Edmund Bäuerlein (Ed.)

Biomineralization From Biology to Biotechnology and Medical Application

Second, Completely Revised and Extended Edition

WILEY-VCH Verlag GmbH & Co. KGaA

E. Bäuerlein (Ed.)

Biomineralization

Second, Completely Revised and Extended Edition

Also of Interest

Niemeyer, C. M., Mirkin, C. A. (Eds.)

Nanobiotechnology Concepts, Applications and Perspectives 2004, ISBN 3-527-30658-7

Ajayan, P. M., Schadler, L. S., Braun, P. V.

Nanocomposite Science and Technology 2003, ISBN 3-527-30359-6

Willner, I., Katz, E. (Eds.)

Bioelectronics From Theory to Applications 2004. ISBN 3-527-30690-0

Minuth, W. W., Strehl, R., Schumacher, K.

Tissue Engineering From Cell Biology to Artificial Organs 2005, ISBN 3-527-31186-6 Edmund Bäuerlein (Ed.)

Biomineralization From Biology to Biotechnology and Medical Application

Second, Completely Revised and Extended Edition

WILEY-VCH Verlag GmbH & Co. KGaA

Prof. (em.) Dr. Edmund Bäuerlein Max-Planck-Institute of Biochemistry Dept. of Membrane Biochemistry Am Klopferspitz 18 A 82152 Martinsried Germany

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editor, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Cover Illustration (Designed by Felix Bäuerlein):

Top left: Elongated prismatic magnetite crystals in membrane vesicles of a magnetic bacterium (D. Schüler, Chap. 4, p. 62).

Top right: Calcein-stained calcified skeletal structures in the caudal fin of zebrafish larvae (S. J. Du, Y. Haga, Chap. 17, p. 296).

Bottom left: From aragonite to calcite. The change of shape from "ear-stone" through star-like aragonite to pur calcite crystals in a down-regulation of the starmaker protein in the zebrafish (C. Söllner, T. Nicolson, Chap. 14, p. 236).

Bottom right: A micromechanical method to study stability of diatoms (C. Hamm, R. Merkel, Chap. 18, p. 322).

Library of Congress Card No.: applied for

A catalogue record for this book is available from the British Library.

Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.db.de

First Edition 2000 Second, Completely Revised and Extended Edition 2004

© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany. Printed on acid-free paper.

TypesettingAsco Typesetters, Hong KongPrintingbetz-druck gmbh, DarmstadtBookbindingLitges & Dopf Buchbinderei GmbH, Heppenheim

ISBN 3-527-31065-7

This book is dedicated to

my wife Cornelia

for her permanent encouragement and editorial support also for this 2. edition and to

my daughter Henrike and my son Felix

for their indefatigable cooperation in difficult computer work

Foreword

The term biomineralization summarizes the natural processes by which living organisms form materials from bioorganic molecules and inorganic solids. This is a fascinating topic, uniting the living and the (not always really) dead world surrounding us. In fact, all of us have a direct relation to biomineralization, as we are "biomineralisateurs" – producing each day crystals of a calcium phosphate (apatite), embedded in an organic matrix (mostly collagen), as part of the formation of bone material. These crystals are mere nanometers in size and are arranged in a well-defined hierarchical structure, so that any of us may be rightly called a bionano-engineer (a feat that might prove useful in grant applications).

The field of biomineralization not only connects the living and the mineral world, but also brings together scientists from very diverging fields, ranging from geology, mineralogy and crystallography via chemistry and biochemistry to biology and medicine, as well as, possibly, biotechnology. Whereas research in this field was dominated by a mostly descriptive approach throughout much of the last century, the last ten to twenty years have witnessed an increasingly profound scientific understanding of the formation mechanisms of biominerals. This progress has been fuelled by the application of modern molecular biology methods and the advent of novel solid-state analytical techniques, but, most significantly, by their mutual interaction. From the point of view of biology, the ability of an organism to form an inorganic solid material is a special feature that provides evolutionary advantages, and thus certainly deserves elaborate biochemical and molecular-biological studies. The growing interest among solid-state chemists and materials scientists lies in the processes by which the often complex and intricate hierarchical architectures of biominerals can be formed under conditions, which are incredibly mild, compared to the usual techniques of preparative solid-state chemistry. This is combined with a common general interest in the structures and processes occurring at the interfaces between organic matter (not necessarily of biological origin) and inorganic solids which are of utmost importance in many topical regimes of modern science (for example, in heterogeneous catalysis, organic-inorganic hybrid materials, biomaterials or in the attachment of cells to electronic devices). The idea of using synthesis methods taken from nature in order to generate materials with superior properties leads to bio-inspired preparation procedures (which take some key elements from biomineralization, for example the templating action of bioorganic polymers during precipitation of a solid) or bio-mimetic syntheses (which try to fully exploit the mechanisms active in biomineral formation and which may thus also provide an insight into the natural processes themselves). Finally, if organisms could be convinced by genetic engineering to produce certain materials with selected properties, the biotechnological production of high-tech materials might become feasible.

