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Preface

Nowadays, propellants, explosives and pyrotechnics are composed mainly of partic-
ulate energetic materials. These are gaining in importance as a way to optimize the
performance, burning behavior, stability, detonation properties, processing charac-
teristics and, above all, the low sensitivity of these systems. By varying the character-
istic profile of these materials, product design provides for particulate components
specially optimized for the application in question. Well-known solid formation
processes are often used to create particles of energetic materials, such as crystalliza-
tion or precipitation, comminution or atomization. Although there is a certain
amount of information available about these processes for particle syntheses or
processing, there is currently a lack of detailed comprehension in some points,
which is needed to be able to completely control the particle formation process or to
make reliable predictions about the profile required by the user for the particles so
created. Vital questions and tasks remaining for particle technology of energetic
materials are the comprehensive characterization of particulate components, the
experimental determination of the kinetics of particle formation processes, the
influence of the manufacturing process on important particle characteristics, such
as particle size distribution, morphology or polymorphy, the simulation and model-
ing of particle formation processes and particulate materials, as well as the creation
of low-defect particles with regard to the sensitivity of propellants and explosives.
This book is targeted at those working in industry, government or R&D, and
involved in the fascinating field of energetic or other special materials. It will
hopefully contribute to summarizing our current level of knowledge.

This volume begins with an introduction to the topic, with a focus on novel
energetic materials. One of the main subjects, namely production, is described in
chapters two to four, beginning with a look at processes used to reduce the size of
the materials, followed by a detailed treatment of crystallization. After covering
certain basics, the possibilities of designing hexogen, octogen, CL 20, NTO, ammo-
nium nitrate and ammonium dinitramide in particular using crystallization are
examined. In addition, the possibilities currently offered by simulation and the
potential of crystallization with compressed gas are looked at. Alongside the mixing
process of disperse systems important for particle processing, a whole chapter deals
with the product design of particulate materials using microencapsulation and
particle coating. This is followed by the increasingly important topic of nano-

XVII



particles. The remaining chapters deal primarily with the second main topic of this
book, the characterization of particle characteristics. They present the possibilities
and limitation of particle size analysis, microstructures, polymorphy and morphol-
ogy as well as the analysis of chemical and thermal properties and wettability. The
rheological behavior of dispersions composed of particulate energetic materials and
the relevant binder materials as well as that of solids are treated separately in
Chapter 12. The whole is rounded off with a look at the performance of energetic
materials, including the influence of particle size on reactions, that of crystal defects
on the sensitivity of formulations and the diagnostics of shock wave and combustion
processes.

The authors have incorporated in this work their excellent scientific expertise,
knowledge and experience in particle technology as related to energetic materials. It
was vital for this publication to win renowned colleagues as expert co-authors, and
as its editor, I would like to thank all the authors for their willingness to work on this
book. My gratitude is also extended to those who worked in different ways “in the
background” for the individual authors and the editor. In particular I wish to
sincerely thank Ulrich Förter-Barth and Hartmut Kröber as well as Irma Mikonsaari
for their continuous and varied support in the preparation and carrying out of the
project, as well as the reviewing, processing and correcting of the manuscripts. I
also wish to thank the staff at Wiley-VCH for their cooperation from the start of the
project until completion of the book.

Pfinztal, September 2004 Ulrich Teipel
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1

New Energetic Materials

Horst H. Krause

1.1

Introduction

For many years there was little discussion of or activity to develop new energetic
materials for military applications. However, since the end of the Cold War there
have been significant new activities in such materials. Particularly in the last 10
years, a number of new synthesized energetic materials have been reported and
generated much discussion. Some of the most interesting newly developed materi-
als include the following:

• TNAZ (1,3,3-trinitroazetidine);
• HNIW (hexanitrohexazaisowurtzetane or CL-20);
• ONC (octanitrocubane);
• FOX-7 (1,1-diamino-2,2-dinitroethene);
• ADN (ammonium dinitramide). A number of questions can be raised with respect

to this new generation of explosive materials:
• Do the new substances offer significant advantages compared with currently

existing materials?
• What range of applications might be expected for the new materials?
• Have the new substances been sufficiently characterized and developed?
• Does processing or manufacture of these new substances pose particular compat-

ibility or safety problems?
• Will the chemical stability and aging behavior of these new substances result in

formulations with adequate service life?

