
Günther Rüdiger and Rainer Hollerbach

The Magnetic Universe
Geophysical and Astrophysical Dynamo Theory

WILEY-VCH Verlag GmbH & Co. KGaA

Titelei_Rüdiger  21.05.2004  13:08 Uhr  Seite 3


Innodata
File Attachment
3527605002.jpg





Günther Rüdiger and Rainer Hollerbach

The Magnetic Universe

Geophysical and Astrophysical Dynamo Theory

Titelei_Rüdiger  21.05.2004  13:08 Uhr  Seite 1





Günther Rüdiger and Rainer Hollerbach

The Magnetic Universe
Geophysical and Astrophysical Dynamo Theory

WILEY-VCH Verlag GmbH & Co. KGaA

Titelei_Rüdiger  21.05.2004  13:08 Uhr  Seite 3



Authors

Günther Rüdiger
Astrophysical Institute Potsdam
gruediger@aip.de

Rainer Hollerbach
Dept. of Mathematics, University of Glasgow
rh@maths.gla.ac.uk

Cover picture
Total radio emission and magnetic field vectors of
M51, obtained with the Very Large Array and the
Effelsberg 100-m telescope (�=6.2 cm, see Beck
2000). With kind permission of Rainer Beck, Max-
Planck-Institut für Radioastronomie, Bonn.

This book was carefully produced. Nevertheless,
authors, and publisher do not warrant the infor-
mation contained therein to be free of errors.
Readers are advised to keep in mind that state-
ments, data, illustrations, procedural details or
other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for
British Library Cataloging-in-Publication Data:
A catalogue record for this book is available from
the British Library

Bibliographic information published by 
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in
the Deutsche Nationalbibliografie; detailed  bibli-
ographic data is available in the Internet at
<http://dnb.ddb.de>.

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation
into other languages). No part of this book may
be reproduced in any form – nor transmitted or
translated into machine language without written
permission from the publishers. Registered
names, trademarks, etc. used in this book, even
when not specifically marked as such, are not to
be considered unprotected by law.

Printed in the Federal Republic of Germany
Printed on acid-free paper

Printing Strauss GmbH, Mörlenbach
Bookbinding Litges & Dopf GmbH ,
Heppenheim
ISBN 3-527-40409-0

Titelei_Rüdiger  21.05.2004  13:08 Uhr  Seite 4



Contents

Preface XI

1 Introduction 1

2 Earth and Planets 3
2.1 Observational Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Reversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Other Time-Variability . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Basic Equations and Parameters . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Anelastic and Boussinesq Equations . . . . . . . . . . . . . . . . . . 7
2.2.2 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Magnetoconvection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Rotation or Magnetism Alone . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Rotation and Magnetism Together . . . . . . . . . . . . . . . . . . . 15
2.3.3 Weak versus Strong Fields . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Oscillatory Convection Modes . . . . . . . . . . . . . . . . . . . . . 18

2.4 Taylor’s Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Taylor’s Original Analysis . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Relaxation of Ro = E = 0 . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Taylor States versus Ekman States . . . . . . . . . . . . . . . . . . . 22
2.4.4 From Ekman States to Taylor States . . . . . . . . . . . . . . . . . . 24
2.4.5 Torsional Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.6 αΩ-Dynamos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.7 Taylor’s Constraint in the Anelastic Approximation . . . . . . . . . . 30

2.5 Hydromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 The Inner Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Stewartson Layers on C . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Nonaxisymmetric Shear Layers on C . . . . . . . . . . . . . . . . . . 33
2.6.3 Finite Conductivity of the Inner Core . . . . . . . . . . . . . . . . . 36
2.6.4 Rotation of the Inner Core . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Magnetic Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.9 Other Planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9.1 Mercury, Venus and Mars . . . . . . . . . . . . . . . . . . . . . . . 42



VI Contents

2.9.2 Jupiter’s Moons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.9.3 Jupiter and Saturn . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.9.4 Uranus and Neptune . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Differential Rotation Theory 47
3.1 The Solar Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Torsional Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2 Meridional Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Ward’s Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Stellar Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Angular Momentum Transport in Convection Zones . . . . . . . . . . . . . . 57
3.2.1 The Taylor Number Puzzle . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 The Λ-Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 The Eddy Viscosity Tensor . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.4 Mean-Field Thermodynamics . . . . . . . . . . . . . . . . . . . . . 74

3.3 Differential Rotation and Meridional Circulation for Solar-Type Stars . . . . 77
3.4 Kinetic Helicity and the DIV-CURL-Correlation . . . . . . . . . . . . . . . . 81
3.5 Overshoot Region and the Tachocline . . . . . . . . . . . . . . . . . . . . . 84

3.5.1 The NIRVANA Code . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5.2 Penetration into the Stable Layer . . . . . . . . . . . . . . . . . . . . 86
3.5.3 A Magnetic Theory of the Solar Tachocline . . . . . . . . . . . . . . 89

4 The Stellar Dynamo 95
4.1 The Solar-Stellar Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 The Phase Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.2 The Nonlinear Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.3 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.4 Dynamo-related Stellar Observations . . . . . . . . . . . . . . . . . 101
4.1.5 The Flip-Flop Phenomenon . . . . . . . . . . . . . . . . . . . . . . 104
4.1.6 More Cyclicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 The α-Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.1 The Magnetic-Field Advection . . . . . . . . . . . . . . . . . . . . . 112
4.2.2 The Highly Anisotropic α-Effect . . . . . . . . . . . . . . . . . . . 116
4.2.3 The Magnetic Quenching of the α-Effect . . . . . . . . . . . . . . . 122
4.2.4 Weak-Compressible Turbulence . . . . . . . . . . . . . . . . . . . . 125

4.3 Magnetic-Diffusivity Tensor and η-Quenching . . . . . . . . . . . . . . . . 129
4.3.1 The Eddy Diffusivity Tensor . . . . . . . . . . . . . . . . . . . . . . 129
4.3.2 Sunspot Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4 Mean-Field Stellar Dynamo Models . . . . . . . . . . . . . . . . . . . . . . 135
4.4.1 The α2-Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.4.2 The αΩ-Dynamo for Slow Rotation . . . . . . . . . . . . . . . . . . 142
4.4.3 Meridional Flow Influence . . . . . . . . . . . . . . . . . . . . . . . 146

4.5 The Solar Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.5.1 The Overshoot Dynamo . . . . . . . . . . . . . . . . . . . . . . . . 146
4.5.2 The Advection-Dominated Dynamo . . . . . . . . . . . . . . . . . . 149



Contents VII

4.6 Dynamos with Random α . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.6.1 A Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.6.2 Dynamo Models with Fluctuating α-Effect . . . . . . . . . . . . . . 155