The importance of biomineralization and its possible applications has recently been reflected in the set-up of dedicated research programs, such as the establishment of an Institute for Biologically Inspired Materials by NASA in the United States. In Germany, research on the "Principles of Biomineralization" has been focused on the priority research program of the Deutsche Forschungsgemeinschaft.

Of course, another clear indicator of the topical nature of this field is this volume and the great success of its predecessor. Within only four years, it has become necessary to publish a sequel, and as opposed to movies, in science sequels usually represent true progress. Many chapters are new (in that they were not part of the first edition) or novel (in that they have been totally rewritten by the authors) and most of the others have been thoroughly reviewed, a stringent necessity in view of the current progress in the field. Edmund Baeuerlein, as a *professor emeritus* now (mostly) freed from his time-consuming research work at the bench and the burden of administration, has devoted a lot of time and much effort to make this volume not only a compendium of the latest research results but also a valuable introduction for newcomers to this field. He did this by careful selecting the contributions and authors and by rigorous editing.

My wish is that this book will be at least as successful as its predecessor. May the research results and ideas compiled here enlighten the reader.

Peter Behrens

Professor of Inorganic Chemistry at the University of Hanover, Germany Coordinator of the DFG-Schwerpunktsprogramm 1117 "Prinzipien der Biomineralisation"

Contents

	Preface	cvii
	List of Contributors	xix
	Abbreviations x	xiii
1	Peptides, Pre-biotic Selection and Pre-biotic Vesicles	1
1.1	Peptides as Templates for Inorganic Nanoparticles: From Functional Groups to "Peptide Group Selectivity"	1
1.1.1	A Phage Display Peptide Library in "Regular Panning" for Mineral Binding and Synthesizing Peptides	1
1.1.2	A Phage Display Peptide Library in "PCR Panning" for Mineral Binding and Synthesizing Peptides	6
1.2	Hypothesis of "Pre-biotic Peptide Synthesis and Selection on Minerals"	12
121	Pre-biotic Vesicles for Protection and Mobility	12
1.2.2	How do Pores Originate?	13
	References	14
	Magnetite (Fe ₃ O ₄) and Greigite (Fe ₃ S ₄)	15
2	Magnetic Iron Oxide and Iron Sulfide Minerals within	
	Microorganisms: Potential Biomarkers Dennis A. Bazylinski and Richard B. Frankel	17
2.1	Introduction	17
2.2	Diversity of Magnetotactic Bacteria	18
2.3	Ecology of Magnetotactic Bacteria	18
2.4	Magnetite Magnetosomes	21
2.5	Greigite Magnetosomes	25
2.6	Arrangement of Magnetosomes in Cells	27
2.7	Role of Magnetosomes and Magnetosome Chains in	
	Magnetotaxis	29
2.8	Chemistry of Magnetosome Formation	30
2.9	Other Intracellular Iron Oxides and Sulfides in Bacteria	32

2.10	Magnetic Iron Oxides and Sulfides in Microorganisms other than	22
2.11	Bacteria Biogenic Iron Oxides and Sulfides in Modern and Ancient Environments, their Presence in Higher Organisms, and their Use	33
	as Biomarkers	35
2 11 1	Magnetosomes as Biomarkers for Life on Ancient Mars	35
2.11.1	The Biogenic Hypothesis	38
2.11.2	The Non-biogenic Hypothesis	30
2.11.3 2.11.4	Iron Isotonic Fractionation	30
2.11.4	A cknowledgments	10
	References	40
3	Phylogeny and <i>In Situ</i> Identification of Magnetotactic Bacteria	45
	Rudolf Amann. Ramon Rossello-Mora. Christine Flies and	
	Dirk Schüler	
3.1	Microbial Diversity and the Problem of Culturability	45
3.2	The rRNA Approach to Microbial Ecology and Evolution	45
3.3	Application of the rRNA Approach to Magnetotactic Bacteria	47
34	The Genus <i>Magnetospirillum</i> Encompassing Culturable	• •
5.1	Magnetotactic Bacteria	47
35	Phylogenetic Diversity and <i>In Situ</i> Identification of Uncultured	• /
5.0	Magnetotactic Cocci from Lake Chiemsee	49
36	The Magnetotactic Bacteria are Polyphyletic with Respect to	12
5.0	their 16S rRNA	50
37	"Maanetohacterium havaricum"	51
3.8	Further Diversity of Magnetotactic Bacteria	53
39	A Current View of the Phylogeny of Magnetotactic Bacteria	56
5.5	Acknowledgments	59
	References	59
4	Biochemical and Genetic Analysis of the Magnetosome Membrane	
	in Magnetospirillum gryphiswaldense	61
	Dirk Schüler	
4.1	Introduction	61
4.2	The Biomineralization of Magnetite in MTB	61
4.3	The MM is a Unique Structure in MTB	62
4.4	Biochemical Analysis of the MM in <i>M. grvphiswaldense</i>	64
4.5	Proteomic Analysis of Magnetosomes	66
4.5.1	Tetratricopeptide Repeat (TPR) Proteins	66
4.5.2	Cation Diffusion Facilitator (CDF) Proteins	66
4.5.3	HtrA-like Serine Proteases	67
4.5.4	MTB-specific Protein Families	68
4.6	Genetic Organization of Magnetosome Genes	69
4.7	Conclusions and Outlook	71

