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As the use of microelectronics became increasingly indispensable in measure-
ment and control technology, so there was an increasing need for suitable sen-
sors. From the mid-Seventies onwards sensors technology developed by leaps and
bounds and within ten years had reached the point where it seemed desirable to
publish a survey of what had been achieved so far. At the request of publishers
WILEY-VCH, the task of editing was taken on by Wolfgang Göpel of the Univer-
sity of Tübingen (Germany), Joachim Hesse of Carl Zeiss (Germany) and Jay Ze-
mel of the University of Philadelphia (USA), and between 1989 and 1995 a series
called Sensors was published in 8 volumes covering the field to date. The material
was grouped and presented according to the underlying physical principles and
reflected the degree of maturity of the respective methods and products. It was
written primarily with researchers and design engineers in mind, and new devel-
opments have been published each year in one or two supplementary volumes
called Sensors Update.

Both the publishers and the series editors, however, were agreed from the start
that eventually sensor users would want to see publications only dealing with
their own specific technical or scientific fields. Sure enough, during the Nineties
we saw significant developments in applications for sensor technology, and it is
now an indispensable part of many industrial processes and systems. It is timely,
therefore, to launch a new series, Sensors Applications. WILEY-VCH again commis-
sioned Wolfgang Göpel and Joachim Hesse to plan the series, but sadly Wolfgang
Göpel suffered a fatal accident in June 1999 and did not live to see publication.
We are fortunate that Julian Gardner of the University of Warwick has been able
to take his place, but Wolfgang Göpel remains a co-editor posthumously and will
not be forgotten.

The series of Sensors Applications will deal with the use of sensors in the key
technical and economic sectors and systems: Sensors in Manufacturing, Intelligent
Buildings, Medicine and Health Care, Automotive Technology, Aerospace Technology,
Environmental Technology and Household Appliances. Each volume will be edited by
specialists in the field. Individual volumes may differ in certain respects as dic-
tated by the topic, but the emphasis in each case will be on the process or system
in question: which sensor is used, where, how and why, and exactly what the ben-
efits are to the user. The process or system itself will of course be outlined and
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the volume will close with a look ahead to likely developments and applications in
the future. Actual sensor functions will only be described where it seems neces-
sary for an understanding of how they relate to the process or system. The basic
principles can always be found in the earlier series of Sensors and Sensors Update.

The series editors would like to express their warm appreciation in the col-
leagues who have contributed their expertise as volume editors or authors. We are
deeply indebted to the publisher and would like to thank in particular Dr. Peter
Gregory, Dr. Jörn Ritterbusch and Dr. Claudia Barzen for their constructive assis-
tance both with the editorial detail and the publishing venture in general. We
trust that our endeavors will meet with the reader’s approval.

Oberkochen and Coventry, November 2000 Joachim Hesse

Julian W. Gardner
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Diagnosis of disease and its therapy are problems in sensing and control. The pa-
tient who seeks information or care wants to learn the state of her organism. The
same person, having been diagnosed with a problem seeks to monitor her condition
and ensure that the solution offered by the physician is appropriate. In that sense,
there are similarities between medical, aerospace, automotive and atmospheric sens-
ing.

The authors of this volume of the Wiley Sensors Applications Series cover bio-
medical sensing in breadth: ranging from fundamental modalities like optics and
imaging, ranging to applications such as hemodynamics, neonatal monitoring and
prostheses for the deaf. Each topic is reviewed in depth, so that a practicing biome-
dical engineer or a bioengineering graduate student could gain insight into a specif-
ic topic and learn to apply the principles that are given.

The co-editors P.Å. Öberg, F. A. Spelman and T. Togawa give an introductory re-
view of the history of medical sensing, and use historical examples to point to the
future. What will the bioengineers of the future provide to aid diagnosis? Will the
dreams of completely non-invasive sensing be reached in the future? Will they be re-
alized in the near future?

Dr. Öberg follows the introduction with an in-depth exposition of optical sensing
in medical care. The chapter leads the reader through the fundamental principles of
optics and uses those principles to base a discussion of applications of biomedical
optics.

Drs. J.D. Newman and A.P.F. Turner review glucose sensing, both invasive and
non-invasive approaches. The chapter is tantalizing: if glucose can be sensed, can its
level be controlled as well? That is the grail of glucose sensing. Drs. Newman and
Turner ask not only if a sensor be built, but whether it can be manufactured.

Dr. S. Ueno presents the principles and application of magnetic resonance imag-
ing (MRI). He describes the techniques employed to acquire detailed images, and
delves into the ways that anatomy and physiology can be joined with a sensitive
imaging modality.

