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Preface

This book on integral equations and the calculus of variations is intended for use by senior
undergraduate students and first-year graduate students in science and engineering. Basic fa-
miliarity with theories of linear algebra, calculus, differential equations, and complex analysis
on the mathematics side, and classical mechanics, classical electrodynamics, quantum mecha-
nics including the second quantization, and quantum statistical mechanics on the physics side,
is assumed. Another prerequisite for this book on the mathematics side is a sound understand-
ing of local and global analysis.

This book grew out of the course notes for the last of the three-semester sequence of
Methods of Applied Mathematics I (Local Analysis), II (Global Analysis) and III (Integral
Equations and Calculus of Variations) taught in the Department of Mathematics at MIT. About
two-thirds of the course is devoted to integral equations and the remaining one-third to the
calculus of variations. Professor Hung Cheng taught the course on integral equations and the
calculus of variations every other year from the mid 1960s through the mid 1980s at MIT.
Since then, younger faculty have been teaching the course in turn. The course notes evolved
in the intervening years. This book is the culmination of these joint efforts.

There will be the obvious question: Why yet another book on integral equations and the
calculus of variations? There are already many excellent books on the theory of integral
equations. No existing book, however, discusses the singular integral equations in detail; in
particular, Wiener–Hopf integral equations and Wiener–Hopf sum equations with the notion
of the Wiener–Hopf index. In this book, the notion of the Wiener–Hopf index is discussed in
detail.

This book is organized as follows. In Chapter 1 we discuss the notion of function space,
the linear operator, the Fredholm alternative and Green’s functions, to prepare the reader for
the further development of the material. In Chapter 2 we discuss a few examples of integral
equations and Green’s functions. In Chapter 3 we discuss integral equations of the Volterra
type. In Chapter 4 we discuss integral equations of the Fredholm type. In Chapter 5 we discuss
the Hilbert–Schmidt theories of the symmetric kernel. In Chapter 6 we discuss singular inte-
gral equations of the Cauchy type. In Chapter 7, we discuss the Wiener–Hopf method for the
mixed boundary-value problem in classical electrodynamics, Wiener–Hopf integral equations,
and Wiener–Hopf sum equations; the latter two topics being discussed in terms of the notion
of the index. In Chapter 8 we discuss nonlinear integral equations of the Volterra, Fredholm
and Hammerstein type. In Chapter 9 we discuss the calculus of variations, in particular, the
second variations, the Legendre test and the Jacobi test, and the relationship between integral
equations and applications of the calculus of variations. In Chapter 10 we discuss Feyn-
man’s action principle in quantum mechanics and Feynman’s variational principle, a system
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of the Schwinger–Dyson equations in quantum field theory and quantum statistical mechanics,
Weyl’s gauge principle and Kibble’s gauge principle.

A substantial portion of Chapter 10 is taken from my monograph, “Path Integral Quanti-
zation and Stochastic Quantization”, Vol. 165, Springer Tracts in Modern Physics, Springer,
Heidelberg, published in the year 2000.

A reasonable understanding of Chapter 10 requires the reader to have a basic understand-
ing of classical mechanics, classical field theory, classical electrodynamics, quantum mecha-
nics including the second quantization, and quantum statistical mechanics. For this reason,
Chapter 10 can be read as a side reference on theoretical physics, independently of Chapters 1
through 9.

The examples are mostly taken from classical mechanics, classical field theory, classical
electrodynamics, quantum mechanics, quantum statistical mechanics and quantum field the-
ory. Most of them are worked out in detail to illustrate the methods of the solutions. Those
examples which are not worked out in detail are either intended to illustrate the general meth-
ods of the solutions or it is left to the reader to complete the solutions.

At the end of each chapter, with the exception of Chapter 1, problem sets are given for
sound understanding of the content of the main text. The reader is recommended to solve all
the problems at the end of each chapter. Many of the problems were created by Professor
Hung Cheng over the past three decades. The problems due to him are designated by the note
‘(Due to H. C.)’. Some of the problems are those encountered by Professor Hung Cheng in
the course of his own research activities.

Most of the problems can be solved by the direct application of the method illustrated in the
main text. Difficult problems are accompanied by the citation of the original references. The
problems for Chapter 10 are mostly taken from classical mechanics, classical electrodynamics,
quantum mechanics, quantum statistical mechanics and quantum field theory.

A bibliography is provided at the end of the book for an in-depth study of the background
materials in physics, beside the standard references on the theory of integral equations and the
calculus of variations.

The instructor can cover Chapters 1 through 9 in one semester or two quarters with a
choice of the topic of his or her own taste from Chapter 10.

