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Preface

Systems biology is the coordinated study of biological systems by (1) investigating
the components of cellular networks and their interactions, (2) applying experimen-
tal high-throughput and whole-genome techniques, and (3) integrating computa-
tional methods with experimental efforts. In this book we attempt to give a survey of
this rapidly developing field. The systematic approach to biology is not new, but it
has recently gained new attraction due to emerging experimental and computational
methods. This book is intended as an introduction for students of biology, biophy-
sics, and bioinformatics and for advanced researchers approaching systems biology
from a different discipline.

We see the origin and the methodological foundations for systems biology (1) in
the accumulation of detailed biological knowledge with the prospect of utilization in
biotechnology and health care, (2) in the emergence of new experimental techniques
in genomics and proteomics, (3) in the tradition of mathematical modeling of biolo-
gical processes, (4) in the developing computer power as a prerequisite for databases
and for the calculation of large systems, and (5) in the Internet as the medium for
quick and comprehensive exchange of information.

Recently, researchers working in different fields of biology have expressed the
need for systematic approaches. They have frequently demanded the establishment
of computer models of biochemical and signaling networks in order to arrive at tes-
table quantitative predictions despite the complexity of these networks. For exam-
ple, Hartwell and colleagues (1999) argue that “[t]he best test of our understanding
of cells will be to make quantitative predictions about their behavior and test them.
This will require detailed simulations of the biochemical processes taking place
within [cells]. … We need to develop simplifying, higher-level models and find gen-
eral principles that will allow us to grasp and manipulate the functions of [bio-
chemical networks].” Fraser and Harland (2000) state, “As the sophistication of the
data collection improves, so does the challenge of fully harvesting the fruits of
these efforts. The results to date show a dizzying array of signaling systems acting
within and between cells. … In such settings, intuition can be inadequate, often
giving incomplete or incorrect predictions. … In the face of such complexity, com-
putational tools must be employed as a tool for understanding.” Noble laureate
Nurse (2000) writes, “Perhaps a proper understanding of the complex regulatory
networks making up cellular systems like the cell cycle will require a … shift from
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common sense thinking. We might need to move into a strange more abstract world,
more readily analyzable in terms of mathematics.” And Kitano (2002 a) emphasizes
that “computational biology, through pragmatic modeling and theoretical explora-
tion, provides a powerful foundation from which to address critical scientific ques-
tions head-on.”

The requirement to merge experimental techniques and theoretical concepts in
the investigation of biological objects has been acknowledged, for example, by Kitano
(2002 a): “To understand complex biological systems requires the integration of ex-
perimental and computational research – in other words a systems biology approach.”
Levchenko (2003) recommends “the systems biology approach, relying on computa-
tional modeling coupled with various experimental techniques and methodologies,
… combining the dynamical view of rapidly evolving responses and the structural
view arising from high-throughput analyses of the interacting species.” Ideker and
colleagues (2001) state, “Systems biology studies biological systems by systematically
perturbing them (biologically, genetically, or chemically) ; monitoring the gene, pro-
tein, and informational pathway responses; integrating these data; and ultimately,
formulating mathematical models that describe the structure of the system and its
response to individual perturbations.”

Aebersold and colleagues (2000) see the fundamental experimental contribution
in large-scale facilities for genome-wide analyses, including DNA sequencing, gene
expression measurements, and proteomics, while Hood (2003) explains his path to
systems biology in the following way: “Our view and how we practice biology have
been profoundly changed by the Human Genome Project.”

Importantly, it has been discovered that cellular regulation is organized into com-
plex networks and that the various interactions of network elements in time and space
must be studied. Kitano (2002 b) stresses that “[t]o understand biology at the system
level, we must examine the structure and dynamics of cellular and organismal func-
tion, rather than the characteristics of isolated parts of a cell or organism. Properties
of systems, such as robustness, emerge as central issues, and understanding these
properties may have an impact on the future of medicine.” Kholodenko and collea-
gues want to “untangle the wires” and “trace the functional interactions in signaling
and gene networks.” Levchenko (2003) sees advantages in understanding signaling:
“A new view of signaling networks as systems consisting of multiple complex ele-
ments interacting in a multifarious fashion is emerging, a view that conflicts with the
single-gene or protein-centric approach common in biological research. The postge-
nomic era has brought about a different, network-centric methodology of analysis,
suddenly forcing researchers toward the opposite extreme of complexity, where the
networks being explored are, to a certain extent, intractable and uninterpretable.”