	Acknowledgments	72
	References	72
5	Enzymes for Magnetite Synthesis in Magnetospirillum	
	magnetotacticum	75
	Yoshihiro Fukumori	
5.1	Introduction	75
5.2	Ferric Iron Reduction in <i>M. magnetotacticum</i>	77
5.2.1	Localization and Purification of Iron Reductase from	
	<i>M. magnetotacticum</i>	77
5.2.2	Characterization of <i>M. magnetotacticum</i> Ferric Iron Reductase	78
5.2.3	Function of Ferric Iron Reductase in <i>M. magnetotacticum</i>	79
5.3	Ferrous Iron Oxidation in <i>M. magnetotacticum</i>	80
5.3.1	Purification of <i>M. magnetotacticum</i> Cytochrome <i>cd</i> ₁	82
5.3.2	Spectral Properties and Molecular Features of	
	\dot{M} . magnetotacticum Cytochrome cd_1	82
5.3.3	Enzymatic Properties and Function of <i>M. magnetotacticum</i>	
	Cytochrome cd_1	82
5.4	Nitrate Reductase of <i>M. magnetotacticum</i> MS-1	84
5.5	Structure and Function of the 22 kDa Protein Localized in the	
	Magnetosome Membrane	85
5.6	Proposed Mechanism of Magnetite Synthesis in	
	<i>M. maanetotacticum</i>	86
	References	89
6	Molecular and Biotechnological Aspects of Bacterial Magnetite	91
	Tadashi Matsunaga, Toshifumi Sakaguchi and Yoshiko Okamura	
6.1	Introduction	91
6.2	Isolation and Cultivation of Magnetic Bacteria	91
6.2.1	Pure Cultivation of Magnetic Bacteria	91
6.2.2	Obligately Anaerobic Magnetic Bacteria	94
6.2.3	Mass Cultivation of Magnetic Bacteria	94
6.3	Iron Uptake in <i>M. magneticum</i> AMB-1	96
6.4	Genetic Analysis in <i>M. magneticum</i> AMB-1	97
6.4.1	Inca The new entern March	
6.4.2	Iron Transporter MagA	97
	Aldehyde Ferredoxin Oxidoreductase (AOR)	97 98
6.5	Iron Transporter MagA Aldehyde Ferredoxin Oxidoreductase (AOR) Protein Analysis in <i>M. magneticum</i> AMB-1	97 98 98
6.5 6.5.1	Iron Transporter MagA Aldehyde Ferredoxin Oxidoreductase (AOR) Protein Analysis in <i>M. magneticum</i> AMB-1 Magnetosome-specific GTPase Mms16	97 98 98 98
6.5 6.5.1 6.5.2	Iron Transporter MagA Aldehyde Ferredoxin Oxidoreductase (AOR) Protein Analysis in <i>M. magneticum</i> AMB-1 Magnetosome-specific GTPase Mms16 Tightly Bound Protein to Magnetite Crystal, Mms6	97 98 98 98 98 99
6.5 6.5.1 6.5.2 6.6	Iron Transporter MagA Aldehyde Ferredoxin Oxidoreductase (AOR) Protein Analysis in <i>M. magneticum</i> AMB-1 Magnetosome-specific GTPase Mms16 Tightly Bound Protein to Magnetite Crystal, Mms6 Hypothesis of a Molecular Mechanism of Magnetosome	97 98 98 98 98
6.5 6.5.1 6.5.2 6.6	Iron Transporter MagAAldehyde Ferredoxin Oxidoreductase (AOR)Protein Analysis in <i>M. magneticum</i> AMB-1Magnetosome-specific GTPase Mms16Tightly Bound Protein to Magnetite Crystal, Mms6Hypothesis of a Molecular Mechanism of MagnetosomeFormation	97 98 98 98 99 100
6.5 6.5.1 6.5.2 6.6 6.7	Aldehyde Ferredoxin Oxidoreductase (AOR)Protein Analysis in <i>M. magneticum</i> AMB-1Magnetosome-specific GTPase Mms16Tightly Bound Protein to Magnetite Crystal, Mms6Hypothesis of a Molecular Mechanism of MagnetosomeFormationApplications of Bacterial Magnetite	97 98 98 98 99 100
6.5 6.5.1 6.5.2 6.6 6.7 6.7.1	Iron Transporter MagA Aldehyde Ferredoxin Oxidoreductase (AOR) Protein Analysis in <i>M. magneticum</i> AMB-1 Magnetosome-specific GTPase Mms16 Tightly Bound Protein to Magnetite Crystal, Mms6 Hypothesis of a Molecular Mechanism of Magnetosome Formation Applications of Bacterial Magnetite Magnetic Carriers for Immobilization of Molecules	97 98 98 98 99 100 101 101
6.5 6.5.1 6.5.2 6.6 6.7 6.7.1 6.7.2	Iron Transporter MagAAldehyde Ferredoxin Oxidoreductase (AOR)Protein Analysis in <i>M. magneticum</i> AMB-1Magnetosome-specific GTPase Mms16Tightly Bound Protein to Magnetite Crystal, Mms6Hypothesis of a Molecular Mechanism of MagnetosomeFormationApplications of Bacterial MagnetiteMagnetic Carriers for Immobilization of MoleculesHigh-throughput Genotyping using BMPs	97 98 98 99 100 101 101 102

