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IX

Most non-chemists would probably be horrified if they were to learn how many
attempted syntheses fail, and how inefficient research chemists are. The ratio of suc-
cessful to unsuccessful chemical experiments in a normal research laboratory is far
below unity, and synthetic research chemists, in the same way as most scientists,
spend most of their time working out what went wrong, and why.

Despite the many pitfalls lurking in organic synthesis, most organic chemistry
textbooks and research articles do give the impression that organic reactions just
proceed smoothly and that the total synthesis of complex natural products, for
instance, is maybe a labor-intensive but otherwise undemanding task. In fact, most
syntheses of structurally complex natural products are the result of several years of
hard work by a team of chemists, with almost every step requiring careful optimiza-
tion. The final synthesis usually looks quite different from that originally planned,
because of unexpected difficulties encountered in the initially chosen synthetic
sequence. Only the seasoned practitioner who has experienced for himself the many
failures and frustrations which the development (sometimes even the repetition) of
a synthesis usually implies will be able to appraise such work.
This book attempts to highlight the competing processes and limitations of some

of the most common and important reactions used in organic synthesis. Awareness
of these limitations and problem areas is important for the design of syntheses, and
might also aid elucidation of the structure of unexpected products. Two chapters of
this book cover the structure–reactivity relationship of organic compounds, and
should also aid the design of better syntheses.

Chemists tend not to publish negative results, because these are, as opposed to
positive results, never definite (and far too copious). Nevertheless, I have ventured
to describe some reactions as difficult or impossible. A talented chemist might, how-
ever, succeed in performing such reactions anyway, for what I congratulate him in
advance. The aim of this book is not to stop the reader from doing bold experiments,
but to help him recognize his experiment as bold, to draw his attention to potential
problems, and to inspire, challenge, and motivate.

Preface
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1.1
Introduction

Organic reactions almost never yield exclusively the desired product. Students learn
this when they perform their first synthesis in the laboratory, for example the syn-
thesis of anisole from phenol. Although the starting materials, the intermediates,
and the product are all colorless, the reaction mixture will turn uncannily dark. This
darkening shows that in reality much more is going on in addition to the expected
process, and that obviously quite complex chemistry must be occurring, giving rise
to extended conjugated polyenes from simple starting materials. Fortunately these
dyes are usually formed in minute amounts only and the student will hopefully also
learn not to be scared by color effects, and that even from pitch-black reaction mix-
tures colorless crystals may be isolated in high yield.

Because most reactions yield by-products and because isolation and purification
of the desired product are usually the most difficult parts of a preparation, the work-
up of each reaction and the separation of the product from by-products and reagents
must be carefully considered while planning a synthesis. If product isolation seems
to be an issue, the work-up of closely related examples from the literature (ideally
two or three from different authors) should be studied. Many small, hydrophilic
organic compounds which should be easy to prepare are still unknown, not because
nobody has attempted to make them, but because isolation and purification of such
compounds can be very difficult. Therefore the solubility of the target compound in
water and in organic solvents, and its boiling or melting point, should be looked up
or estimated, because these will aid choice of the right work-up procedure.

The chemical stability of the target compound must also be taken into account
while planning its isolation. Before starting a synthesis one should also have a clear
idea about which analytical tools will be most appropriate for following the progress
of the reaction and ascertaining the identity and purity of the final product. Last, but
not least, the toxicity and mutagenicity of all reagents, catalysts, solvents, products,
and potential by-products should be looked up or estimated, and appropriate precau-
tionary measures should be taken.

1
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1.2
Synthesis Design

The synthesis of a structurally complex compound requires careful retrosynthetic
analysis to identify the shortest synthetic strategies which are most likely to give
rapid access to the target compound, ideally in high yield and purity. It is critical to
keep the synthesis as short as possible, because, as discussed throughout this book,
each reaction can cause unexpected problems, especially when working with struc-
turally complex intermediates. Also for synthesis of “simple-looking” structures sev-
eral different approaches should be considered, because even structurally simple
compounds often turn out not to be so easy to make as initially thought.

1.2.1
Convergent vs Linear Syntheses

If a target compound can be assembled from a given number of smaller fragments,
the highest overall yields will usually be obtained if a convergent rather than linear
strategy is chosen (Scheme 1.1). In a convergent assembly strategy the total number
of reactions and purifications for all atoms or fragments of the target are kept to a

2

Scheme 1.1. Convergent and linear assembly strategies.
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minimum. If a linear strategy is chosen the first fragment (A in Scheme 1.1) will be
subjected to a large number of reactions and purifications, and the total yield with
regard to this first fragment will be rather low. Syntheses should be organized in
such a way that expensive and/or structurally complex fragments are subjected to
the fewest possible number of transformations.