There are many fields of application besides the understanding of cellular regula-
tion. With respect to modeling of the heart as whole organ, Noble (2002) discusses
that “[s]uccessful physiological analysis requires an understanding of the functional
interactions between the key components of cells, organs, and systems, as well as
how these interactions change in disease states. This information resides neither in
the genome nor even in the individual proteins that genes code for. It lies at the level
of protein interactions within the context of subcellular, cellular, tissue, organ, and
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system structures.” Kirkwood and colleagues (2003) observe a need to apply “e-biol-
ogy” on aging in order to integrate theory and data.

There is no need to add another definition of systems biology. More important than
such a definition is the operational meaning and the modus vivendi. However, we
would like to emphasize the view that although the new property of systems biology is
the computational aspect, the trinity of experimentation, data handling, and mathe-
matical modeling is crucial for further successful development of biological science.

Although deciphering of the DNA sequences of many organisms including man
has been acknowledged as an important step towards the exact representation of
biology, it is currently not possible to calculate the phenotype of an organism from
genotype or to simulate a living cell using only the information encoded in these se-
quences. We will show in the following chapters what can be achieved at present. An
old proverb states, “What you expect is what you will get.” Knowledge of different
concepts, methodologies, and sources of information will support researchers in in-
terpreting their data in a broader context.

This book is divided into three parts. The first part gives an introduction to three
main foundations of systems biology – cell biology, mathematics, and experimental
techniques. This will be very basic for advanced readers but will prove helpful for
those approaching systems biology from a different scientific discipline.

The second part of the book presents current strategies of computational model-
ing and data mining. It covers in detail various cellular processes such as metabo-
lism, signaling, the cell cycle, and gene expression, as well as the interactions be-
tween them. We introduce different concepts of modeling and discuss how the dif-
ferent models can be used to tackle a number of frequent problems, including such
questions as how regulation is organized, how data can be interpreted, or which
model to apply under specific settings.

The third part gives an overview on currently available help and resources from
the Internet. We represent modeling tools that we frequently use ourselves. We also
give an overview on databases that are indispensable for information exchange and
therefore constitute an essential support for systems biology.

The ideas presented in this book rely on the work of many colleagues currently or
formerly active in the field. Our contribution to systems biology has been influenced
by many other scientists and our teachers, whom we wish to acknowledge.

We also thank a number of people who helped us in finishing this book. We are espe-
cially grateful to Bente Kofahl, Dr. Wolfram Liebermeister, and Dr. Damini Tapadar for
reading and commenting on the manuscript. Hendrik Hache and Mario Drungowski
contributed with data analysis. Parts of the experimental data used throughout the book
were generated in collaboration with Dr. Marie-Laure Yaspo, Dr. James Adjaye and
Dr. Pia Aanstad. We thank Monica Shevack for the artistic preparation of many figures.

E.K. wishes to thank her family for support, especially her sons for patience and
hot dinners. R.H. thanks his family for supporting him throughout the course of
writing. Funding from the following sources is appreciated: E.K. and A.K. are sup-
ported by the German Federal Ministry for Education and Research and by the Ber-
lin Center of Genome Based Bioinformatics. C.W. is financed by the EU FP6 grant
(LSHG-CT-2003–503269) and R.H. and H.L. by the Max Planck Society.
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Foreword

Systems biology is an emergent discipline that is gaining increased attention. A desire
to understand systems of living organisms is not a new one. It can be traced back a
few decades. Walter Cannon’s homeostasis, Norbert Wiener’s cybernetics, and Ludwig
von Bertalanffy’s general systems theory all points to essentially the same direction –
system-level understanding of biological systems. Since the discovery of double helix
structure of DNA and a series of efforts that gave birth to molecular biology, astonish-
ing progress has been made on our understanding on living forms as molecular ma-
chinery. The climax came as completion of human genome sequencing.