4.7 Nonlinear Dynamo Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.7.1 Malkus-Proctor Mechanism . . . . . . . . . . . . . . . . . . . . . . 159
4.7.2 α-Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.7.3 Magnetic Saturation by Turbulent Pumping . . . . . . . . . . . . . . 162
4.7.4 η-Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.8 Λ-Quenching and Maunder Minimum . . . . . . . . . . . . . . . . . . . . . 163

5 The Magnetorotational Instability (MRI) 167
5.1 Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.1.1 Molecular Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.1.2 The Angular Momentum Problem . . . . . . . . . . . . . . . . . . . 171
5.1.3 Turbulence and Planet Formation . . . . . . . . . . . . . . . . . . . 174

5.2 Stability of Differential Rotation in Hydrodynamics . . . . . . . . . . . . . . 174
5.2.1 Combined Stability Conditions . . . . . . . . . . . . . . . . . . . . . 176
5.2.2 Sufficient Condition for Stability . . . . . . . . . . . . . . . . . . . . 178
5.2.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.2.4 Vertical Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3 Stability of Differential Rotation in Hydromagnetics . . . . . . . . . . . . . . 181
5.3.1 Ideal MHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.3.2 Baroclinic Instability . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.4 Stability of Differential Rotation with Strong Hall Effect . . . . . . . . . . . 184
5.4.1 Criteria of Instability of Protostellar Disks . . . . . . . . . . . . . . . 184
5.4.2 Growth Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.5 Global Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.5.1 A Spherical Model with Shear . . . . . . . . . . . . . . . . . . . . . 187
5.5.2 A Global Disk Model . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.6 MRI of Differential Stellar Rotation . . . . . . . . . . . . . . . . . . . . . . 194
5.6.1 T Tauri Stars (TTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.6.2 The Ap-Star Magnetism . . . . . . . . . . . . . . . . . . . . . . . . 195
5.6.3 Decay of Differential Rotation . . . . . . . . . . . . . . . . . . . . . 198

5.7 Circulation-Driven Stellar Dynamos . . . . . . . . . . . . . . . . . . . . . . 199
5.7.1 The Gailitis Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.7.2 Meridional Circulation plus Shear . . . . . . . . . . . . . . . . . . . 201

5.8 MRI in Kepler Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.8.1 The Shearing Box Model . . . . . . . . . . . . . . . . . . . . . . . . 202
5.8.2 A Global Disk Dynamo? . . . . . . . . . . . . . . . . . . . . . . . . 205

5.9 Accretion-Disk Dynamo and Jet-Launching Theory . . . . . . . . . . . . . . 207
5.9.1 Accretion-Disk Dynamo Models . . . . . . . . . . . . . . . . . . . . 207
5.9.2 Jet-Launching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.9.3 Accretion-Disk Outflows . . . . . . . . . . . . . . . . . . . . . . . . 212
5.9.4 Disk-Dynamo Interaction . . . . . . . . . . . . . . . . . . . . . . . . 213



VIII Contents

6 The Galactic Dynamo 215
6.1 Magnetic Fields of Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.1.1 Field Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.1.2 Pitch Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
6.1.3 Axisymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.1.4 Two Exceptions: Magnetic Torus and Vertical Halo Fields . . . . . . 221
6.1.5 The Disk Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.2 Nonlinear Winding and the Seed Field Problem . . . . . . . . . . . . . . . . 224
6.2.1 Uniform Initial Field . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.2.2 Seed Field Amplitude and Geometry . . . . . . . . . . . . . . . . . . 226

6.3 Interstellar Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.3.1 The Advection Problem . . . . . . . . . . . . . . . . . . . . . . . . 228
6.3.2 Hydrostatic Equilibrium and Interstellar Turbulence . . . . . . . . . 229

6.4 From Spheres to Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.4.1 1D Dynamo Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.4.2 Oscillatory vs. Steady Solutions . . . . . . . . . . . . . . . . . . . . 235

6.5 Linear 3D Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.6 The Nonlinear Galactic Dynamo with Uniform Density . . . . . . . . . . . . 238

6.6.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.6.2 The Influences of Geometry and Turbulence Field . . . . . . . . . . . 240

6.7 Density Wave Theory and Swing Excitation . . . . . . . . . . . . . . . . . . 242
6.7.1 Density Wave Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.7.2 The Short-Wave Approximation . . . . . . . . . . . . . . . . . . . . 243
6.7.3 Swing Excitation in Magnetic Spirals . . . . . . . . . . . . . . . . . 244
6.7.4 Nonlocal Density Wave Theory in Kepler Disks . . . . . . . . . . . . 248

6.8 Mean-Field Dynamos with Strong Halo Turbulence . . . . . . . . . . . . . . 251
6.8.1 Nonlinear 2D Dynamo Model with Magnetic Supported Vertical

Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.8.2 Nonlinear 3D Dynamo Models for Spiral Galaxies . . . . . . . . . . 253

6.9 New Simulations: Macroscale and Microscale . . . . . . . . . . . . . . . . . 255
6.9.1 Particle-Hydrodynamics for the Macroscale . . . . . . . . . . . . . . 256
6.9.2 MHD for the Microscale . . . . . . . . . . . . . . . . . . . . . . . . 258

6.10 MRI in Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

7 Neutron Star Magnetism 265
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.3 Without Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.4 With Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.5 Magnetic-Dominated Heat Transport . . . . . . . . . . . . . . . . . . . . . . 276
7.6 White Dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8 The Magnetic Taylor–Couette Flow 281
8.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.2 The Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284



Contents IX

8.3 Results without Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
8.3.1 Subcritical Excitation for Large Pm . . . . . . . . . . . . . . . . . . 286
8.3.2 The Rayleigh Line (a = 0) and Beyond . . . . . . . . . . . . . . . . 286
8.3.3 Excitation of Nonaxisymmetric or Oscillatory Modes . . . . . . . . . 290
8.3.4 Wave Number and Drift Frequencies . . . . . . . . . . . . . . . . . . 291

8.4 Results with Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
8.4.1 Hall Effect with Positive Shear . . . . . . . . . . . . . . . . . . . . . 293
8.4.2 Hall Effect with Negative Shear . . . . . . . . . . . . . . . . . . . . 294
8.4.3 A Hall-Driven Disk-Dynamo? . . . . . . . . . . . . . . . . . . . . . 295

8.5 Endplate effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8.6 Water Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
8.7 Taylor–Couette Flow as Kinematic Dynamo . . . . . . . . . . . . . . . . . . 299

9 Bibliography 301

Index 327





Preface

It is now 85 years since Sir Joseph Larmor first proposed that electromagnetic induction might
be the origin of the Sun’s magnetic field (Larmor 1919). Today this so-called dynamo effect is
believed to generate the magnetic fields of not only the Sun and other stars, but also the Earth
and other planets, and even entire galaxies. Indeed, most of the objects in the Universe have
associated magnetic fields, and most of these are believed to be due to dynamo action. Quite
an impressive record for a paper that is only two pages long, and was written before galaxies
other than the Milky Way were even known!