1.1.1

Applications of Energetic Materials

To assess the potential of the newly developed materials, their energetic character-
istics must be compared with those of contemporary materials. The values of some
key characteristic properties of energetic materials, such as density, formation
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energy and oxygen balance, are listed in Table 1.1, providing a comparison of these
new substances with currently existing energetic materials. A wide variety of
materials are currently used in the energetic materials sector, some of which
required decades of research and development. Table 1.1 lists the most important
contemporary energetic materials and their primary application(s) in one or more of
three key areas: explosives (HX), gunpowder (GP) and solid rocket propellants
(RP).

Nitrocellulose remains the leading major ingredient of gunpowder formulations.
One distinguishes between single- and double-base formulations, i. e. between pure
nitrocellulose and a combination of nitrocellulose and a high-energy plasticizer.
Triple-base formulations are also possible, where the third component is a solid
energetic component such as nitroguanidine (NIGU).

Most solid rocket propellants fall into one of two classes: double-base (NC/NG)
and so-called composite propellants. Composites consist of a fuel and oxidizer (e. g.
aluminum and ammonium perchlorate) bound together in a polymeric matrix. Only
a limited range of oxidizer candidates can be employed in solid propellants. It is
therefore crucial to consider the oxidizer properties (including a positive oxygen
balance) in the propellant development process. The property data shown in Table
1.1 indicate that ADN is probably the only viable oxidizer alternative to AP for solid
rocket propellants; it therefore holds considerable promise for future development
efforts.

Table 1.1. Properties of existing and new energetic materials.

Abbrevia-
tion

Name Applicationsa Density
(g/cm3)

Oxygen
balance
(%)

Formation
energy
(kJ/mol)

Existing energetic materials
TNT 2,4,6-Trinitrotoluene HX 1.65 –74.0 –45.4
RDX Cyclo-1,3,5-trimethylene-2,4,6-

trinitramine
HX; RP; GP 1.81 –21.6 92.6

HMX (b) Cyclotetramethyl-
enetetranitramine

HX; RP; GP 1.96 –21.6 104.8

PETN Pentaerythrol tetranitrate HX 1.76 –10.1 –502.8
NTO 3-Nitro-1,2,4-triazol-5-one HX 1.92 –24.6 –96.7
NG Nitroglycerine RP; GP 1.59 3.5 –351.5
NC Nitrocellulose (13% N) RP; GP 1.66 –31.8 –669.8
AN Ammonium nitrate HX; RP 1.72 20.0 –354.6
AP Ammonium perchlorate RP; HX 1.95 34.0 –283.1

New energetic materials
TNAZ 1,3,3-Trinitroazetidine HX; RP; GP 1.84 –16.7 26.1
CL-20
(HNIW)

2,4,6,8,10,12-(Hexanitro-
hexaaza)tetracyclododecane

HX; RP; GP 2.04 –11.0 460.0

FOX-7 1,1-Diamino-2,2-dinitroethene HX; GP; RP 1.89 –21.6 –118.9
ONC Octanitrocubane HX 1.98 0.0 465.3
ADN Ammonium dinitramide RP; HX; GP 1.81 25.8 –125.3

aHX, explosive; RP, solid rocket propellant; GP, gunpowder.
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The most important property for a good explosive is the material’s density. CL-20
(or HNIW) has the highest density (2.04 g/cm3) of the organic substances listed. It
also exhibits the highest formation energy. This results from the stored energy,
which is due to the highly stretched bonds in the ring system of this so-called ‘cage’
molecule.