With accumulating knowledge of genes and proteins, the next natural question to
ask is how they are working together? What are principles that govern at the system-le-
vel? With the progress of molecular biology, genomics, computer science, and control
theory, the old question is now being revisited with new concepts and methodologies.

A system is not just an assembly of components. There are principles that govern
at the system-level. Unlike genes and proteins that are rather tangible objects, a sys-
tem is no tangible. The essence of the system lies in dynamics that is not tangible.
This makes the game of systems biology complicated, and may sound alien to many
molecular biologists who are accustomed to a molecular-oriented view of the world.
Needless to say system-level understanding has to be grounded onto molecular-level
so that a continuous spectrum of knowledge can be established.

The enterprise of systems biology research requires both breadth and depth of un-
derstanding for various aspects of biological, computational, mathematical, and even
engineering issues. So far, there has not been a coherent textbook in the field that
covers broad aspects of systems biology. (I wrote a textbook in 2001 perhaps the first
textbook in systems biology, but it was only in Japanese.) In this textbook, the
authors have successfully covered sufficiently broad aspects of biology and computa-
tion that is essential in getting started in systems biology research. It is essential that
both computational and experimental aspects of biology are described consistently
and seamlessly. The students who learned through this textbook will make no barrier
between computation and experiments. They would use advanced computational
tools just like using PCR. I am expecting to see a new generation of systems biolo-
gists who get the first touch of the field from this book.
Bon voyage
Tokyo, Japan, September 26 2004 Hiroaki Kitano
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General Introduction





1
Basic Principles

1.1
Systems Biology is Biology!

Life is one of the most complex phenomena in the universe. It has been studied by
using systematic approaches in botany, zoology, and ecology as well as by investigat-
ing the composition and molecular biology of single cells. For a long time biologists
have thoroughly investigated how parts of the cell work: they have studied the bio-
chemistry of small and large molecules, the structure of proteins, the structure of
DNA and RNA, and the principles of DNA replication as well as transcription and
translation and the structure and function of membranes. In addition, theoretical
concepts about the interaction of elements in different types of networks have been
developed. The next step in this line of research is further effort towards a systematic
investigation of cells, organs, and organisms and of (mainly) cellular processes such
as cellular communication, cell division, homeostasis, and adaptation. This approach
has been termed systems biology.

Now the time has come to integrate different fields of biology and natural science
in order to better understand how cells work, how cellular processes are regulated,
and how cells react to environmental perturbations or even anticipate those changes.
The development of a more systematic view of biological processes is accompanied
by and based on a revolution of experimental techniques and methodologies. New
high-throughput methods allow measurement of the expression levels of all genes of
a cell at the same time and with reasonable temporal resolution, although this is still
very expensive. Fluorescence labeling and sophisticated microscopic techniques al-
low tracing individual molecules within a single cell. A fine-grained study of cell
components and cell processes in time and in space is an important prerequisite for
the further elucidation of cellular regulation.

Systems biology is driven partly by the curiosity of scientists, but even more so by
the high potential of its applications. Biotechnological production requires tools with
high predictive power to design cells with desired properties cheaply and reliably.
There are many promises for health care: models of regulatory networks are neces-
sary to understand their alterations in the case of disease and to develop methods to
cure the disease. Furthermore, since there is an observable trend in health care to-
wards individualized and predictive medicine (Weston and Hood 2004), there will be

3



an increasing need for the exact formulation of cellular networks and the prediction
of systems behavior in the areas of drug development, drug validation, diagnostics,
and therapy monitoring. For example, it has been shown that the epidermal growth
factor receptor, which is targeted by a new generation of cancer drugs, belongs to a
family of at least four related receptors. These receptors can be turned on by more
than 30 different molecules. Thus, such a complex setup makes it necessary to de-
rive the wiring diagram to understand how each component plays its role in re-
sponding to various stimuli and causing disease. Once a detailed model has been
constructed, all effects of possible perturbations can be predicted fairly cheaply in si-
lico. Furthermore, models gained by systems biology approaches can be used for pre-
diction of the behavior of the biological system even under conditions that are not
easily accessible with experiments.