However, despite this impressive list of objects to which Larmor’s idea has now been
applied, in no case can we say that we fully understand all the details. Enormous progress
has undoubtedly been made, particularly with the huge increase in computational resources
available in recent decades, but considerable progress remains to be made before we can say
that we understand the magnetic fields even just of the Sun or the Earth, let alone some of the
more exotic objects to which dynamo theory has been applied.

Our goal in writing this book was therefore to present an overview of these various ap-
plications of dynamo theory, and in each case discuss what is known so far, but also what is
still unknown. We specifically include both geophysical and astrophysical applications. There
is an unfortunate tendency in the literature to regard stellar and planetary magnetic fields as
somehow quite distinct. How this state of affairs came about is not clear, although it is most
likely simply due to the fact that geophysics and astrophysics are traditionally separate depart-
ments. Regardless of its cause, it is certainly regrettable. We believe the two have enough in
common that researchers in either field would benefit from a certain familiarity with the other
area as well. It is our hope therefore that this book will not only be of interest to workers in
both fields, but that they will find new ideas on the ‘other side of the fence’ to stimulate further
developments on their side (and maybe thereby help tear down the fence entirely).

Much of the final writing was done in the 2nd half of 2003. Without the technical support
of Mrs. A. Trettin and M. Schultz from the Astrophysical Institute Potsdam it would not have
been possible to finish the work in time. We gratefully acknowledge their kind and constant
help. Many thanks also go to Axel Brandenburg, Detlef Elstner, and Manfred Schüssler –
to name only three of the vast dynamo community – for their indispensable suggestions and
never-ending discussions.

Potsdam and Glasgow, 2004





1 Introduction

Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire
galaxies all having associated magnetic fields. All of these fields are generated by the motion
of electrically conducting fluids, via the so-called dynamo effect. The basics of this effect are
almost trivial to explain: moving an electrical conductor through a magnetic field induces an
emf (Faraday’s law), which generates electric currents (Ohm’s law), which have associated
magnetic fields (Ampere’s law). The hope is then that with the right combination of flows
and fields the induced field will reinforce the original field, leading to (exponential) field
amplification.

Of course, the details are rather more complicated than that. The basic physical principles
may date back to the 19th century, but it was not until the middle of the 20th century that
Backus (1958) and Herzenberg (1958) rigorously proved that this process can actually work,
that is, that it is possible to find ‘the right combination of flows and fields.’ And even then
their flows were carefully chosen to make the problem mathematically tractable, rather than
physically realistic. For most of these magnetized objects mentioned above it is thus only now,
at the start of the 21st century, that we are beginning to unravel the details of how their fields
are generated.

The purpose of this book is to examine some of this work. We will not discuss the basics of
dynamo theory as such; for that we refer to the books by Roberts (1967), Moffatt (1978) and
Krause & Rädler (1980), which are still highly relevant today. Instead, we wish to focus on
some of the details specific to each particular application, and explore some of the similarities
and differences.

For example, what is the mechanism that drives the fluid flow in the first place, and hence
ultimately supplies the energy for the field? In planets and stars it turns out to be convection,
whereas in accretion disks it is the differential rotation in the underlying Keplerian motion. In
galaxies it could be either the differential rotation, or supernova-induced turbulence, or some
combination of the two.

Next, what is the mechanism that ultimately equilibrates the field, and at what amplitude?
The basic physics is again quite straightforward; what equilibrates the field is the Lorentz force
in the momentum equation, which alters the flow, at least just enough to stop it amplifying the
field any further. But again, the details are considerably more complicated, and again differ
widely between different objects.

Another interesting question to ask concerns the nature of the initial field. In particular,
do we need to worry about this at all, or can we always count on some more or less arbitrarily
small stray field to start this dynamo process off? And yet again, the answer is very different
for different objects. For planets we do not need to consider the initial field, since both the
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advective and diffusive timescales are so short compared with the age that any memory of
the precise initial conditions is lost very quickly. In contrast, in stars the advective timescale
is still short, but the diffusive timescale is long, so so-called fossil fields may play a role in
certain aspects of stellar magnetism. And finally, in galaxies even the advective timescale is
relatively long compared with the age, so there we do need to consider the initial field.

Accretion disks provide another interesting twist to this question of whether we need to
consider the initial condition. The issue here is not whether the dynamo acts on a timescale
short or long compared with the age, but whether it can act at all if the field is too weak. In
particular, this Keplerian differential rotation by itself cannot act as a dynamo, so something
must be perturbing it. It is believed that this perturbation is due to the Lorentz force itself,
via the so-called magnetorotational instability. In other words, the dynamo can only operate
at finite field strengths, but cannot amplify an infinitesimal seed field. One must therefore
consider whether sufficiently strong seed fields are available in these systems.

Accretion disks also illustrate the effect that an object’s magnetic field may have on its
entire structure and evolution. As we saw above, the magnetic field always affects the flow,
and hence the internal structure, in some way, but in accretion disks the effect is particularly
dramatic. It turns out that the transport of angular momentum outward – which of course
determines the rate at which mass moves inward – is dominated by the Lorentz force. Some-
thing as fundamental as the collapse of a gas cloud into a proto-stellar disk and ultimately into
a star is thus magnetically controlled. That is, magnetism is not only pervasive throughout
the Universe, it is also a crucial ingredient in forming stars, the most common objects found
within it.

We hope therefore that this book will be of interest not just to geophysicists and astrophysi-
cists, but to general physicists as well. The general outline is as follows: Chapter 2 presents
the theory of planetary dynamos. Chapters 3 and 4 deal with stellar dynamos. We consider
only those aspects of stellar hydrodynamics and magnetohydrodynamics that are relevant to
the basic dynamo process; see for example Mestel (1999) for other aspects such as magnetic
braking. Chapter 5 discusses this magnetorotational instability in Keplerian disks. Chapter 6
considers galaxies, in which the magnetorotational instability may also play a role. Chap-
ter 7, concerning neutron stars, is slightly different from the others. In particular, whereas the
other chapters deal with the origin of the particular body’s magnetic field, in Chapt. 7 we take
the neutron star’s initial field as given, and consider the details of its subsequent decay. We
consider only the field in the neutron star itself though; see Mestel (1999) for the physics of
pulsar magnetospheres. Lastly, Chapt. 8 discusses the magnetorotational instability in cylin-
drical Couette flow. This geometry is not only particularly amenable to theoretical analysis, it
is also the basis of a planned experiment. However, we also point out some of the difficulties
one would have to overcome in any real cylinder, which would necessarily be bounded in z.