I would like to express many heart-felt thanks to Professor Hung Cheng at MIT, who
appointed me as his teaching assistant for the course when I was a graduate student in the
Department of Mathematics at MIT, for his permission to publish this book under my single
authorship and also for his criticism and constant encouragement without which this book
would not have materialized.

I would like to thank Professor Francis E. Low and Professor Kerson Huang at MIT, who
taught me many of the topics within theoretical physics. I would like to thank Professor
Roberto D. Peccei at Stanford University, now at UCLA, who taught me quantum field theory
and dispersion theory.

I would like to thank Professor Richard M. Dudley at MIT, who taught me real analysis
and theories of probability and stochastic processes. I would like to thank Professor Herman
Chernoff, then at MIT, now at Harvard University, who taught me many topics in mathematical
statistics starting from multivariate normal analysis, for his supervision of my Ph. D. thesis at
MIT.
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I would like to thank Dr. Ali Nadim for supplying his version of the course notes and
Dr. Dionisios Margetis at MIT for supplying examples and problems of integral equations
from his courses at Harvard University and MIT. The problems due to him are designated by
the note ‘(Due to D. M.)’. I would like to thank Dr. George Fikioris at the National Technical
University of Athens for supplying the references on the Yagi–Uda semi-infinite arrays.

I would like to thank my parents, Mikio and Hanako Masujima, who made my undergrad-
uate study at MIT possible by their financial support. I also very much appreciate their moral
support during my graduate student days at MIT. I would like to thank my wife, Mari, and my
son, Masachika, for their strong moral support, patience and encouragement during the period
of the writing of this book, when the ‘going got tough’.
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Michio Masujima
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Introduction

Many problems within theoretical physics are frequently formulated in terms of ordinary dif-
ferential equations or partial differential equations. We can often convert them into integral
equations with boundary conditions or with initial conditions built in. We can formally de-
velop the perturbation series by iterations. A good example is the Born series for the potential
scattering problem in quantum mechanics. In some cases, the resulting equations are nonlinear
integro-differential equations. A good example is the Schwinger–Dyson equation in quantum
field theory and quantum statistical mechanics. It is the nonlinear integro-differential equation,
and is exact and closed. It provides the starting point of Feynman–Dyson type perturbation
theory in configuration space and in momentum space. In some singular cases, the resulting
equations are Wiener–Hopf integral equations. These originate from research on the radiative
equilibrium on the surface of a star. In the two-dimensional Ising model and the analysis of
the Yagi–Uda semi-infinite arrays of antennas, among others, we have the Wiener–Hopf sum
equation.

The theory of integral equations is best illustrated by the notion of functionals defined on
some function space. If the functionals involved are quadratic in the function, the integral
equations are said to be linear integral equations, and if they are higher than quadratic in the
function, the integral equations are said to be nonlinear integral equations. Depending on the
form of the functionals, the resulting integral equations are said to be of the first kind, of the
second kind, or of the third kind. If the kernels of the integral equations are square-integrable,
the integral equations are said to be nonsingular, and if the kernels of the integral equations are
not square-integrable, the integral equations are then said to be singular. Furthermore, depend-
ing on whether or not the endpoints of the kernel are fixed constants, the integral equations are
said to be of the Fredholm type, Volterra type, Cauchy type, or Wiener–Hopf types, etc. By
the discussion of the variational derivative of the quadratic functional, we can also establish
the relationship between the theory of integral equations and the calculus of variations. The
integro-differential equations can best be formulated in this manner. Analogies of the theory
of integral equations with the system of linear algebraic equations are also useful.

The integral equation of Cauchy type has an interesting application to classical electro-
dynamics, namely, dispersion relations. Dispersion relations were derived by Kramers in
1927 and Kronig in 1926, for X-ray dispersion and optical dispersion, respectively. Kramers-
Kronig dispersion relations are of very general validity which only depends on the assumption
of the causality. The requirement of the causality alone determines the region of analyticity
of dielectric constants. In the mid 1950s, these dispersion relations were also derived from
quantum field theory and applied to strong interaction physics. The application of the covari-
ant perturbation theory to strong interaction physics was impossible due to the large coupling
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constant. From the mid 1950s to the 1960s, the dispersion-theoretic approach to strong in-
teraction physics was the only realistic approach that provided many sum rules. To cite a
few, we have the Goldberger–Treiman relation, the Goldberger–Miyazawa–Oehme formula
and the Adler–Weisberger sum rule. In the dispersion-theoretic approach to strong interac-
tion physics, experimentally observed data were directly used in the sum rules. The situa-
tion changed dramatically in the early 1970s when quantum chromodynamics, the relativistic
quantum field theory of strong interaction physics, was invented by the use of asymptotically-
free non-Abelian gauge field theory.