6.7.4	Fully Automated Immunoassay using Protein A–BMPs	103 104
7	Biogenic Magnetite as a Basis for Geomagnetic Field Perception	
	in Animals	107
	Michael Winklhofer	
7.1	Introduction	107
7.2	Facts and Hypotheses about Magnetoreception	107
7.2.1	Behavioral Evidence of Geomagnetic Field Sensitivity in Animals.	107
7.2.2	A Biochemical Compass Mechanism	109
7.2.3	The Magnetite Hypothesis	110
7.3	The Case for a Magnetoreceptor in Homing Pigeons	111
7.3.1	A New Methodological Approach to an Old Problem	112
7.3.2	Interpretation in Terms of a Magnetoreceptor	114
7.3.3	Likely Mechanisms to Transduce a Magnetic Stimulus into a	
	Nervous Signal	114
7.4	Discussion and Open Ouestions	115
7.5	Conclusions	117
, 10	References	117
8	Iron-oxo Clusters and the Onset of Biomineralization on	
	Protein Surfaces – Lessons from an Archaeal Ferritin	119
	LO. Essen, S. Offermann, D. Oesterhelt and K. Zeth	
8.1	Introduction	119
8.2	General Functional Properties of Dps-like Ferritins	120
8.3	General Structural Properties of Dps-like Ferritins	122
8.4	Structural Aspects of a Dps-like Protein from a Halophilic	100
0.4.1	Archaeon	123
8.4.1	The FOC	124
8.4.2		127
8.4.3	The Nucleation Sites and Nanocluster Formation	12/
8.5	Biomineralization in 24-meric Ferritins	129
8.6	Ferrihydrite Formation in Ferritin and Ferritin-like Dps	1.00
	Proteins – A Masterplan for Biomineralization?	130
	References	132
	Silica-hydrated SiO ₂	135
9	The Molecular Basis of Diatom Biosilica Formation	137
	Nils Kröger and Manfred Sumper	
9.1	Introduction	137
9.2	The Diatom Cell Wall	138
9.3	Diatom Cell Wall Biogenesis	139
9.3.1	The SDV	139
9.3.2	Silicic Acid Accumulation	141
9.3.3	Silica Deposition	142

xii Contents

9.3.4	Silica Chemistry	142
9.4	Diatom Biosilica-associated Organic Components	144
9.4.1	Chemical Structures of Silaffins and LCPA	145
9.4.2	Silica Formation Activity of natSil-1A	150
9.4.3	Silica Formation by LCPA	152
9.5	Model for LCPA-mediated Morphogenesis of Biosilica	
	Nanopatterns	153
9.6	Silaffin-mediated Silica Morphogenesis	154
	Acknowledgments	156
	References	157
10	Silicia Acid Transport and its Control During Coll Wall	
10	Silicification in Diatoms	150
	Mark Hildobrand	157
10.1	Introduction	150
10.1	Overall Considerations for Silicia Acid Transport During Diatom	139
10.2	Cell Wall Synthesis	160
10.3	The Solution Chemistry of Silicon	160
10.5	Characterization of Distom Silicia Acid Transport	162
10.4	Molocular Characterization of the Silicia Acid Transport System	162
10.5	Intracellular Silicon Dools	165
10.0	The Paletionship of Intracellular Pools and Incorporation to	100
10.7	Untake	168
10.8	Intracellular Transport of Silicon	170
10.8	Transport into the Silica Deposition Vesicle	170
10.9	Summary	172
10.10	A cknowledgments	174
	References	174
	Kelefences	1/4
11	The Nanostructure and Development of Diatom Biosilica	177
	Richard Wetherbee, Simon Crawford and Paul Mulvaney	
11.1	Introduction	177
11.2	General Features of the Diatom "Glass House"	177
11.3	The Chemistry of Biosilica Formation	178
11.3.1	Parameters Affecting Silicon and Silicification	179
11.3.2	Hypothetical Effects of Chelating Agents on Silica Deposition	182
11.3.3	Silica Chemistry in Seawater	184
11.4	Silica Uptake by Diatoms	184
11.5	Nanostructure of Diatom Biosilica	185
11.6	Development of Diatom Biosilica within a Confined Space – Silica	
	Deposition Vesicles (SDVs)	188
11.7	Transport of Silica to the SDV	190
11.8	Micromorphogenesis and an Organic Matrix?	192
11.9	Conclusions	192
	Acknowledgments	193
	References	193

