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1 Introduction

Susanne Brakmann and Andreas Schwienhorst

Since the landmark papers of Manfred Eigen [1, 2] and Sol Spiegelman [3, 4],
the concept of Darwinian evolution has had a major impact on the design of
biomolecules with tailored properties. ‘Directed evolution’, ‘applied evolution’, and
‘evolutionary biotechnology’ are different expressions that all describe an ‘evolu-
tionary’ type of optimization strategy that comprises several cycles each consisting
of (1) molecular library preparation to create the desired molecular diversity, (2)
functional selection or screening, and (3) error-prone amplification or chemical
modification of selected species to generate a new library of molecules (Fig.1.1).
The ultimate goal is to identify molecular species that are well-adapted to a given
profile of defined demands. Biocatalysts, for example, may be generated to exhibit
high processivity, enantioselectivity, or tolerance to high temperatures or organic
solvents.

The book presented here is intended as a practical state-of-the-art compilation of
methods related to the topic of directed evolution and hence is complementary to the
recent successful book Directed Molecular Evolution of Proteins [5]. The methods
are described in sufficient detail to serve as ‘recipes’ in a ‘cookbook’. They are
easy to follow by laboratory staff, from the technical assistant to the postdoctoral
academic or industrial specialist.

The sequence of chapters mirrors the steps in a standard directed-evolution ex-
periment. In the beginning, various methods for the creation of molecular diversity
are considered. S. Brakmann and B.F. Lindemann (Chapter 2) present protocols
for the generation of mutant libraries by random mutagenesis. Two chapters deal
with the particularly powerful approach of in-vitro recombination. H. Suenaga, M.
Goto, and K. Furukawa (Chapter 3) describe the application of DNA shuffling, and
M. Ninkovic (Chapter 4) presents DNA recombination by the StEP method.

Next, several chapters are concerned with techniques of selection and/or mass
screening technologies. T. Adams, H.-U. Schmoldt, and H. Kolmar (Chapter 5)
describe the FACS-based screening of combinatorial peptide and protein libraries.
P. Soumillion (Chapter 6) presents some of the latest developments in the selection
of phage-displayed enzymes. In Chapter 7, H. Fickert, H. Betat, and U. Hahn
provide methods for the selection of specific target-binding nucleic acids, i.e.,
aptamers. Related methods for the generation of catalytic nucleic acids are described
by B.L. Holley and B.E. Eaton (Chapter 8). The part on functional selection and
screening closes with a description of high-throughput screening approaches, in
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Fig. 1.1. Scheme of directed evolution. Starting from a pool of mutant genes, single clones are
expressed and their phenotype is evaluated in a selection or screening step. Clones with desired
phenotypes provide genes that are the basis for the subsequent cycle of selection.

particular, to produce enantioselective industrial biocatalysts, provided by M.T.
Reetz (Chapter 9).

Combinatorial mutagenesis easily produces a degree of molecular diversity that
far exceeds the number of different proteins or functional nucleic acids that can
be produced in a single experiment. As the number n of randomized amino acid
positions in a protein grows, the number of possible combinations increases as 20”.
Hence, complete coverage of a library with 9 randomized positions requires a li-
brary size well above 10!'! molecules. Since in a standard random library, functional
molecules are usually highly diluted in a large background of nonfunctional, e. g.,
misfolded, molecules, it may be meaningful to restrict variations to a certain subset
of promising molecules. Three chapters deal with theoretical computer-based meth-
ods to predict these promising molecular species. D. Tomandl and A. Schwienhorst
(Chapter 10) report a ‘doping’ algorithm that helps to design random codons for
only subsets of amino acids, at the same time minimizing stop codons. M. Wieder-
stein, P. Lackner, F. Kienberger, and M.J. Sippl (Chapter 11) provide algorithms to
predict (mutant) protein structures as a means of in silico mutagenesis, e. g., to en-
hance the probability of generating properly folded mutant proteins. C. Flamm, L.L.
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Hofacker, and P.F. Stadler (Chapter 12) pursue a similar goal concerning functional
nucleic acids and provide various in silico tools to predict RNA folding.