The region of analyticity of the scattering amplitude in the upper-half k-plane in quantum
field theory, when expressed in terms of the Fourier transform, is immediate since quantum
field theory has microscopic causality. But, the region of analyticity of the scattering ampli-
tude in the upper-half k-plane in quantum mechanics, when expressed in terms of the Fourier
transform, is not immediate since quantum mechanics does not have microscopic causality.
We shall invoke the generalized triangular inequality to derive the region of analyticity of the
scattering amplitude in the upper-half k-plane in quantum mechanics. This region of analytic-
ity of the scattering amplitudes in the upper-half k-plane in quantum mechanics and quantum
field theory strongly depends on the fact that the scattering amplitudes are expressed in terms
of the Fourier transform. When another expansion basis is chosen, such as the Fourier–Bessel
series, the region of analyticity drastically changes its domain.

In the standard application of the calculus of variations to the variety of problems in theo-
retical physics, we simply write the Euler equation and are rarely concerned with the second
variations; the Legendre test and the Jacobi test. Examination of the second variations and the
application of the Legendre test and the Jacobi test becomes necessary in some cases of the
application of the calculus of variations theoretical physics problems. In order to bring the
development of theoretical physics and the calculus of variations much closer, some historical
comments are in order here.

Euler formulated Newtonian mechanics by the variational principle; the Euler equation.
Lagrange began the whole field of the calculus of variations. He also introduced the notion
of generalized coordinates into classical mechanics and completely reduced the problem to
that of differential equations, which are presently known as Lagrange equations of motion,
with the Lagrangian appropriately written in terms of kinetic energy and potential energy.
He successfully converted classical mechanics into analytical mechanics using the variational
principle. Legendre constructed the transformation methods for thermodynamics which are
presently known as the Legendre transformations. Hamilton succeeded in transforming the
Lagrange equations of motion, which are of the second order, into a set of first-order differen-
tial equations with twice as many variables. He did this by introducing the canonical momenta
which are conjugate to the generalized coordinates. His equations are known as Hamilton’s
canonical equations of motion. He successfully formulated classical mechanics in terms of
the principle of least action. The variational principles formulated by Euler and Lagrange
apply only to the conservative system. Hamilton recognized that the principle of least action
in classical mechanics and Fermat’s principle of shortest time in geometrical optics are strik-
ingly analogous, permitting the interpretation of optical phenomena in mechanical terms and
vice versa. Jacobi quickly realized the importance of the work of Hamilton. He noted that
Hamilton was using just one particular set of the variables to describe the mechanical system
and formulated the canonical transformation theory using the Legendre transformation. He
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duly arrived at what is presently known as the Hamilton–Jacobi equation. He formulated his
version of the principle of least action for the time-independent case.

Path integral quantization procedure, invented by Feynman in 1942 in the Lagrangian for-
malism, is usually justified by the Hamiltonian formalism. We deduce the canonical formal-
ism of quantum mechanics from the path integral formalism. As a byproduct of the discussion
of the Schwinger–Dyson equation, we deduce the path integral formalism of quantum field
theory from the canonical formalism of quantum field theory.

Weyl’s gauge principle also attracts considerable attention due to the fact that all forces
in nature; the electromagnetic force, the weak force and the strong force, can be unified with
Weyl’s gauge principle by the appropriate choice of the grand unifying Lie groups as the gauge
group. Inclusion of the gravitational force requires the use of superstring theory.

Basic to these are the integral equations and the calculus of variations.





1 Function Spaces, Linear Operators and Green’s Functions

1.1 Function Spaces

Consider the set of all complex valued functions of the real variable x, denoted by
f (x) , g (x) , . . . and defined on the interval (a, b). We shall restrict ourselves to those func-
tions which are square-integrable. Define the inner product of any two of the latter func-
tions by

(f, g) ≡
∫ b

a

f∗ (x) g (x) dx, (1.1.1)

in which f∗ (x) is the complex conjugate of f (x). The following properties of the inner
product follow from the definition (1.1.1).

(f, g)∗ = (g, f),

(f, g + h) = (f, g) + (f, h),

(f, αg) = α(f, g),

(αf, g) = α∗(f, g),

(1.1.2)

with α a complex scalar.
While the inner product of any two functions is in general a complex number, the inner

product of a function with itself is a real number and is non-negative. This prompts us to
define the norm of a function by

‖f‖ ≡
√

(f, f) =

[∫ b

a

f∗(x)f(x) dx

] 1
2

, (1.1.3)

provided that f is square-integrable, i.e., ‖f‖ < ∞. Equation (1.1.3) constitutes a proper
definition for a norm since it satisfies the following conditions,

(i) scalar multiplication ‖αf‖ = |α| · ‖f‖ , for all complex α,

(ii) positivity ‖f‖ > 0, for all f �= 0,
‖f‖ = 0, if and only if f = 0,

(iii) triangular inequality ‖f + g‖ ≤ ‖f‖ + ‖g‖ .