	Calciumcarbonates	195
12	Biomineralization in Coccolithophores	197
	Mary E. Marsh	
12.1	Introduction	197
12.2	Heterococcolith-bearing Morphotypes	199
12.2.1	Coccolith Structure	199
12.2.2	Heterococcolith Formation	200
12.2.2.1	Ion Accumulation	200
12.2.2.2	Calcite Nucleation	204
12.2.2.3	Crystal Growth	205
12.3	Non-calcifying Morphotypes	208
12.3.1	Pleurochrysis	208
12.3.2	Emiliania	208
12.4	Holococcolith-bearing Morphotypes	209
12.5	Coccolithophore Calcification and the Ocean Carbon Cycle	211
12.6	Future Prospects	212
	Acknowledgments	213
	References	213
		-10
13	The Proton Pump of the Calcifying Vesicle of the Coccolithophore.	
	Pleurochrvsis	217
	Elma L. González	,
13.1	Introduction	217
13.2	The Coccolith Vesicle	218
13.3	The V-ATPase Enzyme Complex and Immunolocalization	218
13.4	Proton Transport	219
13.5	Conditions for Expression of Subunit <i>c</i>	222
13.6	Calcification and Photosynthesis	225
13.7	Carbonic Anhydrase	225
13.8	Is there a Connection between Calcification and Stress?	226
13.0	Summary	220
15.7	A cknowledgments	227
	Pafaranças	227
	Kelefences	221
14	The Zebrafish as a Genetic Model to Study Otolith Formation	229
	<i>C. Söllner and T. Nicolson</i>	/
14 1	Introduction	229
14.2	Otoliths and Otoconia	229
14.3	Characterization of Otolith Development in Wild-type Zebrafish	231
14.5	Zebrafish Mutants with Defects in Otolith Formation	234
14.4	Zebrafish Genes Having a Direct Role in Otolith Formation	234
1/1.5	Proteins Reported to be Associated with Otoliths or Otoconia	233
14.7	Conclusions	239
14./	Aaknowladgmanta	240
	Pateranaas	241
		Z.4 I

Contents	XV
Comenis	A V

	Calciumphosphates	243
15	Lot's Wife's Problem Revisited: How We Prevent Pathological	
	Calcification	245
	Willi Jahnen-Dechent	
15.1	A Short History of Calcification Inhibition	245
15.2	Osteogenesis and Bone Mineralization versus Calcification	247
15.3	Calcification Disease	250
15.4	Regulation of Calcification	250
15.5	α_2 -HS Glycoprotein/Fetuin-A is a Systemic Inhibitor of Unwanted	
	Calcification	257
15.6	How does Inhibition of Calcification Work?	260
15.7	What Happens to the CPPs?	261
	References	263
16	Aspects of Dentinogenesis: A Model for Biomineralization	269
10	Katharing Reichenmiller and Christian Klein	207
16.1	Introduction	269
16.2	Basic Odontogenesis	269
16.3	Dentinogenesis	271
16.4	Pre-conditions for Dentinogenesis as Model for Biomineralization	271
10.1	Processes	275
16.5	Methods and Results	275
	Acknowledgments	280
	References	281
17	The Zebrafish as a Model for Studying Skeletal Development	283
171	Shao Jun Du ana Tutaka Haga Introduction	202
17.1	Skalatan Davalanment and Patterning in Vertahrates	203
17.2	Zahrafish as a Model for Studying Skeletel Development	203
17.5	Mathada for Visualizing Donos in Zahrafish	204
17.4	Rona Davalopment in Zahrafish Embryos	205
17.5	Development of the Head Skeleton	280
17.5.1	Jaw and Branchial Arch Mutants in Zebrafish	287
17.5.1.1	Molecular Characterization of Jaw and Branchial Arch Mutants	289
17 5 1 3	Signaling Molecules in Head Skeleton Patterning	290
17514	Hox Genes in Anterior–Posterior Patterning of the Head	270
17.3.1.4	Skeleton	290
17.5.2	Development and Patterning of the Axial Skeleton	291
17.5.2.1	Development of the Vertebral Skeleton	291
17.5.2.2	Regulation of Segmented Vertebral Patterning	292
17.5.2.3	Development of Neural Arches, Haemal Arches and Spines	292
17.5.2.4	Molecular Regulation of Axial Skeleton Formation and	
	Patterning	293
17.5.3	Fin Development in Zebrafish	295
	1	