In the past 10 years, directed evolution has gained considerable attention as a
commercially important strategy for rapidly designing molecules with properties
tailored for the biotechnological and pharmaceutical market. Therefore, legal pro-
tection of methods and molecules has become an important issue. Hence, the book
closes with Chapter 13, by M. Leimkiihler and H.-W. Meyers on patenting issues in
evolutionary biotechnology.

Since the first evolution experiments by Sol Spiegelman, Manfred Eigen, and
coworkers, the field of directed evolution itself has evolved into a plethora of dif-
ferent methodologies that can hardly be covered comprehensively in a standard
textbook. We nevertheless tried to provide a collection of protocols useful to the
novice as well as to the scientist experienced in the field. We hope to provide a
practical starting point and at the same time inspire scientists to develop their own
variations on the evolutionary theme.

We thank all the authors for their contributions, and Peter Golitz and Frank
Weinreich of Wiley-VCH for their help in publishing this book.
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217-224.

5. Brakmann, S., Johnsson, K., eds. Directed Molecular Evolution of Proteins: or How to
Improve Enzymes for Biocatalysis, Wiley-VCH, Weinheim, 2002.






2 Generation of Mutant Libraries
Using Random Mutagenesis

Susanne Brakmann and Bjorn F. Lindemann

2.1 Introduction

Engineering enzymes by applying directed evolution strategies involves the gener-
ation of molecular libraries that are as large and as diverse as possible. However,
mutant libraries of enzymes, which usually consist of more than 100 amino acids,
are inaccessible by automatic chemical synthesis. These are better available by mu-
tagenesis at the nucleotide level. During the past decade, a series of experimental
strategies has been developed for generating DNA mutant libraries that differ in
diversity, that is, in the extent of sequence space covered, and in their way to deal
with complex libraries.

Random mutagenesis is a widespread strategy which targets whole genes. This
may be achieved by passing cloned genes through mutator strains [1,2], by treating
DNA or whole bacteria with various chemical mutagens [3—6], or by “error—prone”
[7, 8] or “hypermutagenic” PCR [9]. Due to its simplicity and versatility, random
PCR mutagenesis has emerged as the most common technique and can result in
mutation frequencies as high as 10% per nucleotide position. The incorporation of
nucleotide analogs that promote base pair mismatching during PCR has even been
found to cause overall mutation frequencies of up to 19% per position and PCR
[10]. With alterations of some PCR conditions, the mutation rate may be adjusted to
the appropriate level (see Table 2.2). Usually, a maximal number of mutants (and no
wildtype) is required, of which as many variants as possible should be active. For
example, catalytically active variants of enzymes like HIV reverse transcriptase,
Taq polymerase, or HSV-1 thymidine kinase almost never contain more than five
amino acid substitutions [11]. We should also mention that the number of amino
acid substitutions accessible by error—prone PCR is limited, because on the one
hand, the reaction may bias the distribution of mutation type (depending on the
sequence), and on the other hand, multiple substitutions within a single codon are
extremely rare.

Alternative random mutagenesis strategies have been developed for targeting
single or a few amino acids or selected regions of a protein that might be impor-
tant for a certain function. By focusing on only the positions of interest and their
close environment or by reducing the set of amino acids per randomized position
(see Chapter 10 by Tomandl), the library size can be drastically reduced. Typically,
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randomization of small gene fragments is achieved by substituting a wildtype gene
fragment with a synthetic oligonucleotide which contains random positions or re-
gions (random cassettes [12, 13]) or semi-random ranges (spiked oligonucleotides
[14]). Randomization of defined positions or regions is achieved with automatic
solid-phase DNA synthesis, by programming the desired International Union of
Biochemistry (IUB) mix codes. The introduction of stop codons can be reduced
by allowing only G and C (IUB mix code: S) at the third position of each codon.
Complete permutation of a single amino acid position may thus enable finding
nonconservative replacements that are inaccessible by random point mutagene-
sis.