Octanitrocubane belongs to the same group of cage compounds as CL-20.
Octanitrocubane was synthesized only recently. The measured density of the ONC
molecule, 1.979 g/cm3 is unfortunately much lower than that expected based on
computer-based simulation predictions.

1.2

Application Requirements

Of the materials listed in Table 1.1, the primary candidates that offer potential to
increase the performance of future energetic materials are ADN, TNAZ and CL-20.
The energy content of FOX-7 is comparable to that of RDX; however, it is sig-
nificantly less sensitive and therefore a promising material for further development.
Except for NC-based formulations, polymeric binders are used as the matrix of
energetic materials. Newly developed energetic binders offer the possibility of
improving the performance of composite systems. The optimal combination of solid
material and binder is critical to the development of improved performance systems
across the range of applications.

Based purely on chemical structure, CL-20, TNAZ and ADN are promising
candidates as formulation ingredients for any of the three application areas (HX, GP
or RP), because of their performance advantages. However, performance is not the
only criterion that determines a material’s suitability for practical application; other
important considerations include the following:

• availability (and price);
• thermal and mechanical sensitivity [insensitive munitions (IM) characteristics];
• processability;
• compatibility;
• chemical and thermal stability;
• temperature-dependent mechanical behavior;
• burn rate behavior (for solid rocket propellants and propellant powders).

Each of the application areas has its own specific requirements with respect to the
properties listed above.

1.2.1

Explosives

Material density clearly plays the most important role in developing a high-
performance explosive. For example, the density is directly related to detonation

1.2 Application Requirements 3
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velocity and Gurney energy of the formulation. This relationship is described by the
Kamlet-Jacobs [1.1] equations:

(1.1)

(1.2)

where
D = detonation velocity (mm/ms);
A = 1.01;
B = 1.3;
K = 15.85;
N = mol gas per g explosive;
M = mean molecular weight of the gas (g);
DHd

o = heat of detonation (cal/g);
r0 = density of the explosive (g/cm3);
PCJ = detonation pressure (kbar).

In addition to the goal of high density, other primary considerations in developing
explosives include processability and the ability to attain insensitive munitions (IM)
characteristics. IM properties actually depend on the complete system rather than
single ingredients. However, one can often make good predictions of the IM
properties of the system based on single-ingredient properties such as thermal or
friction/impact sensitivity. Finally, in developing a formulation one must search for
the optimal balance of chemical architectures, because generally as the performance
increases, so does the material’s sensitivity. However, there are certain chemical
combinations that yield relatively insensitive compounds despite their relatively
high energetic content.

Again, it is important to distinguish between the sensitivity of individual in-
gredients and that of the final, tailored formulation. For instance, pure CL-20 is
relatively sensitive to both impact and friction. However, as a component in a PBX
formulation, the sensitivity of the resulting formulation is only slightly greater than
that of a comparable formulation based on HMX. The fact that the CL-20-based
formulation exhibits higher performance makes it an interesting candidate for
certain applications.

In fact, the potential to develop energetic materials with IM properties is not
limited to new materials. The sensitivity of well-established energetic materials can
be reduced through various material improvements, such as better crystal quality,
reducing crystal or molecular defects, eliminating voids, chemical impurities or the
existence of multiple phases. Properties that are advantageous for IM systems
include the following:

• high decomposition temperature;
• low impact and friction sensitivity;
• no phase transitions when the substance is subjected to rapid volume expansion

or contraction;
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• no autocatalytic decomposition;
• spherical crystal morphology;
• good adhesion of the binder matrix;
• no voids brought about by solvent or gas bubbles;
• high chemical purity;
• phase purity. Performance characteristics and IM properties of various materials

are given in Tables 1.2 and 1.3.

Table 1.2. Performance characteristics of explosive components and
example formulationsa.