(1.1.4)
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A very important inequality satisfied by the inner product (1.1.1) is the so-called Schwarz
inequality which says

|(f, g)| ≤ ‖f‖ · ‖g‖ . (1.1.5)

To prove the latter, start with the trivial inequality ‖(f + αg)‖2 ≥ 0, which holds for any
f(x) and g(x) and for any complex number α. With a little algebra, the left-hand side of this
inequality may be expanded to yield

(f, f) + α∗(g, f) + α(f, g) + αα∗(g, g) ≥ 0. (1.1.6)

The latter inequality is true for any α, and is thus true for the value of α which minimizes the
left-hand side. This value can be found by writing α as a + ib and minimizing the left-hand
side of Eq. (1.1.6) with respect to the real variables a and b. A quicker way would be to treat
α and α∗ as independent variables and requiring ∂/∂α and ∂/∂α∗ of the left hand side of
Eq. (1.1.6) to vanish. This immediately yields α = −(g, f)/(g, g) as the value of α at which
the minimum occurs. Evaluating the left-hand side of Eq. (1.1.6) at this minimum then yields

‖f‖2 ≥ |(f, g)|2

‖g‖2 , (1.1.7)

which proves the Schwarz inequality (1.1.5).
Once the Schwarz inequality has been established, it is relatively easy to prove the trian-

gular inequality (1.1.4)(iii). To do this, we simply begin from the definition

‖f + g‖2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g). (1.1.8)

Now the right-hand side of Eq. (1.1.8) is a sum of complex numbers. Applying the usual
triangular inequality for complex numbers to the right-hand side of Eq. (1.1.8) yields

|Right-hand side of Eq. (1.1.8)| ≤ ‖f‖2 + |(f, g)| + |(g, f)| + ‖g‖2

= (‖f‖ + ‖g‖)2.
(1.1.9)

Combining Eqs. (1.1.8) and (1.1.9) finally proves the triangular inequality (1.1.4)(iii).
We remark finally that the set of functions f (x), g (x), . . . is an example of a linear vector

space, equipped with an inner product and a norm based on that inner product. A similar set
of properties, including the Schwarz and triangular inequalities, can be established for other
linear vector spaces. For instance, consider the set of all complex column vectors �u, �v, �w, . . .
of finite dimension n. If we define the inner product

(�u,�v) ≡ (�u ∗)T�v =
n∑
k=1

u∗kvk, (1.1.10)

and the related norm

‖�u‖ ≡
√

(�u, �u), (1.1.11)
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then the corresponding Schwarz and triangular inequalities can be proven in an identical man-
ner yielding

|(�u,�v)| ≤ ‖�u‖ ‖�v‖ , (1.1.12)

and

‖�u+ �v‖ ≤ ‖�u‖ + ‖�v‖ . (1.1.13)

1.2 Orthonormal System of Functions

Two functions f(x) and g(x) are said to be orthogonal if their inner product vanishes, i.e.,

(f, g) =
∫ b

a

f∗(x)g(x) dx = 0. (1.2.1)

A function is said to be normalized if its norm equals to unity, i.e.,

‖f‖ =
√

(f, f) = 1. (1.2.2)

Consider now a set of normalized functions {φ1(x), φ2(x), φ3(x), . . .} which are mutually
orthogonal. Such a set is called an orthonormal set of functions, satisfying the orthonormality
condition

(φi, φj) = δij =

{
1, if i = j,

0, otherwise,
(1.2.3)

where δij is the Kronecker delta symbol itself defined by Eq. (1.2.3).
An orthonormal set of functions {φn(x)}is said to form a basis for a function space, or to

be complete, if any function f(x) in that space can be expanded in a series of the form

f(x) =
∞∑
n=1

anφn(x). (1.2.4)

(This is not the exact definition of a complete set but it will do for our purposes.) To find
the coefficients of the expansion in Eq. (1.2.4), we take the inner product of both sides with
φm(x) from the left to obtain

(φm, f) =
∞∑
n=1

(φm, anφn)

=
∞∑
n=1

an (φm, φn)

=
∞∑
n=1

anδmn = am.