Where relevant, individual chapters of course refer to one another, to point out the various
similarities and differences. However, most chapters can also be read more or less indepen-
dently of the others. Most chapters also present both numerical as well as analytic/asymptotic
results, and as much as possible we try to connect the two, showing how they mutually sup-
port each other. Finally, we discuss fields occurring on lengthscales from kilometers to mega-
parsecs, and ranging from 10−20 to 1015 G – truly the magnetic Universe.
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2.1 Observational Overview

We begin with a brief overview of the field as it is today, as well as how it has varied in the
past. See also Merrill, McElhinny & McFadden (1998) or Dormy, Valet & Courtillot (2000)
for considerably more detailed accounts of the observational data, or Hollerbach (2003) for a
discussion of the theoretical origin of some of the timescales on which the field varies.

Figure 2.1 shows the Earth’s magnetic field as it exists today. The two most prominent
features, are (i) that it is predominantly dipolar, and (ii) that this dipole is quite closely aligned
with the rotation axis, with a tilt of only 11◦. We would expect a successful geodynamo theory
to be able to explain both of these features, as well as others, of course, such as why the field
has the particular amplitude that it does.

Turning to the dipole dominance first, we begin by noting that much of this is an artifact
of where we have chosen to observe the field, namely at the surface of the Earth. As we
will see later, the field is actually created deep within the Earth, in the molten iron core,
with the overlying mantle playing no direct role. Because the mantle (consisting of rock) is
largely insulating, we can project the field back down to the core-mantle boundary (CMB). All
components of the field are amplified when we do this, but the nondipole components are also
amplified relative to the dipole, since they drop off faster with increasing radius, and hence
increase faster when projected back inward again. Figure 2.1 also shows the resulting field at
the CMB, which we note is indeed considerably less dipole dominated.

Figure 2.2 shows the corresponding power spectra, both at the surface and the CMB. The
enhancement of the higher harmonics at the CMB is clearly visible. The other important point
to note is that whereas the surface spectrum has been plotted to spherical harmonic degree
l = 25, only the modes up to l = 12 have been projected inward to obtain the CMB spectrum.
The reason for this is the sharp break observed in the surface spectrum at l ≈ 13, with the
power dropping off quite steeply up to there, but not at all thereafter. The generally accepted
interpretation of this phenomenon is that this power in the l > 12 modes is due to crustal
magnetism. These modes cannot therefore be projected back down to the CMB to obtain the
spectrum there. Figure 2.1 (bottom) is thus not the true field at the CMB, but merely a filtered
version of it, with all of the smallest scales having been filtered out. That is, the true field
could very well exhibit highly localized features like sunspots, but this crustal contamination
prevents us from ever observing them.

Turning next to the alignment of the dipole with the rotation axis, the probability that two
vectors chosen at random would be aligned to within 11◦ or better is less than 2%. It seems
more plausible therefore that this degree of alignment is not a coincidence, but instead reflects
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Figure 2.1: The radial component of the Earth’s field at the surface (top), and projected down to the
core-mantle boundary (bottom). Courtesy A. Jackson.

some controlling influence of rotation on the geodynamo. And indeed, we will see below that
rotation exerts powerful constraints on the field (although it is not immediately obvious why
this influence should lead to an alignment of the field with the rotation axis).

2.1.1 Reversals

Figure 2.1 shows the field as it is today. The field is not static, however, varying instead
on timescales as short as minutes or even seconds, and as long as tens or even hundreds of
millions of years. Of all of these variations, the most dramatic are reversals, in which the entire
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Figure 2.2: Power spectra of the Earth’s
field at the surface (solid) and the core-
mantle boundary (dashed).

field switches polarity. See, for example, Gubbins (1994) or Merrill & McFadden (1999) for
reviews devoted specifically to reversals.

Figure 2.3 shows the reversal record for the past 40 million years. The field is seen to
reverse on the average every few hundred thousand years, but with considerable variation
about that average. These relatively infrequent and irregular reversals of the Earth’s field are
thus very different from the comparatively regular, and much faster solar cycle.

Unlike the interval between reversals, the time it takes for the reversal itself seems to be a
relatively constant 5–10 thousand years. During the reversal, the field is weaker, and consid-
erably more complicated and less dipolar than in Fig. 2.1. Between reversals, however, it is
generally similar to today’s field, in terms of both field strength, dipole-dominated structure,
and alignment with the rotation axis. This last point, of course, provides additional evidence
that this alignment is not due to chance, but instead reflects the powerful influence of rotation.

Finally, the average interval between reversals itself varies on timescales of tens and hun-
dreds of millions of years. For example, there were no reversals at all between 83 and 121
million years ago. Because these timescales are so much longer than any of the timescales
‘naturally’ present in the core, it is generally believed that this very long-term behavior is

Figure 2.3: The reversal sequence for the past 40 million years. Courtesy A. Witt.
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of external origin. In particular, the timescale of mantle convection is precisely tens to hun-
dreds of millions of years (e.g. Schubert, Turcotte & Olson 2001), so the thermal boundary
conditions that the mantle imposes on the core will also evolve on these timescales. See,
for example, Glatzmaier et al. (1999) for a series of numerical simulations in which different
thermal boundary conditions did indeed lead to different reversal rates.

2.1.2 Other Time-Variability

As noted above, reversals are only the most dramatic variation in time found in the field. Be-
tween reversals the field varies as well, again with a broad range of timescales and amplitudes.
Most familiar is the so-called secular variation, in which some of the nondipolar features fluc-
tuate on timescales of decades to centuries. See for example Bloxham, Gubbins & Jackson
(1989) or Jackson, Jonkers & Walker (2000) for summaries of the secular variation observed
in the historical record. Intermediate between secular variation and reversals are also excur-
sions, in which the field varies by considerably more than the usual secular variation, but does
not actually reverse either. Excursions are around ten times more numerous than reversals, but
of similar duration.

At the other extreme, the shortest timescales that can be observed within the core are
geomagnetic jerks, in which the usual secular variation changes abruptly – and over the whole
Earth – within a single year. Around three or four such events have been recorded in the
past century (LeHuy et al. 1998). Note also that these events may well occur even faster than
the one-year timescale on which they are recorded at the surface; the mantle is not a perfect
insulator, and its weak conductivity effectively screens out any variations in the core occurring
on timescales faster than a year. (For this reason also the variations in the field occurring on
timescales as short as minutes or seconds must be of external origin, i.e. magnetospheric or
ionospheric.)