Systems biology approaches offer the chance to predict the outcome of complex pro-
cesses, e. g., the effect of different possible courses of cancer treatment on the tumor
(how effectively the treatment eliminates the tumor as well as possible metastatic
cells) and the patient (what the cancer treatment does to other rapidly growing tissues,
how bad the predicted side effects of a specific treatment in a specific patient are).

These and many other problems that could have enormous effects on our survival,
our health, our food supplies, and many other issues that are essential to our existence
and our well being might very well be almost impossible to approach without the tools
of systems biology that are currently being developed. E. g., to optimize the treatment
of an individual cancer patient, we have to be able to accurately predict the outcome of
the possible courses of treatment. This would be easy if we were able to understand
the complex processes (drug effects, drug side effects, drug metabolism, etc.) the way
that we understand some processes in physics (e. g., the famous equation E = mc2 de-
scribing the dependence of mass and energy) or even some of the basic processes in
biology (the genetic code). This is very unlikely for the complex, highly connected sys-
tems we are faced with in many real-world problems in biology. It is not even clear
whether our current approach of studying such systems – analyzing small segments
(often one or a few genes at a time) – will ever give us enough insight to be able to
make useful prediction, as, at least in mathematics, many systems cannot be sub-
divided in that form. The only option we have might therefore very well be to generate
as much information as possible on the system, using the tools of functional geno-
mics, and to model the entire process in as much detail as necessary to allow quantita-
tive predictions of the parameters we are interested in.

Systems biology relies on the integration of experimentation, data processing, and
modeling. Ideally, this is an iterative process. Experimentally obtained knowledge about
the system under study together with open questions lead to an initial model. The
initial model allows predictions that can be verified or falsified in new experiments.
Disagreements stimulate the next step of model development, which again results in
experimentally testable predictions. This iteration continues until a good agreement is
achieved between the data obtained in the experiment and the model predictions.

A major topic of current systems biology is the analysis of networks: gene net-
works, protein interaction networks, metabolic networks, signaling networks, etc. In-
itially, investigation of abstract networks was fashionable. However, it has become
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clear that it is necessary to study more realistic and detailed networks in order to un-
cover the peculiarities of biological regulation. Different theoretical attempts have
been made to study the different types of networks. For example, gene regulatory
networks are sometimes described by Boolean logic assigning to genes one of two
states, on or off; protein relations are mainly characterized by a static view of puta-
tive interactions measured by yeast two-hybrid methods, and metabolic networks are
determined by the set of catalyzing enzymes and the possible metabolic fluxes and
intrinsic modes of regulation.

A unified view of a cellular network is currently emerging in the sense that each
action of a cell involves different levels of cellular organization, including genes, pro-
teins, metabolism, or signaling pathways. Therefore, the current description of the
individual networks must be integrated into a larger framework.

Systems biology also employs theoretical concepts that are only rough representa-
tions of their biological counterparts. For example, the representation of gene regula-
tory networks by Boolean networks, the description of complex enzyme kinetics by sim-
ple mass action laws, or the simplification of multifarious reaction schemes by black
boxes proved to be helpful understatements. Although being a simplification, these
models elucidate possible network properties and help to check the reliability of basic
assumptions and to discover possible design principles in nature. Simplified models
can be used to test mathematically formulated hypothesis about system dynamics. And
simplifying models are easier to understand and to apply to different questions.

Computational models serve as repositories of the current knowledge, both estab-
lished and hypothetical, on how pathways might operate, providing one with quantita-
tive codification of this knowledge and with the ability to simulate the biological pro-
cesses according to this codification (Levchenko 2003). The attempt to formulate cur-
rent knowledge and open problems in mathematical terms often uncovers a lack of
knowledge and requirements for clarification. On the other hand, computational mod-
els can be used to test whether different hypotheses about the true process are reliable.