Dr. K. Yamakoshi describes non-invasive measurement of hemodynamic variables.
He provides the principles that have lain behind the sphygmomanometer for more
than 100 years, techniques that were limited to measurements of sedentary subjects.
He expands his work to review methods by which hemodynamics can be monitored
non-invasively in ambulatory subjects. The work is exciting because it invites the
possibility of giving information about patients during normal activities as con-
trasted to measurements that are made while people are sedentary and possibly an-
xious in a medical setting.

VII
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Drs. A. Johansson and B. Hök introduce the respiratory system and methods by
which it can be monitored in the clinic and at rest. They present sensors to observe
respiratory flows and pressures directly, as well as some devices that measure respi-
ratory rate to indicate the condition of the respiratory system. They provide a clear
exposition of the benefits and limits of each of the sensing modalities that they de-
scribe.

Dr. P. Rolfe addresses fetal and neonatal monitoring. He covers measurements of
both the mother and the infant, and describes the information gained by each mea-
surement. He leads the reader through sensing techniques and describes sampling
and processing issues as well.

Dr. T. Tamura brings the reader into the realm of motion and energy analysis. His
chapter on body motion analysis develops both direct and indirect methods of sens-
ing, and then shows the applications of those methods. He leads the reader to con-
clusions about the energy that is consumed by humans in motion.

Drs. B. Hensel, G. Czgan, I. Weiss, and T. Nappholz present information about
cardiac pacemaking. They take the reader from an understanding of electrodes that
are used both as stimulus sources and as sensors: bidirectional devices. They write
about the processing necessary to achieve control of the rhythm of the heart, and
offer information about continuous, long-term control of the heart, and the success
of the work done in the area.

Dr. F. A. Spelman presents information about cochlear implants. The implant is
presented as a substitute for a physiological sensing modality. The principles of de-
sign are given, descriptions of the success of the device are offered, and questions
whose answers will lead to future designs are presented as well.

Drs. P. J. French, D. Tanase, and J. F. L. Goosen provide an enlightening chapter
on the design and application of catheter-based sensors. They give a broad spectrum
of applications ranging from blood flow to urology, describing the need for and ap-
plication of navigational techniques to ensure that the locations of catheter tips are
known and controlled. Their practical approach to sensor development and applica-
tion gives the reader a view of both the process and application by which biomedical
engineers approach problems.

Dr. T. Togawa closes this volume with an exposition of home health care and tele-
care. He describes several sensing applications and the ways by which they can pro-
vide information from patients to physicians at a distance. This provocative chapter
can lead the reader to think about ways by which health care can be provided effi-
ciently, at low cost and to people who, because of separation from medical centers,
would otherwise not be served.

Each author or group of authors has provided an extensive bibliography, so that
the readers of this volume can go to the original sources behind the chapters pre-
sented here. While the bibliography is not exhaustive, it will lead the inquisitive
reader to a rich trove of information.

We thank every author for assembling a comprehensive and interesting chapter.
The work done by each is substantial, and, we hope will benefit you as a reader and
user of this volume. Special thanks are due to Dr. Martin Ottmar of Wiley-VCH as
well as to his staff. Dr. Ottmar was incisive in his comments, helpful at all levels of
production and patient to a fault. This volume has benefited greatly from his contri-
butions. Finally, our families deserve thanks for patience and support during the
production of this work. The book couldn’t be complete without them.

P. Åke Öberg Tatsuo Togawa Francis A. Spelman
Linköping, Sweden Saitama, Japan Seattle, WA, USA
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Measurement is the key to understanding biology and for the diagnosis of pathol-
ogy. Measurement requires precise sensing to be successful, to allow scientists to
advance their knowledge and physicians to control and cure abnormal conditions.
In this book, we discuss both measurement and control of physiological variables.

Sensing can focus on the whole human organism as it does in the case of
whole-body sensing systems; it can stress the measurement of critical variables
such as glucose concentration, temperature, or pressure; it can define the behav-
iors of particular cells such as single neurons in the brain.

Control can be holistic, as it is in the case of home health care of the elderly or
when the condition of a baby is monitored and controlled during the process of
birth. Control can be specific when glucose is monitored and held within normal
physiological limits, or it can be focused on a particular somatic sense as it is in
the cochlear implant that provides hearing to the deaf.