2.2 Basic Equations and Parameters

The Earth’s interior consists of a series of concentric spherical shells nested rather like the
layers of an onion. The most fundamental division is that between the core and the mantle. The
core, consisting mostly of iron, extends from the center out to a radius of 3480 km; the mantle,
consisting of rock, extends from there essentially to the Earth’s surface at R = 6370 km. In
fact, the top 30 km or so are sufficiently different in their material properties (brittle rather than
plastic, due to the much lower pressures and temperatures) that they are further distinguished
from the mantle, and referred to as the crust. However, as important as the distinction between
crust and mantle may be for phenomena such as plate tectonics, volcanism, earthquakes, etc.
(e.g. Schubert, Turcotte & Olson 2001), the fact that both consist largely of rock, which is
a very poor electrical conductor, immediately suggests that we must seek the origin of the
Earth’s magnetic field elsewhere, namely in the core. From the point of view of geodynamo
theory, the mantle and crust are merely 3000 km of ‘inconvenience’ blocking what we would
really like to observe (see Sect. 2.9.1 though).

Turning to the core then, it is further divided into a solid inner core of radius Rin =
1220 km, and a fluid outer core of radius Rout = 3480 km. The inner core was first detected
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seismically in 1936. See for example Gubbins (1997) for a review devoted specifically to
the inner core. Further seismic studies show it to be sufficiently rigid to sustain shear waves
(although it may actually be a so-called mushy layer right to the center, see, for example,
Fearn, Loper & Roberts 1981). In contrast, the outer core is as fluid as water, with a viscosity
of around 10−2 cm2/s (Poirier 1994, De Wijs et al. 1998).

Further seismic (and other) studies also indicate that the density of the outer core increases
from around 9.9 g/cm3 at Rout to 12.2 g/cm3 at Rin, at which point there is an abrupt jump
to 12.8 g/cm3 in the inner core. This value for the inner core is consistent with the density
of around 90% pure iron (at the corresponding pressures and temperatures). The 5% jump
across the inner core boundary cannot be explained purely by the phase transition from solid
to liquid though; the outer core must contain perhaps 15–20% lighter impurities (with S, Si
and O being the most likely candidates, e.g. Alfè et al. 2002).

With this basic structure of the core in place, we can begin to understand the dynamics
that ultimately lead to the emergence of the Earth’s magnetic field. As the Earth slowly cooles
over billions of years, the core gradually solidifies, that is, the inner core grows. (The reason it
solidifies from the center, even though it is hottest there, is due to the influence of the pressure
on the melting temperature.) As it freezes, most of the impurities get rejected back into the
fluid (just as freezing salt water will reject most of the salt, leaving relatively fresh water in the
ice). As Braginsky (1963) was the first to point out, there are then two sources of buoyancy at
the inner core boundary, namely that due to these light impurities being rejected back into the
fluid, and that due to the release of latent heat from the freezing process itself. Additionally,
of course, there is the usual source of (negative) buoyancy at the outer core boundary, namely
that due to the fluid there losing heat to the mantle and hence becoming denser. It is these
various sources of buoyancy that drive the convection that ultimately generates the magnetic
field.

Incidentally, note also that we can extrapolate this cooling process backward to estimate
when the inner core first formed. Buffett et al. (1992, 1996) considered detailed models of the
thermal evolution of the core, and concluded that the inner core started to solidify around two
billion years ago, and also that at present thermal and compositional effects are of comparable
importance in powering the geodynamo. The precise age of the inner core continues to be de-
bated though; recent estimates vary between one and three billion years (Labrosse & Macouin
2003 and Gubbins et al. 2003, respectively). It is quite interesting then that there is paleo-
magnetic evidence for the existence of a field as long ago as 3.5 billion years (McElhinny &
Senanayake 1980). That is, there was most likely a dynamo even before the inner core formed,
and hence before these various buoyancy sources at the inner core boundary became available.

2.2.1 Anelastic and Boussinesq Equations

Having discussed in qualitative terms the dynamics that lead to core convection and ultimately
a magnetic field, our next task is to write down the specific equations. The most detailed anal-
ysis of these equations, and the various approximations one can make, is by Braginsky &
Roberts (1995); here we merely summarize some of their findings. Linearizing the thermo-
dynamics about an adiabatic reference state with density ρa, the momentum equation they
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ultimately end up with is

Du

Dt
+ 2Ω × u = −∇P + C ga +

1
µ0ρa

(∇× B) × B + ν∆u. (2.1)

The so-called co-density C is given by C = −αSS −αξξ, where S and ξ are the entropy and
composition perturbations, respectively, and

αS = −1
ρ

∂ρ

∂S
, αξ = −1

ρ

∂ρ

∂ξ
(2.2)

determine how variations in S and ξ translate into relative density variations (this means of
course that we also need a suitable equation of state ρ = ρ(P, S, ξ) to determine these coeffi-
cients). One other point worth stating explicitly is that the gravity ga appearing in Eq. (2.1) is
that due to the adiabatic reference state only (hence the subscript); Braginsky & Roberts show
that the self-gravity induced by the convective density perturbations themselves can be incor-
porated into the reduced pressure P . This is obviously a considerable simplification, as ga is
then known (varying roughly as −r), rather than having to be solved for at every timestep of
the other equations.

The continuity equation associated with Eq. (2.1) is ∇·(ρau) = 0, that is, rather than con-
sidering the fully compressible continuity equation we have made the anelastic approximation,
and thereby filtered out sound waves1. The timescale for sound waves to traverse the entire
core is around ten minutes, which is so much faster than any of the other dynamics we will be
interested in that filtering them out completely is a reasonable approximation. (Note that this
is very different from many astrophysical situations, where the Alfvén speed is often compa-
rable with or even greater than the sound speed.) Finally, with the usual advection-diffusion
equations for S and ξ, and of course the induction equation for B, we have a complete set of
equations that we should be able to timestep for S, ξ, u and B.

As we will see in the remainder of this chapter, making actual progress with these equa-
tions is a formidable undertaking, primarily because some of the nondimensional parameters
take on such extreme values. Many models therefore simplify these equations further still, in
a variety of ways. For example, even though we saw that compositional and thermal sources
of buoyancy are both important, most models neglect compositional effects, and consider
thermal convection only. Given how different thermal and compositional convection can be
(e.g. Worster 2000), this probably does affect at least the details of the solutions; neglect-
ing compositional effects certainly cannot be rigorously justified. The only ‘justification’ one
can offer is that we cannot even get the details of thermal convection right, so there is little
point in worrying about the precise differences between thermal and compositional convec-
tion. For example, the compositional diffusivity is several orders of magnitude smaller than
the thermal (e.g. Roberts & Glatzmaier 2000), but even the thermal diffusivity is orders of
magnitude smaller than anything that any numerical model can cope with. So if both have
to be increased to artificially large values, much of the difference between the two effects is
also likely to disappear (although there are other differences as well, such as very different
boundary conditions).