Substance DHf

(kcal/kg)
r
(g/cm3)

Dcalc

(m/s)
PCJ

(GPa)
DE
at V/V0 = 6.5
(kJ/cm3)

Vgas

at 1 bar
(cm3/g)

TNT –70.5 1.654 6881 19.53 –5.53 738
RDX 72.0 1.816 8977 35.17 –8.91 903
HMX 60.5 1.910 9320 39.63 –9.57 886
PETN –407.4 1.778 8564 31.39 –8.43 852
TATB –129.38 1.937 8114 31.15 –6.94 737
HNS 41.53 1.745 7241 23.40 –6.30 709
NTO –237.8 1.930 8558 31.12 –6.63 768
TNAZ 45.29 1.840 9006 36.37 –9.39 877
CL-20 220.0 2.044 10065 48.23 –11.22 827
FOX-7 –85.77 1.885 9044 36.05 –8.60 873
ADN –288.5 1.812 8074 23.72 –4.91 987
LX-14:
95% HMX/5% estane 10.07 1.853 8838 35.11 –8.67 880
LX-19:
95% CL-20/5% estane 161.6 1.972 9453 42.46 –10.07 827
Composition B:
60% RDX/40% TNT 9.55 1.726 7936 27.07 –7.23 840
60% RDX/40% TNAZ 55.4 1.801 8827 34.16 –8.81 894
Octol:
75 HMX/25 TNT 27.76 1.839 8604 33.54 –8.41 850
75 HMX/25 TNAZ 56.73 1.892 9237 38.69 –9.52 883

aDHf = heat of formation; r0 = density (TMD = total maximum density); 
Dcalc = calculated detonation velocity; PCJ = calculated detonation pressure; 
DE at V/V0 = 6.5 = calculated Gurney energy at an expansion ratio of 6.5; 
Vgas = gas volume at 1 bar of 1 g of explosive

Table 1.3. Insensitive munitions properties of existing and new
energetic materials.

Substance Friction sensitivity (N) Impact sensitivity (N m) Deflagration point (°C)

TNT 353 15 300
RDX 120 7.4 230
HMX 120 7.4 287
CL-20 54 4 228
TNAZ 324 6 >240
TATB 353 50 >325
FOX-7 216 15–40 >240
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The onset of decomposition temperature is only one criterion that impacts IM
properties. Just as important is the material’s heat quantity release characteristics,
which cause material self-heating and accelerated decomposition. The adiabatic rate
calorimeter (ARC) can be used to measure self-heating temperatures and rates,
allowing these properties to be compared for different materials. Fig. 1.1 shows
values of the self-heating rate for various pure compounds. The most sensitive
substances tend to exhibit a low decomposition temperature and a rapid increase in
self-heating rate over the temperature range examined.

It is important to distinguish between the sensitivity of raw materials and that of
the finished product. A goal of modern explosive processing methods is to reduce
considerably the sensitivity characteristics of the formulation compared with those
that of the individual components.

In addition to active charges such as Composition B or octol, which use castable
TNT more or less as a binder, plastic bonded explosives (PBX) also consist of a
polymeric binder that serves as a matrix for energetic fillers. Cleverly tailored
formulations can be developed for specific applications by incorporating specially
selected additives. NTO (3-nitro-1,2,4-triazol-5-one) has proven to be an important
component of insensitive high explosive (IHE) formulations. Incorporating NTO
significantly reduces a formulation’s sensitivity, with only a relatively small decrease
in performance characteristics. Nevertheless, the majority of active charge formula-
tions currently used are still based on well-known energetic components such as
TNT, PETN, RDX and HMX. Common examples include the following:

• Composition B (60% RDX/40% TNT) and
• octol (75% HMX/25% TNT);
• C4 (91% RDX/9% polyisobutylene) as explosive plasticizer;

Figure 1.1. Adiabatic self-heating rate of various energetic materials.
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