(1.2.5)
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In other words, for any n,

an = (φn, f) =
∫ b

a

φ∗n (x) f (x) dx. (1.2.6)

An example of an orthonormal system of functions on the interval (−l, l) is the infinite set

φn (x) =
1√
2l

exp
[
inπx

l

]
, n = 0,±1,±2, . . . (1.2.7)

with which the expansion of a square-integrable function f(x) on (−l, l) takes the form

f(x) =
∞∑

n=−∞
cn exp

[
inπx

l

]
, (1.2.8a)

with

cn =
1
2l

∫ +l

−l
f(x) exp

[
− inπx

l

]
, (1.2.8b)

which is the familiar complex form of the Fourier series of f(x).
Finally the Dirac delta function δ (x− x′), defined with x and x′ in (a, b), can be expanded

in terms of a complete set of orthonormal functions φn(x) in the form

δ (x− x′) =
∑
n

anφn(x)

with

an =
∫ b

a

φ∗n(x)δ(x− x′) dx = φ∗n (x′) .

That is,

δ(x− x′) =
∑
n

φ∗n(x
′)φn(x). (1.2.9)

The expression (1.2.9) is sometimes taken as the statement which implies the completeness of
an orthonormal system of functions.

1.3 Linear Operators

An operator can be thought of as a mapping or a transformation which acts on a member of
the function space ( i.e., a function) to produce another member of that space (i.e., another
function). The operator, typically denoted by a symbol such as L, is said to be linear if it
satisfies

L(αf + βg) = αLf + βLg, (1.3.1)

where α and β are complex numbers, and f and g are members of that function space.
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Some trivial examples of linear operators L are

(i) multiplication by a constant scalar, i.e.,

Lφ = aφ,

(ii) taking the third derivative of a function, i.e.,

Lφ =
d3

dx3
φ or L =

d3

dx3
,

which is a differential operator, or,

(iii) multiplying a function by the kernel, K(x, x′), and integrating over (a, b) with respect
to x′, i.e.,

Lφ(x) =
∫ b

a

K(x, x′)φ(x′) dx′,

which is an integral operator.

An important concept in the theory of the linear operator is that of the adjoint of the
operator which is defined as follows. Given the operator L, together with an inner product
defined on a vector space, the adjoint Ladj of the operator L is that operator for which

(ψ,Lφ) = (Ladjψ, φ), (1.3.2)

is an identity for any two members φ and ψ of the vector space. Actually, as we shall see later,
in the case of the differential operators, we frequently need to worry to some extent about the
boundary conditions associated with the original and the adjoint problems. Indeed, there often
arise additional terms on the right-hand side of Eq. (1.3.2) which involve the boundary points,
and a prudent choice of the adjoint boundary conditions will need to be made in order to avoid
unnecessary difficulties. These issues will be raised in connection with Green’s functions for
differential equations.

As our first example of the adjoint operator, consider the liner vector space of n-
dimensional complex column vectors �u, �v, . . . with their associated inner product (1.1.10).
In this space, n× n square matrices A, B, . . . with complex entries are linear operators when
multiplied by the n-dimensional complex column vectors according to the usual rules of ma-
trix multiplication. Consider now the problem of finding the adjoint Aadj of the matrix A.
According to the definition (1.3.2) of the adjoint operator, we search for the matrix Aadj satis-
fying

(�u,A�v) = (Aadj�u,�v). (1.3.3)

Now, from the definition of the inner product (1.1.10), we must have

�u ∗T(Aadj)∗T�v = �u ∗TA�v,

i.e.,

(Aadj)∗T = A or Aadj = A∗T. (1.3.4)
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That is, the adjointAadj of a matrixA is equal to the complex conjugate of its transpose, which
is also known as its Hermitian transpose,

Aadj = A∗T ≡ AH. (1.3.5)

As a second example, consider the problem of finding the adjoint of the linear integral
operator

L =
∫ b

a

dx′K(x, x′), (1.3.6)

on our function space. By definition, the adjoint Ladj of L is the operator which satisfies
Eq. (1.3.2). Upon expressing the left-hand side of Eq. (1.3.2) explicitly with the operator L
given by Eq. (1.3.6), we find

(ψ,Lφ) =
∫ b

a

dxψ∗(x)Lφ(x) =
∫ b

a

dx′
[∫ b

a

dxK(x, x′)ψ∗(x)

]
φ(x′). (1.3.7)

Requiring Eq. (1.3.7) to be equal to

(Ladjψ, φ) =
∫ b

a

dx(Ladjψ(x))∗φ(x)

necessitates defining

Ladjψ(x) =
∫ b

a

dξK∗(ξ, x)ψ(ξ).

Hence the adjoint of integral operator (1.3.6) is found to be

Ladj =
∫ b

a

dx′K∗(x′, x). (1.3.8)

Note that, aside from the complex conjugation of the kernel K(x, x′), the integration in
Eq. (1.3.6) is carried out with respect to the second argument of K(x, x′) while that in
Eq. (1.3.8) is carried out with respect to the first argument of K∗(x′, x). Also, be careful
to note which of the variables throughout the above is the dummy variable of integration.