Another common simplification is to make the Boussinesq approximation, in which den-
sity variations are neglected everywhere except in the buoyancy term itself. That is, we replace

1 see Lantz & Fan (1999) for a recent discussion of the anelastic approximation
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the adiabatic density profile ρa by a constant, ρ0. The Boussinesq approximation also can-
not be rigorously justified (once again, see Braginsky & Roberts 1995). In particular, the
variations in ρa that are being neglected are orders of magnitude greater than the convective
density perturbations that are being included (very much unlike laboratory convection). How-
ever, given that the density contrast across the outer core is only ∼ 20% (as we saw above),
it seems likely that Boussinesq and anelastic results also will not differ by too much. There
certainly do not appear to be any fundamental differences between the two.

We are therefore left with

Du

Dt
+ 2Ω × u = −∇P − αT g +

1
µ0ρ0

(∇× B) × B + ν∆u,

∂B

∂t
= ∇× (u × B) + η∆B,

(
∂

∂t
+ u · ∇

)
T = χ∆T, (2.3)

with ∇ · u = 0 and ∇ · B as the simplest set of equations still ‘reasonably’ consistent with
the original physics. (Note that when we neglect compositional effects, the entropy S can be
replaced by the temperature T , with α then being the usual coefficient of thermal expansion.)
These are the equations we will focus on, although in Sect. 2.4.7 we will return briefly to the
original anelastic equation.

2.2.2 Nondimensionalization

Having settled on the equations, the next point we want to consider is how to nondimensional-
ize them, and what that might already tell us about the dynamics (that is, which terms are small
or large, etc.). For a lengthscale, the obvious choice is the outer core radius Rout = 3480 km
(many numerical models actually take Rout − Rin, but such minor details need not concern
us here). The timescale is not quite so obvious, but a natural choice is the magnetic diffusive
timescale R2

out/η. Using the value η ≈ 2 · 104 cm2/s appropriate for molten iron (Poirier
1994), this comes out to around 200,000 yr. (Incidentally, we see therefore that the range of
timescales observed in the field varies from much shorter to much longer than this diffusive
timescale.)

The fluid flow is then scaled by length/time = η/Rout = O(10−6) m/s, so the advective
and diffusive terms in the induction equation are (formally) comparable. Note though that
the actual magnitude of the flow can only emerge from a full solution of the problem, and
may turn out to be different from this value. Indeed, if the time evolution of the field at the
core-mantle boundary is used to estimate the flow, one obtains magnitudes on the order of
10−4 − 10−3 m/s (Bloxham & Jackson 1991). That is, we would expect u to equilibrate at
102−3 rather than order 1. This value of a few hundred is then also the magnetic Reynolds
number Rm = uRout/η in the core.

The magnetic field is scaled by (Ωρ0µ0η)1/2 ≈ 10 G, which ensures that the Coriolis and
Lorentz forces in the momentum equation are formally comparable. This is believed to be the
appropriate balance at which the field equilibrates, for reasons that will become clear later. It
also compares rather well with the ∼ 3-G field observed at the CMB (particularly when we
remember that the field deep within the core is likely to be at least somewhat stronger than
right at the boundary). But once again, the actual magnitude of the field can only emerge from
the complete solution. And as before with the magnitude of u giving us Rm, the magnitude
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of B (squared in this case) gives us the Elsasser number

Λ =
B2

Ωρ0µ0η
. (2.4)

We see therefore that Λ is 0.1 to perhaps 1 in the core.
Finally, the natural scale for the temperature is simply the temperature difference δT across

the core. However, there is one very considerable difficulty with this, namely estimating what
δT actually is. In particular, the dynamically relevant temperature difference is only what is
left over after the adiabatic temperature difference has been subtracted out. This ends up being
virtually everything though: of the more than 1000 K difference across the core, the super-
adiabatic δT that actually drives convection amounts to a small fraction of 1 K. In other words,
δT cannot be estimated by taking the known temperature difference and subtracting out the
adiabat; the errors would overwhelm the signal. Instead, δT can only be inferred indirectly by
energetic/thermodynamic considerations.

With these scalings, the nondimensionalized Boussinesq equations become

Ro
Du

Dt
+ 2êz × u = −∇P + q R̂aT r + (∇× B) × B + E∆u,

∂B

∂t
= ∇× (u × B) + ∆B,

(
∂

∂t
+ u · ∇

)
T = q∆T. (2.5)

The nondimensional parameters appearing in these equations are, first, the (modified)
Rayleigh number

R̂a =
g0αδTRout

Ωχ
, (2.6)

where g0 = |g(Rout)| (and by replacing g by −r in Eq. (2.5)1 we are assuming for simplicity
that gravity varies linearly with r). Note that this Rayleigh number measures the buoyancy
force against the Coriolis force, rather than against the viscous force, as in classical Rayleigh–
Benard convection. And once again, we remember that because of these uncertainties in δT ,
it is not clear just how large R̂a is in the core. See, however, Gubbins (2001) for the latest
estimates, and also Kono & Roberts (2001) for how R̂a should even be defined when both
thermal and compositional effects are important.

Next we have the Rossby number

Ro =
η

ΩR2
out

, (2.7)

measuring the ratio of the rotational timescale Ω−1 (=1/2π day) to the diffusive timescale
R2

out/η (=200,000 yr, as we saw above). That is, Ro = O(10−9). The Ekman number E
(measuring viscous to Coriolis forces) and the Roberts number q

E =
ν

ΩR2
out

, q =
χ

η
, (2.8)

(the latter measuring the ratio of thermal to magnetic duffusivity) come out to be O(10−15)
and O(10−6), resp.

It is the extreme smallness of these three parameters that then makes the geodynamo equa-
tions so difficult. For example, if the advective term is at least as important as the diffusive
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term in Eq. (2.5)2 (as we saw it is, and indeed must be to have any chance of achieving dy-
namo action), then in Eq. (2.5)3 the advective term will dominate the diffusive term by many
orders of magnitude, leading to extremely small lengthscales in T , which will certainly cause
numerical difficulties, if nothing else. See also Christensen, Olson & Glatzmaier (1999) for
further difficulties associated with the smallness of q.

These difficulties associated with q are usually ‘solved’ by invoking turbulent diffusivities,
in which case all three diffusivities νT, ηT and χT will most likely be comparable, yielding
qT = O(1) – which is indeed the range used in virtually all numerical models. However,
one has not really solved the problem thereby, merely deferred it to a proper investigation of
this small-scale turbulence. See, for example, Braginsky & Meytlis (1990), St. Pierre (1996),
Davidson & Siso-Nadal (2002) and Buffett (2003) for models that begin to explore the precise
nature of such rotating MHD turbulence.