17.5.3.1	Development of Median Fins	295
17.5.3.2	Development of Paired Fins	296
17.5.3.3	Molecular Regulation of Fin Formation	297
17.6	Other New Aspects in Fish Skeleton Development	298
17.6.1	New Screening Method for Mutants with Skeletal Defects in	
	Adult Zebrafish	298
17.6.2	Use of the Transgenic Approach to Analyze BMP Function in	
	Bone Development	298
17.6.3	Zebrafish as a Model for Bone Deformity induced by Teratogenic	
	Chemicals	299
17.7	Conclusions	300
	Acknowledgments	300
	References	300
	New Methods	305
18	Modern Methods of Investigation in Biomineralization	307
	Matthias Epple	
18.1	Introduction	307
18.2	Infrared (IR) Spectroscopy	307
18.3	Scanning Probe Microscopy	308
18.4	Synchrotron Radiation Sources	309
18.5	Diffraction Methods	311
18.6	X-ray Absorption Spectroscopy (EXAFS)	315
18.7	Two Examples for the Combined use of X-ray Diffraction and	
	X-ray Absorption Spectroscopy (at Synchrotron Radiation	
	Sources)	318
18.7.1	Development of the Shells in Embryos of Biomphalaria glabrata	318
18.7.2	Intermediate Storage of ACC in Porcellio scaber	320
18.8	X-ray Microtomography (μ -CT)	321
18.9	Micromechanical Experiments	322
18.10	Solid-state Nuclear Magnetic Resonance (NMR) Spectroscopy	323
18.11	Conclusions.	324
	References	325
	Index	327

Preface

Modern research in biomineralization was first summarized in 1989 in the basic work "On Biomineralization" by two of the pioneers in the field, M. A. Lowenstam and S. Weiner. Parallel to this more biological review, its inorganic counterpart was published the same year "On Biomineralization: chemical and biochemical perspectives" by three pioneers of the chemical approach, S. Mann, J. Webb and R. P. R. William. These perspectives were highlighted in 2001 in "Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry" by its guiding chemical initiator Stephen Mann. It is obvious by these comprehensive volumes that biomineralization was dominated for about 20 years by excellent and extended structural and physiological research.

At the end of this period I had began to study magnetite crystal formation in bacteria. Parallel to progress in bacterial genetics the conviction was and is still growing on me that mechanisms in biomineralization will be predominantly elucidated by methods of molecular biology. The term "mechanism in biomineralization" is permanently discussed between chemists and biologists, whether the molecular process or the coupled process of transport, directed saturation and interaction of several organic compounds may be designated a mechanism.

A "Workshop on Biomineralization and Nanofabrication", organized by Richard B. Frankel in May 1996, inspired me to edit a multi-author volume on "Biomineralization. From Biology to Biotechnology and Medical Application" in November 2000. The aim of this edition was to compare structure formation of inorganic materials in those organisms that were expected to be analyzed most likely in the near future by genetics and molecular biology. At this time, prokaryotic and eukaryotic unicellular organisms, the magnetotactic bacteria and the mineralizing algae, coccolithophores and diatoms, were the prime candidates for these very biological approaches in biomineralization.

Almost complete genome sequences of 15 bacteria, including those of two magnetotactic bacteria, have been made available to the public domain surprisingly fast by the Joint Genome Institute (IGE) of the U.S. Department of Energy. These two genome sequences allowed studying magnetite nanocrystal formation at the genomic level. The human genome project was accomplished just before this work. In addition sequencing of the genome of the zebra fish, an important model organism for the human being, began in 2001 (and should be finished in 2005). Because of extended mutant analyses, I intended to introduce studies on mineral formation of this simple organism in this new edition, and at the beginning of this year I fortunately succeeded in finding two such reports.

This progress by modern biological methods was paralleled by extraordinary developments in modern physical methods, the highlight of which is cryo-electron tomography, elaborated by W. Baumeister. Research in biomineralization not only comes together with material science from the very edges of its biological and physical parts, but also directly in the recent, epoch-making publication by M. O. Stone and co workers on "Peptide Templates for Nanoparticle Synthesis derived from Polymerase Chain Reaction-Driven Phage Display".

I am very grateful to Professor Dieter Oesterhelt for the opportunity to stay as a guest in his department, an opportunity which remarkably facilitates my task as editor and author.

I thank very much to Professor Peter Behrens, the Organizer of the DFG-Priority Program "Principles of Biomineralization", for inviting me to several workshops of this very interdisciplinary project.

The various information encouraged me to select new topics for this new edition, among these are models of human biomineralization and modern physical methods.