1.2.2
Retrosynthetic Analysis

1.2.2.1 Introduction
When planning a synthesis, the most suitable starting materials should be chosen.
These should be structurally and/or stereochemically as closely related to the target
as possible, to keep the synthesis brief. The first steps of a good synthesis may even
be low-yielding (if the products are easy to purify), because at these early stages little
work and reagents have been invested and the intermediates are still cheap. Poor
yields at later stages of a multistep synthesis, however, strongly reduce its useful-
ness, because most steps of the synthesis will have to be run on a large scale, using
large amounts of solvents and reagents, to obtain a small amount only of the final
product, which will, accordingly, be rather expensive.

In a retrosynthesis the easiest bonds to make are often cleaved first (i.e. these
bonds will be made at the end of the synthesis), yielding several fragments which
can be joined together at late stages of the synthesis, using straightforward and
high-yielding chemistry. Such reactions would usually be condensations, for exam-
ple acetal, amide, or ester formation, or the formation of carbon–heteroatom bonds,
but might also be high-yielding C–C bond-forming reactions if the required reaction
conditions are compatible with all the structural elements of the final product.

If the target contains synthetically readily accessible substructures (e.g. cyclic ele-
ments accessible by well established cycloaddition or cyclization reactions), these
might be chosen as starting point of a disconnection [1]. If such substructures are
not present, their generation by introduction of removable functional groups (e.g. by
converting single bonds into double bonds or by formal oxidation of methylene
groups to carbonyl groups, Scheme 1.5) should be attempted. If this approach fails
to reveal readily accessible substructures, the functional groups present in the target
structure which might assist the stepwise construction of the carbon framework
must be identified, and the bonds on the shortest bond paths between these groups
should be considered as potential sites of disconnection (Scheme 1.3). Retro-aldol or
Mannich reactions, optionally combined with the “Umpolung” of functional groups,
have been the most common and successful tools for disconnection of intricate car-
bon frameworks, but any other, high-yielding C–C bond-forming reaction can also
be considered. As illustrated by the examples discussed below, a good retrosynthesis
requires much synthetic experience, a broad knowledge of chemical reactivity, and
the ability to rapidly recognize synthetically accessible substructures.

3
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1.2.2.2 Shikimic Acid
In Scheme 1.2 one possible retrosynthetic analysis of the unnatural enantiomer of
shikimic acid, a major biosynthetic precursor of aromatic a-amino acids, is
sketched. Because cis dihydroxylations can be performed with high diastereoselectiv-
ity and yield, this step might be placed at the end of a synthesis, what leads to a
cyclohexadienoic acid derivative as an intermediate. Chemoselective dihydroxylation
of this compound should be possible, because the double bond to be oxidized is less
strongly deactivated than the double bond directly bound to the (electron-withdraw-
ing) carboxyl group.

Despite being forbidden by the Baldwin rules (5-endo-trig ring opening; see Sec-
tion 9.2), cyclohexadienoic acid derivatives such as that required for this synthesis
can be prepared by base-induced ring scission of 7-oxanorbornene derivatives, pre-
sumably because of the high strain-energy of norbornenes. The required 7-oxanor-
bornene, in turn, should be readily accessible from furan and an acrylate via the

4

Scheme 1.2. Retrosynthetic analysis and synthesis of ent-shikimic acid [2].
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Diels–Alder reaction. With the aid of an enantiomerically pure Lewis acid this
Diels–Alder reaction yields a highly enantiomerically enriched 7-oxanorbornene, so
that the remaining steps of this elegant synthesis only need to proceed diastereo-
selectively and without racemization.

1.2.2.3 Lycopodine
A further target which contains a readily accessible and easily recognizable substruc-
ture is the alkaloid lycopodine. Being a b-amino ketone, a possible retrosynthesis
could be based on an intramolecular Mannich reaction, as outlined in Scheme 1.3.
In this case two of the targets four rings would be generated in one step by a Man-
nich condensation; this significantly reduces the total number of steps required. A
robust, intramolecular N-alkylation was chosen as last step. Realization of this syn-
thetic plan led to a synthesis of racemic lycopodine in only eight steps with a total
yield of 13 % [3]. Fortunately the Mannich reaction yielded an intermediate with the
correct relative configuration.

1.2.2.4 The Oxy-Cope Rearrangement
Less obvious than the retrosyntheses discussed above are those based on intramole-
cular rearrangements, because these often involve a major change of connectivity
between atoms. For instance, exploitation of oxy-Cope rearrangements as synthetic
tools requires some practice and the ability to recognize the substructures accessible
via this reaction from readily available starting materials. Oxy-Cope rearrangements
yield 4-penten-1-yl ketones by formal allylation of a vinyl ketone at the b position or
c-vinylation of an allyl ketone (Scheme 1.4). This rearrangement can be used to pre-
pare decalins [4] or perhydroindenes [5, 6] from bicyclo[2.2.2]octenones or norborne-
nones, respectively, which can be prepared by using the Diels–Alder reaction. More-
over, oxy-Cope rearrangements may be used for ring expansions or contractions.