And finally, even if an appeal to turbulent diffusivities solves (or rather ignores) the diffi-
culties associated with q, those associated with Ro and E remain. In particular, ηT (and hence
also νT) cannot be increased much beyond 100 m2/s, otherwise the field would simply decay
faster than it can be sustained. This means though that even RoT and ET are at most 10−7 –
which is still several orders of magnitude smaller than most numerical models can cope with.
Much of the remainder of this chapter will be devoted to discovering just why small Ro and
E should pose such problems.

But first, there is one more general feature of Eqs. (2.5) worth mentioning, namely the
associated energy equation. If we add the dot products of Eq. (2.5)1 with u and Eq. (2.5)2
with B, after a little algebra we obtain the global energy balance

∂

∂t

1
2

∫ (|B|2 + Ro |u|2) dV

= q R̂a
∫
urTr dV −

∫ (|∇×B|2 + E|∇×u|2) dV. (2.9)

The point we wish to focus on here is not so much the right-hand side (that is, how the energy
changes), but rather the left, what the energy is in the first place. In particular, we recognize
that if our nondimensionalization is correct, so that u and B do indeed equilibrate at roughly
O(1) values, then the magnetic energy will be several orders of magnitude greater than the
kinetic. And because Ro is so small, this remains true even if u equilibrates at O(103), as
we saw above that it does. This is in sharp contrast to most astrophysical systems, where the
magnetic energy is typically orders of magnitude smaller, or at best reaches equipartition.

Of course, if we included the energy stored in the Earth’s rotation, we would be back in
the astrophysically more familiar situation where the kinetic energy dominates by far. The
rotational energy is not available though, since angular momentum must be conserved, so
only deviations from solid-body rotation could be converted into magnetic (or other) forms of
energy. And here again we see an enormous difference between the Earth and the Sun, for
example; whereas in the Sun the differential rotation is a significant fraction of the overall
rotation (∼28%), in the Earth it is almost infinitesimal (< 0.01%).
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2.3 Magnetoconvection

Rotating, magnetic convection is a complicated process. Following Chandrasekhar (1961), let
us therefore begin with classical Rayleigh–Benard convection, and first consider how rotation
and magnetism separately alter the dynamics. Then we will explore how they act together,
and finally what implications that might have for planetary dynamos, where the magnetic field
is created by the convection itself, rather than being externally imposed.

Consider an infinite plane layer, heated from below and cooled from above. Additionally,
there is an overall rotation Ωêz , and an externally imposed magnetic field B0êz . Linearizing
about this basic state, the perturbation equations become

∂u

∂t
+ 2E−1êz × u = −∇P + ∆u + Ra Pr−1 T êz + Ha2 Pm−1 (∇× b) × êz

∂b

∂t
= ∇× (u × êz) + Pm−1∆b,

∂T

∂t
− u · êz = Pr−1∆T, (2.10)

where length has been nondimensionalized by the layer thickness d, time by d2/ν, u by ν/d,
b by the imposed field B0, and T by the imposed temperature difference δT . The nondimen-
sional parameters are then the usual two Prandtl numbers Pr = ν/χ and Pm = ν/η, the
Rayleigh number

Ra =
gαδTd3

νχ
, (2.11)

measuring the thermal forcing, the (inverse) Ekman number

E−1 =
Ωd2

ν
, (2.12)

measuring the rotation, and finally the Hartmann number

Ha =
B0d√
µ0ρνη

, (2.13)

measuring the imposed magnetic field. Note also that the details of the nondimensionaliza-
tion here – and hence the nondimensional parameters that arise – are different from those
in Sect. 2.2.2. The reason for this is that here we want to start with classical Rayleigh–
Benard convection, and only then add in rotation and magnetism, and study their effects. We
must therefore also start with the classical nondimensionalization, so, for example, the usual
Rayleigh number measuring buoyancy against viscosity, rather than against the Coriolis force,
as in Eq. (2.6). Later on we will ‘translate’ the insight gained here into the geophysically more
relevant parameters introduced in Sect. 2.2.2.
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Figure 2.4: The influence of rotation without magnetism. Left: Rac as a function of E−1. Right: kc as
a function of E−1. The dashed lines have slopes 4/3 and 1/3, respectively, and indicate the scalings in
the asymptotic limit.

Taking all quantities in Eq. (2.10) proportional to exp(σt+ ikxx+ ikyy), we end up with
the five equations

σT = uz + Pr−1∆T,

σ∆uz = −2E−1ω′
z + ∇4uz − Ra Pr−1 k2T + Ha2 Pm−1 ∆b′z,

σωz = 2E−1u′z + ∆ωz + Ha2 Pm−1j′z,

σbz = u′z + Pm−1∆bz,

σjz = ω′
z + Pm−1∆jz, (2.14)

where uz and bz are the z-components of u and b, ωz and jz the z-components of ∇×u and
∇× b, the primes denote differentiation with respect to z, and k2 = k2

x + k2
y . Together with

the boundary conditions

T = 0, uz = u′z = 0, ωz = 0, bz = ±b′z/k, jz = 0, (2.15)

at z = ±d/2, corresponding to rigid boundaries and electrically insulating exteriors, this
system forms a well-defined eigenvalue problem that can be solved (numerically) for σ for any
set of values for k, Ra, E−1 and Ha. Just as in Rayleigh–Benard convection, we are interested
in the particular values Rac (and corresponding kc) for which we first obtain exponentially
growing solutions, that is, modes with �(σ) > 0. In the absence of rotation and magnetism,
this critical Rayleigh number for the onset of convection is 1708, with associated wave number
kc = 3.12. We would like to discover then what effect nonzero E−1 and Ha have on this
value, that is, whether rotation and magnetism help or hinder the onset of convection, and
most importantly, how they interact with one another.
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Figure 2.5: The influence of magnetism without rotation. Left: Rac as a function of Ha. Right: kc as
a function of Ha. The dashed lines have slopes 2 and 1/3, respectively, and indicate the scalings in the
asymptotic limit.

2.3.1 Rotation or Magnetism Alone

Figure 2.4 (left) shows Rac as a function of E−1, when Ha = 0. We note that it increases
monotonically, ultimately scaling as E−4/3 in the rapidly rotating limit. Rotation therefore
suppresses convection. To see why, we turn to Eq. (2.14)3, and note that for increasingly
rapid rotation it becomes increasingly difficult to balance the term 2E−1u′z against any of the
others: the magnetic term is out, because we are taking Ha = 0 here; the inertial term is
also out, because these modes turn out to be steady, so σ = 0. If it were not for the viscous
term, we would therefore have u′z = 0 – which is of course just the familiar Taylor–Proudman
theorem. Together with the boundary conditions, this would imply uz = 0 though, elimi-
nating the possibility of convective overturning. For convection to occur we must therefore
break this Taylor–Proudman result, and as we just saw, the only way to achieve that is to bal-
ance the Coriolis term 2E−1u′z against the viscous term ∆ωz . This in turn implies that the
convection must occur on very short horizontal lengthscales, since only then can the viscous
term compete with this very large factor E−1 in the Coriolis term. Indeed, we see in Fig. 2.4
(right) that kc also increases monotonically, ultimately scaling as E−1/3. Convection on ever
shorter horizontal lengthscales is increasingly inefficient though, thereby explaining why Rac

increases.