Many current approaches pay tribute to the fact that biological items are subject to
evolution. This concerns on one hand the similarity of biological organisms from dif-
ferent species. This similarity allows for the use of model organisms and for the criti-
cal transfer of insights gained from one cell type to other cell types. Applications in-
clude, e.g., prediction of protein function from similarity, prediction of network
properties from optimality principles, reconstruction of phylogenetic trees, or identi-
fication of regulatory DNA sequences through cross-species comparisons. On the
other hand, the evolutionary process leads to genetic variations within species.
Therefore, personalized medicine and research is an important new challenge for
biomedical research.

1.2
Systems Biology is Modeling

Observation of the real world and, especially, of biological processes confronts us
with many simple and complex processes that cannot be explained with elementary
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principles and the outcome of which cannot reliably be foreseen from experience.
Mathematical modeling and computer simulations can help us to understand the in-
ternal nature and dynamics of these processes and to arrive at well-founded predic-
tions about their future development and the effect of interactions with the environ-
ment.

What is a model? The answer will differ among communities of researchers. In
the broadest sense, a model is an abstract representation of objects or processes that
explains features of these objects or processes. For instance, the strings composed of
the letters A, C, G, and T are used as a model for DNA sequences. In some cases a
cartoon of a reaction network showing dots for metabolites and arrows for reactions
is a model, while in other cases a system of differential equations is employed to de-
scribe the dynamics of that network. In experimental biology, the term model is also
used to denote species that are especially suitable for experiments. For example the
mouse Ts65DN serves as a model for human trisomy 21 (Reeves et al. 1995).

1.2.1
Properties of Models

1.2.1.1 Model Assignment is not Unique
Biological phenomena can be described in mathematical terms. Many examples
have been presented during the past few decades (from the description of glycolytic
oscillations with ordinary differential equations, to populations growth with differ-
ence equations, to stochastic equations for signaling pathways, to Boolean networks
for gene expression). It is important to note that a certain process can be described
in more than one way.

� A biological object can be investigated with different experimental methods.
� Each biological process can be described with different (mathematical) models.
� A mathematical formalism may be applied to different biological instances.
� The choice of a mathematical model or an algorithm to describe a biological object

depends on the problem, the purpose, and the intention of the investigator.
� Modeling has to reflect essential properties of the system. Different models may

highlight different aspects of the same instance.

This ambiguity has the advantage that different ways of studying a problem also
provide different insights into the system. An important disadvantage is that the di-
versity of modeling approaches makes it very difficult to merge established models
(e.g., for individual metabolic pathways) into larger super-models (e.g., for the com-
plete cellular metabolism).

1.2.1.2 System State
An important notion in dynamical systems theory is the state. The state of a system
is a snapshot of the system at a given time that contains enough information to pre-
dict the behavior of the system for all future times. The state of the system is de-
scribed by the set of variables that must be kept track of in a model.
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Different modeling approaches have different representations of the state: in a dif-
ferential equation model for a metabolic network, the state is a list of concentrations
of each chemical species. In the respective stochastic model, it is a probability distri-
bution and/or a list of the current number of molecules of a species. In a Boolean
model of gene regulation, the state is a string of bits indicating for each gene
whether it is expressed (“1”) or not expressed (“0”). Thus, each model defines what it
means by the state of the system. Given the current state, the model predicts which
state or states can occur next, thereby describing the change of state.

1.2.1.3 Steady States
The concept of stationary states is important for the modeling of dynamical systems.
Stationary states (other terms are steady states or fixed points) are determined by the
fact that the values of all state variables remain constant in time. The asymptotic be-
havior of dynamic systems, i. e., the behavior after a sufficiently long time, is often
stationary. Other types of asymptotic behavior are oscillatory or chaotic regimes.