July 2004

Edmund Bäuerlein Munich/Martinsried Germany

List of Contributors

Rudolf I. Amann Max-Planck-Institute for Marine Microbiology Dept. of Molecular Ecology Celsiusstraße 1 28359 Bremen Germany Fax: +49-421-2028-790 E-mail: ramann@mpi-bremen.de *Chapter 3*

Edmund Bäuerlein Max-Planck-Institute for Biochemistry Dept. Membrane Biochemistry Am Klopferspitz 18A 82152 Martinsried Germany Fax: +49-89-8578-3777 E-mail: e_baeuerlein@yahoo.de *Chapter 1*

Dennis A. Bazylinski Dept. of Biochemistry, Biophysics and Molecular Biology, 207 Science 1 Iowa State University Ames, IA 50011 USA Fax: +1-515-294-6019 E-mail: dbazylin@iastate.edu *Chapter 2*

Simon Crawford School of Botany The University of Melbourne Parkville, Victoria 3052 Australia Fax: +61-3-9347-5460 E-mail: richardw.@botany.unimelb.edu.au *Chapter 11*

Shaojun Du Center for Marine Biotechnology University of Maryland Biotechnology Institute Suite 236, Columbus Center 701 East Pratt Street Baltimore, Maryland 21202 USA Fax: +1-410-234-8896 E-mail: dus@umbi.umd.edu *Chapter 17*

Matthias Epple Institute of Inorganic Chemistry University of Duisburg-Essen Universitaetsstraße 5-7 45117 Essen Germany Fax: +49-201-183-2621 E-mail: matthias.epple@uni-essen.de *Chapter 18*

Lars–Oliver Essen Dept. of Chemistry Phillips-University Hans-Meerwein-Straße 35032 Marburg Germany Fax: +49-6421-28-22191 E-mail: essen@chemie.uni-marburg.de *Chapter 8* Christine Flies Göttinger Center for Geosciences Dept. Geology University Göttingen Goldschmittstr. 3 D-37077 Göttingen Germany Fax: +49-551-397 918 *Chapter 3*

Richard B. Frankel Physics Dept. California Polytechnic State University San Louis Obispo, CA 93407 USA Fax: +1-805-756-2435 E-mail: rfrankel@calpoly.edu *Chapter 2*

Yoshihiro Fukumori Dept. of Biology Faculty of Science Kanazawa-University Kakuma-machi Kanazawa 920-1192 Japan Fax: +81-76-264-5978 E-mail: fukumor@kenroku. kanazawa-u.ac.jp *Chapter 5*

Elma González Dept. of Ecology and Evolutionary Biology UCLA University of California Los Angeles Los Angeles, CA 90095-1606 USA Fax: +1-310-206-3987 E-mail: gonzalez@lifesci.ucla.edu *Chapter 13*

Yutaka Haga Center for Marine Biotechnology University of Maryland Biotechnology Institute Suite 326 Columbus Center 701 East Pratt Street Baltimore, Maryland 21202 USA E-mail: Haga@umbi.umd.edu *Chapter 17*

Christian Hamm Alfred Wegener Institute for Polar and Marine Research Plankton Biomechanics Pelagic Ecosystems/Biological Oceanography Am Handelshafen 12/Co9 27570 Bremerhaven Germany Fax: +49-471-4831-1425 E-mail: chamm@awi-bremerhaven.de In Chapter 18

Mark Hildebrand Mail code 0202 Marine Biology Research Division Scripps Institution of Oceanography UCSD University of California San Diego 9500 Gilman Drive La Jolla, CA 92093-0202 USA Fax: +1-858-5347313 E-mail: mhildebrand@ucsd.edu *Chapter 10*

Willi Jahnen-Dechent IZKF "BIOMAT" RWTH Aachen Pauwelsstraße 30 52074 Aachen Germany Fax: +49-241-80-82573 E-mail: willi.jahnen@rwth-aachen.de *Chapter 15*

Christian Klein School of Dental Medicine Dept. of Operative Dentistry and Periodontology Osianderstr: 2-8 72076 Tübingen Germany Fax: +49-7071-29-5656 E-mail: Christian.Klein@med.uni-tuebingen.de *Chapter 16*

Nils Kröger Institute for Biochemistry I University of Regensburg Universitaetsstraße 31 93053 Regensburg Germany Fax: +49-941-9432936 E-mail: nils.kroeger@vkl.uni-regensburg.de *Chapter 9*

Mary E. Marsh Dept. of Basic Sciences University of Texas Dental Branch Health Science Center 6516 John Freeman Ave. Houston, TX 77030 USA Fax: +1-713-500-4500 E-mail: Mary.E.Marsh@uth.tmc.edu *Chapter 12*

Tadashi Matsunaga Dept. of Biotechnology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan Fax: +81-42-385-7713 E-mail: tmatsuna@cc.tuat.ac.jp *Chapter 6*