Figure 2.5 shows Rac and kc as functions of Ha, when E−1 = 0. Both again increase
monotonically, with Rac scaling as Ha2 in the strongly magnetic limit, and kc scaling as
Ha1/3. The reason why Rac increases is therefore just as before, because the convection is
again being forced to occur on ever shorter horizontal lengthscales. This in turn is also easy to
understand; the magnetic field tends to suppress all motion perpendicular to it, forcing the flow
into tall, thin convection cells. More mathematically, the difficulty this time is in balancing
the term Ha2 Pm−1 ∆b′z in Eq. (2.14)2. If b′z were zero though, Eq. (2.14)4 would again yield
the unacceptable result u′z = 0.



2.3 Magnetoconvection 15

1 1.5 2 2.5
4.5

5

5.5

6

6.5

log(Ra
c
)

log(Ha)
1 1.5 2 2.5

0

0.5

1

1.5

log(k
c
)

log(Ha)

Figure 2.6: The effect of rotation and magnetism together. Left: Rac as a function of Ha. Right: kc as
a function of Ha. The dashed and solid lines denote the two different modes of convection discussed in
the text. The dotted lines will be discussed in Sect. 2.3.4.

2.3.2 Rotation and Magnetism Together

We see therefore that acting alone, rotation and magnetism each suppress convection. When
both act together though, the results could well be quite different. In particular, we note that
then we can balance the Coriolis term 2E−1u′z against the magnetic term Ha2 Pm−1j′z in
Eq. (2.14)3, and similarly in Eq. (2.14)2. That is, the mechanisms that forced the convection
to adopt very short horizontal lengthscales in either of the previous two cases do not apply
here. If convection can occur with kc = O(1) though, Rac should also be much less than in
either of the previous two cases.

Figure 2.6 shows Rac and kc as functions of Ha, when E−1 = 104, and validates this
argument. We see that initially (the dashed line) increasing Ha has almost no effect, with
the rapid rotation continuing to suppress the convection. However, once Ha reaches a critical
value, a transition takes place to a completely different mode of convection (the solid line),
which occurs with kc = O(1), and correspondingly much lower Rac, exactly as suggested
above. Doing the asymptotic analysis (Chandrasekhar 1961), one finds that this transition
takes place when Ha = O(E−1/3). And once on this second branch, the minimum occurs
when Ha = O(E−1/2), at which point Rac is also O(E−1) (so the Coriolis, buoyancy and
magnetic terms in Eq. (2.14)2 are all comparable).

To summarize then, we have seen that while rotation and magnetism separately suppress
convection, adding a magnetic field to a rotating system can facilitate convection again, re-
ducing Rac from O(E−4/3) for Ha < O(E−1/3) down to O(E−1) for Ha = O(E−1/2). In
the next section we will then (i) translate these results back into the geophysically more rel-
evant parameters, and (ii) try to understand what implications they might have for planetary
dynamos.
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2.3.3 Weak versus Strong Fields

Doing the translation first, we note that the Ekman number is the same here and in Sect. 2.2.2,
whereas the Rayleigh numbers are related by R̂a = E Ra. The Hartmann number is similarly
related to the Elsasser number by Λ = E Ha2. We therefore have that R̂ac = O(E−1/3) for
Λ < O(E1/3), and R̂ac = O(1) for Λ = O(1) (having these last two quantities independent of
E is, of course, what makes the nondimensionalization in Sect. 2.2.2 particularly convenient).

To assess what these results might imply for the geodynamo, we must consider the differ-
ences between our idealized Rayleigh–Benard problem and the real Earth. Most obviously, in
the Earth we have a spherical shell rather than an infinite plane layer. This certainly makes
the analysis considerably more complicated, and indeed adds various subtleties not present
before. However, the main results are unchanged. Roberts (1968) and Busse (1970) consid-
ered rotating, nonmagnetic convection in spherical shells, and found that just as in the plane
layer, it does not occur until R̂a = O(E−1/3). See also Jones, Soward & Mussa (2000) for the
final(?) word on this problem. Similarly, Eltayeb & Kumar (1977), Fearn (1979) and Jones,
Mussa & Worland (2003) considered rotating, magnetic convection, and found that there too
the main results are as above.

Far more fundamental than this geometrical difference is the origin of the magnetic field;
in this idealized problem it is externally imposed, whereas in the real Earth it is internally
generated. That is, in the analysis above we could adjust Ha at will, but in the Earth we cannot
adjust Λ; the amplitude of the field can only emerge as part of the full solution. Needless to
say, this makes the problem considerably more difficult. Nevertheless, let us at least speculate
about some of the implications that these results might have for internally generated rather
than externally imposed fields.

In particular, imagine taking the Earth’s core, and gradually increasing the Rayleigh num-
ber from zero. What sort of a sequence of bifurcations would we obtain? For R̂a = 0 we
would clearly have u = 0, and hence also B = 0. The initial onset of convection therefore
would be nonmagnetic, and would thus occur when R̂a = O(E−1/3). Increasing R̂a further,
the convection would presumably become more and more vigorous, until eventually a second
critical value is reached where the flow acts as a dynamo. Immediately beyond this value, the
field would most likely equilibrate as some very small value, but increasing R̂a further still,
both u and hence also B would presumably equilibrate at ever larger values.

In slowly rotating systems, this would presumably be all there is to it; the greater R̂a is,
the greater u and eventually B are, and that is it. If the system is rotating sufficiently rapidly
though, the above analysis suggests that something quite dramatic could happen. Roberts
(1978) conjectured that once the field exceeds Λ = O(E1/3), it would begin to facilitate the
convection. A more vigorous flow would then yield a stronger field, which would further
increase the flow, and so on. The resulting runaway growth would cease only when the field
reaches Λ = O(1), and the whole pattern of convection has switched from O(E1/3) to O(1)
lengthscales. Then once the system has switched to this new mode of convection, according
to the results above it should also be possible to reduce R̂a back down to some O(1) value,
and still maintain both the flow as well as the field. That is, the magnetic field facilitates
convection to such an extent that one can have not only convection, but dynamo action, at
a Rayleigh number lower than that for the initial onset of nonmagnetic convection. Indeed,