5

Scheme 1.3. Retrosynthesis of lycopodine based on an intramolecular
Mannich reaction [3].
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Numerous natural products have been prepared using the oxy-Cope rearrange-
ment as the key step [5], in particular, and with high virtuosity, by the group of L.A.
Paquette [4, 6, 7]. Three examples of retrosynthetic analyses of natural products or
analogs thereof based on the oxy-Cope rearrangement are shown in Scheme 1.5.
Because all the products are devoid of a keto group, the required 4-penten-1-yl
ketone substructure (i.e. the oxy-Cope retron [1]) must be introduced during the
retrosynthesis in such a way that accessible starting materials result.

6

Scheme 1.4. The oxy-Cope rearrangement.
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Scheme 1.5. Retrosynthesis of an ambergris-type ether, of precapnelladiene,
and of an alkaloid based on the oxy-Cope rearrangement [8–10].
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1.2.2.5 Conclusion
As will be shown throughout this book, the outcome of organic reactions is highly
dependent on all structural features of a given starting material, and unexpected
products may readily be formed. Therefore, while planning a multistep synthesis, it
is important to keep the total number of steps as low as possible.

8

Scheme 1.6. Rearrangement of polycyclic cyclobutylmethyl radicals [11, 12].



1.3 Hard and Soft Acids and Bases

Even the most experienced chemist will not be able to foresee all potential pitfalls
of a synthesis, specially so if multifunctional, structurally complex intermediates
must be prepared. The close proximity or conformational fixation of functional
groups in a large molecule can alter their reactivity to such an extent that even sim-
ple chemical transformations can no longer be performed [11]. Small structural vari-
ations of polyfunctional substrates might, therefore, bring about an unforeseeable
change in reactivity.

Examples of closely related starting materials which upon treatment with the
same reagents yield completely different products are sketched in Scheme 1.6. The
additional methyl group present in the second starting material slows addition to
the carbonyl group of the radical formed by ring scission of the cyclobutane ring,
and thus prevents ring expansion to the cyclohexanone. Removal of the methoxycar-
bonyl group leads to cleavage of a different bond of the cyclobutane ring and thereby
again to a different type of product [12].

The understanding and prediction of such effects and the development of milder
and more selective synthetic transformations, applicable to the synthesis of highly
complex structures or to the selective chemical modification of proteins, DNA, or
even living cells will continue to be the challenge for current and future generations
of chemists.

1.3
Hard and Soft Acids and Bases

One of the most useful tools for predicting the outcome of chemical reactions is the
principle of hard and soft acids and bases (HSAB), formulated by Pearson in
1963 [13–15]. This principle states that hard acids will react preferentially with hard
bases, and soft acids with soft bases, “hard” and “soft” referring to sparsely or highly
polarizable reactants. A selection of hard and soft Lewis acids and bases is given in
Table 1.1.

Several chemical observations can be readily explained with the aid of the HSAB
principle. For instance, the fact that the early transition metals in high oxidation
states, for example titanium(IV), do not usually form complexes with alkenes, car-
bon monoxide, or phosphines, but form stable oxides instead can be attributed to
their hardness. The late transition metals, on the other hand, being highly polariz-
able, because of their almost completely filled d orbitals, readily form complexes
with soft bases such as alkenes, carbanions, and phosphines, and these complexes
are often unreactive towards water or oxygen. For the same reason, in alkali or early
transition metal enolates the metal is usually bound to oxygen, whereas enolates of
late transition metals usually contain M–C bonds [17, 18]. While alkali metal alkyls
or Grignard reagents react with enones presumably by initial coordination of the
metal to oxygen followed by transfer of the alkyl group to the carbonyl carbon
atom [16, 19], organocuprates or organopalladium compounds preferentially coordi-
nate and transfer their organic residue to soft C–C double bonds.
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Table 1.1. Hard and soft Lewis acids and bases [13, 15, 16] (Z = electron-withdrawing group,
M=metal). The acidic or basic centers in molecules are in italics.