The consideration of steady states is actually an abstraction that is based on a se-
paration of time scales. In nature, everything flows. Fast and slow processes – ranging
from formation and release of chemical bonds within nanoseconds to growth of indi-
viduals within years – are coupled in the biological world. While fast processes often
reach a quasi-steady state after a short transition period, the change of the value of
slow variables is often negligible in the time window of consideration. Thus each
steady state can be regarded as a quasi-steady state of a system that is embedded in a
larger non-stationary environment. Although the concept of stationary states is a
mathematical idealization, it is important in kinetic modeling since it points to typi-
cal behavioral modes of the investigated system and the respective mathematical pro-
blems are frequently easier to solve.

1.2.1.4 Variables, Parameters, and Constants
The quantities involved in a model can be classified as variables, parameters, and
constants. A constant is a quantity with a fixed value, such as the natural number e or
Avogadro’s number NA = 6.02�1023 (number of molecules per mole). Parameters are
quantities that are assigned a value, such as the Km value of an enzyme in a reaction.
This value depends on the method used and on the experimental conditions and
may change. Variables are quantities with a changeable value for which the model
establishes relations. The state variables are a set of variables that describe the system
behavior completely. They are independent of each other and each of them is neces-
sary to define the system state. Their number is equivalent to the dimension of
the system. For example, diameter d and volume V of a sphere obey the relation
V = �d3/6. � and 6 are constants and V and d are variables, but only one of them is a
state variable, since the mentioned relation uniquely determines the other one.

Whether a quantity is a variable or a parameter depends on the model. The en-
zyme concentration is frequently considered a parameter in biochemical reaction ki-
netics. That is no longer valid if, in a larger model, the enzyme concentration may
change due to gene expression or protein degradation.
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1.2.1.5 Model Behavior
There are two fundamental causes that determine the behavior of a system or its
changes: (1) influences from the environment (input) and (2) processes within the
system. The system structure, i. e., the relation among variables, parameters, and
constants, determines how endogenous and exogenous forces are processed. It must
be noted that different system structures may produce similar system behavior (out-
put). The structure determines the behavior, not the other way around. Therefore,
the system output is often not sufficient to predict the internal organization. Gener-
ally, system limits are set such that the system output has no impact on the input.

1.2.1.6 Process Classification
For modeling, processes are classified with respect to a set of criteria. Reversibility
determines whether a process can proceed in a forward and backward direction. Irre-
versible means that only one direction is possible. Periodicity indicates that a series
of states may be assumed in the time interval {t, t + �t) and again in the time interval
{t + i��t, t + (i + 1)��t} for i = 1,2,… With respect to the randomness of the predic-
tions, deterministic modeling is distinct from stochastic modeling. A description is
deterministic if the motion through all following states can be predicted from the
knowledge of the current state. Stochastic description gives instead a probability dis-
tribution for the succeeding states. The nature of values that time, state, or space
may assume distinguishes a discrete model (where values are taken from a discrete
set) from a continuous model (where values belong to a continuum).

1.2.1.7 Purpose and Adequateness of Models
Models represent only specific aspects of the reality. The intention of modeling is to
answer particular questions. Modeling is, therefore, a subjective and selective proce-
dure. It may, for example, aim at predicting the system output. In this case it might
be sufficient to obtain precise input-output relation, while the system internals can
be regarded as black box. However, if the function of an object is to be elucidated,
then its structure and the relations between its parts must be described realistically.
One may intend to formulate a model that is generally applicable to many similar
objects (e.g., Michaelis-Menten kinetics holds for many enzymes, the promoter-op-
erator concept is applicable to many genes, and gene regulatory motifs are common)
or that is specific to one special object (e.g., the 3D structure of a protein, the se-
quence of a gene, or a model of deteriorating mitochondria during aging). The math-
ematical part can be kept as simple as possible to allow for easy implementation and
comprehensible results. Or it can be modeled very realistically and be much more
complicated. None of the characteristics mentioned above makes a model wrong or
right, but they determine whether a model is appropriate to the problem to be
solved.

1.2.1.8 Advantages of Computational Modeling
Models gain their reference to reality from comparison with experiments, and their
benefits are, therefore, somewhat dependent on experimental performance. Never-
theless, modeling has a lot of advantages.
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