Sensing is critical to all the cases above. It demonstrates a clear need for appro-
priate transducers that detect one form of energy and convert it to another, either
at the input or the output of a specific instrument. Further, sensing implies signal
processing. In the chapters that follow, the reader will be exposed to input sen-
sors, output transducers, and the processing that connects them. While sensors
are the focus of this volume, output transducers come into play, as does signal
processing. As you read the chapters that follow, you will be impressed with the
breadth and imagination that are the hallmarks of bioengineering.

1.1
Historical Breakthroughs in Medical Sensing Science

1.1.1
Plethysmography

Plethysmography is one of the earliest methods developed to make non-invasive
blood flow measurements in the extremities. It is still one of the most frequently
used and accurate methods used to assess peripheral blood flow. A great deal of
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our knowledge of vascular physiology in health and disease has been derived
from data obtained plethysmographically.

Glisson [1] and Swammerdam [2] first employed plethysmography to study iso-
lated muscle contraction. It was not until the latter half of the nineteenth century
that this measurement principle was applied to blood flow measurements. Fran-
cois-Frank [3] published the first blood flow results in 1876 utilizing the venous
occlusion technique. Brodie and Russel [4] studied renal blood flow by enclosing
the kidney in a closed chamber in which the volume changes were studied while
venous outflow was occluded. Hewlett and Zwaluwenburg [5] investigated blood
flow in human limbs with plethysmography, thereby introducing the venous oc-
clusion plethysmograph. Hyman and Winson have reviewed the early develop-
ment of plethysmography [6].

The word plethysmography is derived from the Greek word for increase (in vol-
ume) plethysmos and the word to record, to write, grafein. Thus, the term plethys-
mography describes the basic principle of the technique, that is to record changes
in the volume of parts of the body. The principle can be applied to the heart, liver,
kidney, and to vascular measurements of the limbs and parts thereof. Most transi-
ent changes in the volume of organs are related to changes in blood content.
Thus, plethysmography can serve to record blood volume as well as changes in
blood volume. Since blood flow can be expressed as blood volume change per
unit time, we can use plethysmography to measure blood flow. Indeed, plethys-
mography has been used primarily to assess blood flow to organs.

The most common application is venous occlusion plethysmography, usually
used to diagnose obstructions in limb blood vessels. In this method the early in-
flux of arterial blood to a limb is recorded when the venous drainage is stopped
temporarily. The volume changes can be assessed in a number of ways, including
water-filled cuffs, air-filled cuffs, strain gauges, electrical impedance measure-
ments, and photoelectric probes.

1.1.2
Blood Pressure Measurements

The first blood pressure measurement was made with a very simple sensor. In
1733, the Reverend Stephen Hales [7] introduced glass tubes into the carotid ar-
teries of horses and measured the height of the blood column that arose in the
tube. He found it to be 8 feet and 3 inches. The first blood pressure measure-
ment was made. About a century later, Poisieulle [8] studied blood pressure using
a mercury manometer, a method for which he received a Gold medal from the
Royal Academy of Medicine in Paris. The manometer of Poisieulle was connected
to the artery with a leaden cannula.

Ludwig [9], a German professor in Comparative Anatomy at Marburg, improved
Poisieulle’s device with a recording technique. He recorded the motion of the mer-
cury column on a revolving smoked drum (the kymograph), and dynamic blood pres-
sure measurements were made. Favre [10] used Ludwig’s manometer clinically, re-
cording human systolic blood pressure for the first time.
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During the 150 years that have elapsed since Ludwig’s first invasive human
measurement, invasive blood pressure sensors have undergone remarkable devel-
opment. The most recent devices are based on catheters with microelectronic
components, having an outer diameter of 0.35 mm (0.014 inches), which can be
introduced into the coronary vessels of the heart. These catheters [11] are used to
diagnose coronary obstructive diseases before and after treatment with balloon an-
gioplasty or with intravascular stents. It soon became evident that the early de-
vices were not particularly well-suited for clinical work.

Indirect (non-invasive) blood pressure devices were developed to satisfy the
clinical need for systolic blood pressure measurements in humans. The first
sphygmomanometer is attributed to Vierordt [12]. Herisson [13] performed the
first indirect measurement of blood pressure in humans. The sphygmoman-
ometer used a mercury reservoir covered with a rubber membrane from which a
glass column arose. The mercury container was pressed against the radial artery
until the oscillations of the mercury column stopped. This point was taken as the
systolic pressure level. Inspired by Vierordt and Herisson, many physiologists de-
signed blood-pressure sensing devices in the middle and end of the nineteenth
century.