Before we end this section, let us define what is meant by a self-adjoint operator. An oper-
ator L is said to be self-adjoint (or Hermitian) if it is equal to its own adjoint Ladj. Hermitian
operators have very nice properties which will be discussed in Section 1.6. Not the least of
these is that their eigenvalues are real. (Eigenvalue problems are discussed in the next section.)

Examples of self-adjoint operators are Hermitian matrices, i.e., matrices which satisfies

A = AH,

and linear integral operators of the type (1.3.6) whose kernel satisfy

K(x, x′) = K∗(x′, x),

each on their respective linear spaces and with their respective inner products.
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1.4 Eigenvalues and Eigenfunctions

Given a linear operator L on a linear vector space, we can set up the following eigenvalue
problem

Lφn = λnφn (n = 1, 2, 3, . . .). (1.4.1)

Obviously the trivial solution φ(x) = 0 always satisfies this equation, but it also turns out that
for some particular values of λ (called the eigenvalues and denoted by λn), nontrivial solu-
tions to Eq. (1.4.1) also exist. Note that for the case of the differential operators on bounded
domains, we must also specify an appropriate homogeneous boundary condition (such that
φ = 0 satisfies those boundary conditions) for the eigenfunctions φn (x). We have affixed the
subscript n to the eigenvalues and eigenfunctions under the assumption that the eigenvalues
are discrete and that they can be counted (i.e., with n = 1, 2, 3, . . .). This is not always
the case. The conditions which guarantee the existence of a discrete (and complete) set of
eigenfunctions are beyond the scope of this introductory chapter and will not be discussed.

So, for the moment, let us tacitly assume that the eigenvalues λn of Eq. (1.4.1) are discrete
and that their eigenfunctions φn form a basis (i.e., a complete set) for their space.

Similarly the adjoint Ladj of the operator L would posses a set of eigenvalues and eigen-
functions satisfying

Ladjψm = µmψm (m = 1, 2, 3, . . .). (1.4.2)

It can be shown that the eigenvalues µm of the adjoint problem are equal to complex conju-
gates of the eigenvalues λn of the original problem. (We will prove this only for matrices but
it remains true for general operators.) That is, if λn is an eigenvalue of L, λ∗n is an eigenvalue
of Ladj. This prompts us to rewrite Eq. (1.4.2) as

Ladjψm = λ∗mψm, (m = 1, 2, 3, . . .). (1.4.3)

It is then a trivial matter to show that the eigenfunctions of the adjoint and original operators
are all orthogonal, except those corresponding to the same index ( n = m ). To do this, take
the inner product of Eq. (1.4.1) with ψm from the left, and the inner product of Eq. (1.4.3)
with φn from the right, to find

(ψm, Lφn) = (ψm, λnφn) = λn(ψm, φn) (1.4.4)

and

(Ladjψm, φn) = (λ∗mψm, φn) = λm(ψm, φn). (1.4.5)

Subtract the latter two equations and note that their left-hand sides are equal because of the
definition of the adjoint, to get

0 = (λn − λm)(ψm, φn). (1.4.6)

This implies

(ψm, φn) = 0 if λn �= λm, (1.4.7)
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which proves the desired result. Also, since each φn and ψm is determined to within a multi-
plicative constant (e.g., if φn satisfies Eq. (1.4.1) so does αφn), the normalization for the latter
can be chosen such that

(ψm, φn) = δmn =

{
1, for n = m,

0, otherwise.
(1.4.8)

Now, if the set of eigenfunctions φn (n = 1, 2, . . .) forms a complete set, any arbitrary
function f(x) in the space may be expanded as

f(x) =
∑
n

anφn(x), (1.4.9)

and to find the coefficients an, we simply take the inner product of both sides with ψk to get

(ψk, f) =
∑
n

(ψk, anφn) =
∑
n

an(ψk, φn)

=
∑
n

anδkn = ak,

i.e.,

an = (ψn, f), (n = 1, 2, 3, . . .). (1.4.10)

Note the difference between Eqs. (1.4.9) and (1.4.10) and the corresponding formulas
(1.2.4) and (1.2.6) for an orthonormal system of functions. In the present case, neither {φn}
nor {ψn} form an orthonormal system, but they are orthogonal to one another.

Proof that the eigenvalues of the adjoint matrix are complex conjugates of the eigenvalues of
the original matrix.