Hard acids (non-metals) Borderline acids (non-metals) Soft acids (non-metals)

H+, B(OR)3, BF3, BCl3,
RCO+, CO2, NC+, R3Si

+,
Si4+, RPO2

+, ROPO2
+, As3+,

RSO2
+, ROSO2

+, SO3, Se3+,
Cl7+, I7+, I5+

BR3, R+ (softer
CH3

+ > RCH2
+ > R2CH+ >

R3C
+ > vinyl+ » C6H5

+ »
RC”C+ harder), RCHO,
R2CO, R2C=NR, NO+, SO2

BH3, Ar–Z, C=C–Z, quinones,
carbenes, HO+, RO+, RS+, RSe+,
RTe+, Br2, Br+, I2, I+

Hard acids (metals) Borderline acids (metals) Soft acids (metals)

Li+, Na+, K+, BeMe2, Be2+,
RMgX, Mg2+, Ca2+, Sr2+, AlCl3,
AlMe3, AlH3, Al(OR)3, Al3+,
GaMe3, Ga3+, InMe3, In3+,
SnR3

+, SnMe2
2+, Sn2+, Sc3+,

La3+, Ti(OR)4, Ti4+, Zr4+, VO2
+,

Cr3+, Fe3+, Co3+, Ir3+, Th4+,
UO2

2+, Pu4+, Yb3+

GaH3, Sn(OR)4, SnCl4, Pb2+,
Sb3+, Bi3+, Sc(OTf)3, ScCl3,
Fe2+, Co2+, Ni2+, Cu2+, RZn+,
Zn2+, Yb(OTf)3, YbCl3

Cs+, TlMe3, Tl+, Tl3+, Pd(PAr3)2,
Pd(PAr3)2

2+, Pd2+, Pt2+, Cu+,
Ag+, Au+, CdR+, Cd2+, HgR+,
Hg+, Hg2+, M0

Hard bases Borderline bases Soft bases

NH3, RNH2, R2N
–, N2H4,

H2O, OH–, ROH, RO–, R2O,
RCO2

–, CO3
2–, NO3

–, PO4
3–,

SO4
2–, ClO4

–, F–, Cl–

AlH4
–, N2, N3

–, PhNH2,
R3N, C5H5N, R2C=NR, NO2

–,
SO3

2–, Br–

H–, BH4
–, R– (softer RC”C– >

vinyl– > R3C
– harder), C6H6,

R2C=CR2, RC”CR, CN–, RNC,
CO, PR3, P(OR)3, AsR3, RS–,
SCN–, RSH, R2S, S2O3

2–,
RSe–, I–

HSAB is particularly useful for assessing the reactivity of ambident nucleophiles
or electrophiles, and numerous examples of chemoselective reactions given
throughout this book can be explained with the HSAB principle. Hard electrophiles,
for example alkyl triflates, alkyl sulfates, trialkyloxonium salts, electron-poor car-
benes, or the intermediate alkoxyphosphonium salts formed from alcohols during
the Mitsunobu reaction, tend to alkylate ambident nucleophiles at the hardest atom.
Amides, enolates, or phenolates, for example, will often be alkylated at oxygen by
hard electrophiles whereas softer electrophiles, such as alkyl iodides or electron-
poor alkenes, will preferentially attack amides at nitrogen and enolates at carbon.

2-Pyridone is O-alkylated more readily than normal amides, because the resulting
products are aromatic. With soft electrophiles, however, clean N-alkylations can be
performed (Scheme 1.7). The Mitsunobu reaction, on the other hand, leads either to
mixtures of N- and O-alkylated products or to O-alkylation exclusively, probably
because of the hard, carbocation-like character of the intermediate alkoxyphospho-
nium cations. Electrophilic rhodium carbene complexes also preferentially alkylate
the oxygen atom of 2-pyridone or other lactams [20] (Scheme 1.7).
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1.3 Hard and Soft Acids and Bases

Lactams and some non-cyclic, secondary amides (RCONHR) can be alkylated
with high regioselectivity either at nitrogen (Section 6.6) or at oxygen. N-Alkylations
are generally conducted under basic reaction conditions whereas O-alkylations are
often performed with trialkyloxonium salts, dialkyl sulfates, or alkyl halides/silver
salts without addition of bases. Protonated imino ethers are formed; these are
usually not isolated but are converted into the free imino ethers with aqueous base
during the work-up. Scheme 1.8 shows examples of the selective alkylation of lac-
tams and of the formation of 2-pyrrolidinones or 2-iminotetrahydrofurans by cycli-
zation of 4-bromobutyramides.
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Scheme 1.7. Regioselective alkylation of 2-pyridone [20–22].



1 Organic Synthesis: General Remarks

The triflate sketched in Scheme 1.9 mainly alkylates the amide at oxygen, instead
of alkylating the softer, lithiated phosphonate. Selective C-alkylation can be achieved
in this instance by choosing a less reactive mesylate as electrophile and by enhanc-
ing the acidity of the phosphonate.

The regioselectivity of the alkylation of enolates can also be controlled by the hard-
ness of the alkylating agent [29]. As illustrated by the examples in Scheme 1.10, allyl,
propargyl, or alkyl bromides or iodides mainly yield C-alkylated products, whereas
the harder sulfonates preferentially alkylate at oxygen.
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Scheme 1.8. Regioselective alkylation of amides [23–27].


