folded molecule, whereas charged side chains were
almost exclusively situated on the hydrophilic exterior or surface. The first high-res-
olution crystallographic analysis of an enzyme, egg-white lysozyme, confirmed these
principles and led to the proposal of a detailed mechanism [19]. The active site was
located in a cleft in the structure (Fig. 1), which has subsequently proved to be a
common feature of active sites. According to this, the enzymatic reaction takes place
in a hydrophobic environment, and the successive chemical events involving sub-
strate and protein side chains are not constrained by the ambient conditions of aque-
ous solution and neutral pH.

Figure 1. A molecular model of the enzyme lysozyme:
the arrow points to the cleft that accepts the
polysaccharide substrate (Reproduced by courtesy of
J. A. Rupley)

1.2
Enzyme Nomenclature

Strict specificity is a distinguishing feature of enzymes, as opposed to other known
catalysts. Enzymes occur in myriad forms and catalyze an enormous range of reac-
tions. By the late 1950 s the number of known enzymes had increased so rapidly
that their nomenclature was becoming confused or, worse still, misleading because
the same enzyme was often known to different workers by different names; in addi-
tion, the name frequently conveyed little or nothing about the nature of the reaction
catalyzed.

To bring order to this chaotic situation, an International Commission on Enzymes
was established in 1956 under the auspices of the International Union of Biochem-
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