Above, we claimed without justification that the eigenvalues of the adjoint of an operator
are complex conjugates of those of the original operator. Here we show this for the matrix
case. The eigenvalues of a matrix A are given by

det(A− λI) = 0. (1.4.11)

The latter is the characteristic equation whose n solutions for λ are the desired eigenvalues.
On the other hand, the eigenvalues of Aadj are determined by setting

det(Aadj − µI) = 0. (1.4.12)

Since the determinant of a matrix is equal to that of its transpose, we easily conclude that the
eigenvalues of Aadj are the complex conjugates of λn.

1.5 The Fredholm Alternative

The Fredholm Alternative, which may be also called the Fredholm solvability condition, is
concerned with the existence of the solution y(x) of the inhomogeneous problem

Ly(x) = f(x), (1.5.1)



1.5 The Fredholm Alternative 13

where L is a given linear operator and f(x) a known forcing term. As usual, if L is a differ-
ential operator, additional boundary or initial conditions must also be specified.

The Fredholm Alternative states that the unknown function y(x) can be determined
uniquely if the corresponding homogeneous problem

LφH(x) = 0 (1.5.2)

with homogeneous boundary conditions, has no nontrivial solutions. On the other hand, if
the homogeneous problem (1.5.2) does possess a nontrivial solution, then the inhomogeneous
problem (1.5.1) has either no solution or infinitely many solutions.

What determines the latter is the homogeneous solution ψH to the adjoint problem

LadjψH = 0. (1.5.3)

Taking the inner product of Eq. (1.5.1) with ψH from the left,

(ψH , Ly) = (ψH , f).

Then, by the definition of the adjoint operator (excluding the case wherein L is a differential
operator, to be discussed in Section 1.7.), we have

(LadjψH , y) = (ψH , f).

The left-hand side of the equation above is zero by the definition of ψH , Eq. (1.5.3).

Thus the criteria for the solvability of the inhomogeneous problem Eq. (1.5.1) is given by

(ψH , f) = 0.

If these criteria are satisfied, there will be an infinity of solutions to Eq. (1.5.1), otherwise
Eq. (1.5.1) will have no solution.

To understand the above claims, let us suppose that L and Ladj possess complete sets of
eigenfunctions satisfying

Lφn = λnφn (n = 0, 1, 2, . . .), (1.5.4a)

Ladjψn = λ∗nψn (n = 0, 1, 2, . . .), (1.5.4b)

with

(ψm, φn) = δmn. (1.5.5)

The existence of a nontrivial homogeneous solution φH (x) to Eq. (1.5.2), as well as ψH (x)
to Eq. (1.5.3), is the same as having one of the eigenvalues λn in Eqs. (1.5.4a), (1.5.4b) to be
zero. If this is the case, i.e., if zero is an eigenvalue of Eq. (1.5.4a) and hence Eq. (1.5.4b),
we shall choose the subscript n = 0 to signify that eigenvalue (λ0 = 0 ), and in that case
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φ0 and ψ0 are the same as φH and ψH . The two circumstances in the Fredholm Alternative
correspond to cases where zero is an eigenvalue of Eqs. (1.5.4a), (1.5.4b) and where it is not.

Let us proceed formally with the problem of solving the inhomogeneous problem
Eq. (1.5.1). Since the set of eigenfunctions φn of Eq. (1.5.4a) is assumed to be complete,
both the known function f(x) and the unknown function y(x) in Eq. (1.5.1) can presumably
be expanded in terms of φn(x):

f(x) =
∞∑
n=0

αnφn(x), (1.5.6)

y(x) =
∞∑
n=0

βnφn(x), (1.5.7)

where the αn are known (since f(x) is known), i.e., according to Eq. (1.4.10)

αn = (ψn, f), (1.5.8)

while the βn are unknown. Thus, if all the βn can be determined, then the solution y(x) to
Eq. (1.5.1) is regarded as having been found.

To try to determine the βn, substitute both Eqs. (1.5.6) and (1.5.7) into Eq. (1.5.1) to find

∞∑
n=0

λnβnφn =
∞∑
k=0

αkφk, (1.5.9)

where different summation indices have been used on the two sides to remind the reader that
the latter are dummy indices of summation. Next, take the inner product of both sides with
ψm (with an index which must be different from the two above) to get

∞∑
n=0

λnβn(ψm, φn) =
∞∑
k=0

αk(ψm, φk),

or
∞∑
n=0

λnβnδmn =
∞∑
k=0

αkδmk,

i.e.,

λmβm = αm. (1.5.10)

Thus, for any m = 0, 1, 2, . . ., we can solve Eq. (1.5.10) for the unknowns βm to get

βn = αn/λn (n = 0, 1, 2, . . .), (1.5.11)

provided that λn is not equal to zero. Obviously the only possible difficulty occurs if one of
the eigenvalues (which we take to be λ0) is equal to zero. In that case, equation (1.5.10) with
m = 0 reads

λ0β0 = α0 (λ0 = 0). (1.5.12)
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Now if α0 �= 0, then we cannot solve for β0 and thus the problem Ly = f has no solution.
On the other hand if α0 = 0, i.e., if

(ψ0, f) = (ψH , f) = 0, (1.5.13)

implying that f is orthogonal to the homogeneous solution to the adjoint problem, then
Eq. (1.5.12) is satisfied by any choice of β0. All the other βn (n = 1, 2, . . .) are uniquely
determined but there are infinitely many solutions y(x) to Eq. (1.5.1) corresponding to the in-
finitely many values possible for β0. The reader must make certain that he or she understands
the equivalence of the above with the original statement of the Fredholm Alternative.