A breakthrough in blood pressure sensors came 1896 when Riva-Rocci [14] pre-
sented a new device utilizing an inflatable rubber bladder enclosed in leather, sur-
rounding the upper arm: the modern sphygmomanometer. The pressure in the
cuff was increased until the palpated pulse in the radial artery disappeared.

A second milestone in the development of indirect blood pressure measure-
ment was the discovery by a Russian surgeon Korotkov in 1905 [15]. He discov-
ered that if one increased the pressure in the Riva-Rocci cuff to above systolic
pressure levels and then slowly decreased the cuff pressure while listening to the
sounds from the artery one could associate the sound characteristics with the cor-
responding pressure levels in the vessel. As long as the cuff pressure exceeds the
arterial pressures no sounds are generated. However, when cuff pressure is de-
creased below systolic pressure and remains above diastolic pressure, the pressure
levels correspond to unique changes in the sound from the vessel.

Korotkov’s discovery had, and still has, an enormous influence on the quality of
non-invasive blood pressure recordings. His method is still frequently used in rou-
tine health care, with only small technical improvements. The discoveries of Riva-
Rocci and Korotkov are the basis of today’s computerized automatic blood-pres-
sure sensors and monitors.

1.1.3
Electrophysiology and Einthoven’s Galvanometer

Animals are electrically activated. Animal cells generate electrical activity when
they process information or contract. They can be stimulated electrically as well.
The history of electrophysiology is long, and guided by distinguished physicians,
physiologists, physicists, chemists, and engineers. One interesting story of many
is that Volta, having known of Galvani’s experiments with the stimulation of

1.1 Historical Breakthroughs in Medical Sensing Science 3



nerve, placed an electrode in each ear and detected ‘sound . . . like the bubbling of
a viscid fluid . . .’ [16]. The recognition that cellular activity was coupled to electri-
cal signals and that electrical stimulation could excite cells launched the study of
electrophysiology.

Electrophysiology has spawned the diagnostic measurement of biopotentials.
The most common potential measured is that produced by the heart, the electro-
cardiogram (ECG), and followed in the clinic by the measurement of the signals
that are produced by the brain, the electroencephalogram (EEG), and those pro-
duced by somatic muscles, the electromyogram (EMG). The three biopotentials
will be discussed in reverse order, since the ECG will be covered in more detail
than will the EEG and EMG.

The EMG can be recorded either from the surface or from within muscle tis-
sue. The magnitude of the signal is a nonlinear function of the force exerted by
the muscle, but is a linear function of the number of fibers that are recruited to
exert that force. Surface recordings produce signals from large volumes of tissue.
Indeed, the signals are produced by volumes that are too large for clear interpreta-
tion. Intramuscular recordings can be focused on small groups of muscle units
and trade patient discomfort for desired detail [17]. The interpretation of the EMG
is still an active topic of research [18].

Hans Berger, a German psychiatrist, announced publicly that he could record tiny
electric signals from the brain, using external monitoring techniques. His recordings
were remarkable considering that they were made in the late 1920s, before the advent
of modern electronic instrumentation [19]. While Berger’s discovery showed that the
general state of the brain could be assessed, it was left to British scientist, W.G. Wal-
ter, to demonstrate the diagnostic value of the measurement of the electroencepha-
logram (EEG). Walter’s contribution was one of instrument development, in which
he employed a larger number of smaller electrodes than did Berger, and was able to
use them to focus on activity in specific regions of the brain [1, 19].

Walter’s instrument deserves brief description: he employed 22 cathode ray tubes
each connected to a pair of electrodes, to record the activities of different locations
within the brain. The display was photographed to develop a snapshot of activity
at a particular instant of time [19]. The story shows that innovative instrumentation
comes in several eras and from physicians, such as Walter, who have backgrounds in
engineering and a keen interest in detailed diagnosis and specific therapy.

The ECG has a long pedigree. In 1842, Carlo Matteucci demonstrated that elec-
tric current accompanies each heart beat [20]. The phenomenon remained a labo-
ratory curiosity until the development of the capillary electrometer in 1872. Using
a similar technique, Augustus Waller published the first human electrocardiogram
in 1887 [20]. In 1889, Willem Einthoven defined the term ‘electrocardiogram’ for
the surface potential field that is produced by the heart. Despite being credited for
that definition, Einthoven attributed it to Waller [20]. Work continued with the
capillary galvanometer, a device that required tedious mathematical correction to
produce a faithful recording of the ECG, until 1902, when Einthoven employed
the string galvanometer, a device initially developed by Clement Ader to assess the
signals carried by undersea telegraph lines [20].
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