In this chapter, two approaches are described for the introduction of random
point mutations into whole genes: (1) PCR mutagenesis and (2) mutator strain
passage. Both procedures involve the cloning of target genes into custom plas-
mid vectors ready for the functional expression of enzyme variants. Alternatively,
mutant gene libraries may be expressed by using commercially available in vitro
transcription/translation systems. However, this topic is not discussed here.

2.2 Materials

2.2.1 Materials for Random PCR Mutagenesis

—_—

. Template DNA encoding the gene of interest.

. Oligonucleotide primers containing the desired restriction sites for cloning.

. Expression vector with suitable promotor, multiple cloning site, and fusion tag,
where applicable (e.g., six-histidine tag).

. Tag DNA polymerase and buffer.

. Deoxynucleoside triphosphates (10 mM each).

. MnCl; (100 mM).

. MgCl, (100 mM).

. PCR and gel purification (spin) kit.

. Agarose gel electrophoresis equipment.

. Restriction endonucleases, alkaline phosphatase, T4 DNA ligase.

. Competent E. coli cells (high quality is required; > 10° transformants/pg su-
percoiled DNA).

. Luria Bertani (LB) media and appropriate antibiotic.
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2.2.2 Materials for Mutator Strain Passage

1. Plasmid vector encoding the target gene in a genetic context ready for expression
in E. coli.
2. Mutator strain: XL1-Red (mutD, mutS, mutT; Stratagene).
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3. Plasmid preparation (spin) kit.
4. Amplification strain: XL1-Blue (Stratagene).
5. LB media and appropriate antibiotic.

2.3 Protocols

2.3.1 Protocol for Random PCR Mutagenesis According to Joyce

A series of parameters is used to substantially increase the overall error frequency of
Taq DNA polymerase. This enzyme lacks 3’-5’ exonuclease activity and exhibits an
error rate of 0.8—1.1 x 10~* base substitutions/bp of product under standard condi-
tions [15, 16]. The mutagenic PCR conditions include (1) increased Mg?* concen-
tration for stabilizing noncomplementary base pairs [17], (2) the addition of Mn*
for reducing the base pairing specificity [18], (3) unbalanced dNTP stoichiometry
for forcing misincorporation [7], and (4) increased polymerase concentration for
enhancing the probability of elongation of misprimed termini [19]. The protocol
below largely follows the procedure originally conceived by G. Joyce [8,20]:

1. Prepare a 10X dNTP mix consisting of 2 mM each of dATP and dGTP and
10 mM each of dCTP and dTTP.

2. Setup a PCR reaction starting with 0.05-0.2 pmol of template DNA, 50 pmol of
each primer, 10 uL. 10X PCR buffer, 10 uL. 10X dNTP mix, 0.5 mM MnCl,, 5 U
Tag DNA polymerase, and water to a final volume of 100 pL. The manganese
solution should be added just prior to the polymerase (see section 2.4, note 1).

3. Perform PCR cycling following the standard conditions for this template/primer
system.

4. Analyze 5 pL of the reaction on an 0.8 % agarose gel (see section 2.4, notes 2—4).

Usually, the yield of an error-prone PCR reaction is lower than that of a standard

PCR; however, one 100 uL reaction will yield &~ 1-2 ug of crude PCR product

(10'°-10"" molecules). For efficient cloning, 2—-5 100-uL reactions should be

prepared.

Purify the product using a PCR purification (spin) kit.

6. Digest PCR product and vector according to standard protocols [21]. Dephos-
phorylate the vector using alkaline phosphatase and purify the DNA by agarose
gel electrophoresis.

7. Ligate vector and insert, applying at least 3-fold molar excess of the insert (PCR
product).

8. Transform competent E. coli according to the supplier’s manual and cultivate
in LB media (plates or liquid cultures, depending on the selection/screening
approach; see section 2.4, note 5).

e

Using DNA fragments of various origins, nucleotide compositions, and lengths
(maximum of & 3 kb), we observed mutation frequencies of 0.93 £ 0.06% per