1.6 Self-adjoint Operators

Operators which are self-adjoint or Hermitian form a very useful class of operators. They
possess a number of special properties, some of which are described in this section.

The first important property of self-adjoint operators is that their eigenvalues are real. To
prove this, begin with

Lφn = λnφn,

Lφm = λmφm,
(1.6.1)

and take the inner product of both sides of the former with φm from the left, and the latter
with φn from the right, to obtain

(φm, Lφn) = λn(φm, φn),

(Lφm, φn) = λ∗m(φm, φn).
(1.6.2)

For a self-adjoint operator L = Ladj, the two left-hand sides of Eq. (1.6.2) are equal and hence,
upon subtraction of the latter from the former, we find

0 = (λn − λ∗m)(φm, φn). (1.6.3)

Now, if m = n, the inner product (φn, φn) = ‖φn‖2 is nonzero and Eq. (1.6.3) implies

λn = λ∗n, (1.6.4)

proving that all the eigenvalues are real. Thus Eq. (1.6.3) can be rewritten as

0 = (λn − λm)(φm, φn), (1.6.5)

indicating that if λn �= λm, then the eigenfunctions φm and φn are orthogonal. Thus, upon
normalizing each φn, we verify a second important property of self-adjoint operators that
(upon normalization) the eigenfunctions of a self-adjoint operator form an orthonormal set.

The Fredholm Alternative can also be restated for a self-adjoint operatorL in the following
form: The inhomogeneous problem Ly = f (with L self-adjoint) is solvable for y, if f is
orthogonal to all eigenfunctions φ0 of L with eigenvalue zero (if indeed any exist). If zero is
not an eigenvalue of L, the solution is unique. Otherwise, there is no solution if (φ0, f) �= 0,
and an infinite number of solutions if (φ0, f) = 0.
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Diagonalization of Self-adjoint Operators: Any linear operator can be expanded in some
sense in terms of any orthonormal basis set. To elaborate on this, suppose that the orthonormal
system {ei(x)}i, with (ei, ej) = δij forms a complete set. Any function f(x) can be expanded
as

f(x) =
∞∑
j=1

αjej(x), αj = (ej , f). (1.6.6)

Thus the function f(x) can be thought of as an infinite dimensional vector with components
αj . Now consider the action of an arbitrary linear operator L on the function f(x). Obviously

Lf(x) =
∞∑
j=1

αjLej(x). (1.6.7)

But L acting on ej(x) is itself a function of x which can be expanded in the orthonormal basis
{ei(x)}i. Thus we write

Lej(x) =
∞∑
i=1

lijei(x), (1.6.8)

wherein the coefficients lij of the expansion are found to be lij = (ei, Lej). Substitution of
Eq. (1.6.8) into Eq. (1.6.7) then shows

Lf(x) =
∞∑
i=1

( ∞∑
j=1

lijαj

)
ei(x). (1.6.9)

We discover that just as we can think of f(x) as the infinite dimensional vector with compo-
nents αj , we can consider L to be equivalent to an infinite dimensional matrix with compo-
nents lij , and we can regard Eq. (1.6.9) as a regular multiplication of the matrixL (components
lij) with the vector f (components αj). However, this equivalence of the operator L with the
matrix whose components are lij , i.e., L⇔ lij , depends on the choice of the orthonormal set.

For a self-adjoint operator L = Ladj, the most natural choice of the basis set is the set of
eigenfunctions of L. Denoting these by {φi(x)}i, the components of the equivalent matrix for
L take the form

lij = (φi, Lφj) = (φi, λjφj) = λj(φi, φj) = λjδij . (1.6.10)

1.7 Green’s Functions for Differential Equations

In this section, we describe the conceptual basis of the theory of Green’s functions. We do this
by first outlining the abstract themes involved and then by presenting a simple example. More
complicated examples will appear in later chapters.

Prior to discussing Green’s functions, recall some of the elementary properties of the so-
called Dirac delta function δ(x − x′). In particular, remember that if x′ is inside the domain