Paul Mulvaney School of Chemistry The University of Melbourne Victoria 3010 Australia Fax: +61-3-93475460 E-mail: mulvaney@unimelb.edu.au *Chapter 11* Teresa Nicolson Oregon Hearing Research Center and Vollum Institute Oregon Health & Science University 3181 SW Sam Jackson Pk. Rd. Portland OR 97 239 USA Fax: +1-503-494-2976 E-mail: nicolson.@ohsu.edu *Chapter 14*

Dieter Oesterhelt Max-Planck-Institute for Biochemistry Dept. Membrane Biochemistry Am Klopferspitz 18A 82152 Martinsried Germany Fax: +49-89-8578-3557 E-mail: oesterhe@biochem.mpg.de *Chapter 8*

Stefanie Offermann Centre de Recherche sur les Macromolécules Végétales CERMAV-CNRS Glycobiologie moléculaire 601 Rue de la Chimie BP 53 38041 Grenoble Cedex 9 France Fax: +33-(0)4-76-54-72-03 E-mail: stefanie.offermann@gmx.de *Chapter 8*

Yoshiko Okamura Dept. of Biotechnology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan Fax: +81-42-385-7713 E-mail: yokamura@cc.tuat.ac.jp *Chapter 6*

Katharina Reichenmiller School of Dental Medicine Dept. of Operative Dentistry and Periodontology Osianderstasse 2-8 72076 Tübingen Germany Fax: +49-7071-29-5656 E-mail: kathrin.reichenmiller@ med.uni-tübingen.de *Chapter 16*

Ramon Rosselló-Mora Grup d'Oceanaografia Interdisciplinar Institut Mediterrani d'Estudis Avançats (CSIC-UIB) C/Miquel Marqués 21 E-07190 Esporles Mallorca Spain Fax: +34-971-611-761 E-mail: rossello-mora@uib.es *Chapter 3*

Toshifumi Sakaguchi Dept. Of Biotechnology Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan Fax: +81-42-385-7713 E-mail: sakaguch@cc.tuat.ac.jp *Chapter 6*

Dirk Schüler Max-Planck-Institute for Marine Microbiology Celsiusstraße 1 28359 Bremen Germany Fax: +49-421-2028-580 E-mail: dschuele@mpi.bremen.de *Chapters 3 and 4*

Christian Söllner The Welcome Trust Sanger Institute Welcome Trust Genome Campus Hinxton, Cambridge, CB10 1SA UK E-mail: cs6@sanger.ac.uk Chapter 14

Manfred Sumper Lehrstuhl Biochemie I University of Regensburg Universitaetsstraße 31 93040 Regensburg Germany Fax: +49-941-9432936 E-mail: manfred.sumper@ vkl.uni-regensburg.de *Chapter 9*

Richard Wetherbee School of Botany The University of Melbourne Victoria 3010 Australia Fax: +61-3-9347-5460 E-mail: richardw@unimelb.edu.au *Chapter 11*

Michael Winklhofer Dept. of Earth and Environmental Science Ludwig-Maximilians-University Theresienstraße 41/IV 80333 München Germany Fax: +49-892180-4207 E-mail: michaelw@lmu.de *Chapter 7*

Kornelius Zeth Max-Planck-Institute for Biochemistry Dept. of Membrane Biochemistry Am Klopferspitz 18A 82152 Martinsried Germany Fax: +49-89-8578-2815 E-mail: zeth@biochem.mpg.de *Chapter 8*

Abbreviations

AAS	atomic adsorption spectroscopy
ADP	adenosine diphosphate
ATCC	American Type Culture Collection
ATP	adenosine triphosphate
ATPase	adenosine triphosphatase
AFM	atomic force microscope
Bfr	bacterioferritin
BMP	bacterial magnetic particle
CA	carbonic anhydrase activity
CCM	carbon concentrating mechanism
CDF	cation diffusion facilitator
CEA	carcino-embryonal-antigen
CM	cytoplasmic membrane
CN	central nodule
CP	chloroplast
CV	coccolith vesicle
DEAE	diethylaminoethanol
DIC	dissolved inorganic carbon
DSi	dissolved silicon
DSM	Dt. Sammlung für Mikroorganismen
EDTA	ethylenediaminetetraacetic acid
ESI	energy spectroscopic imaging
EL	extracellular loops
ER	endoplasmatic reticulum
FAD	flavin adenine dinucleotide
FESEM	field emission scanning electron microscopy
FISH	fluorescence in situ hybridization
FMN	flavin mononucleotide
GA	N-acetylglucosamine
GFP	green fluorescent protein
GUT	grand unified theory
HRTEM	high resolution transmission electron microscopy
HPLC	high pressure liquid chromatography
ICS	intracellular carboxy segment
IgG	immunoglobulin G

IL	intracellular loops
INS	intracellular amino segment
kDa	kiloDalton
LPS	lipopolysaccharide
MA	N-acetyl muramic acid
MM	magnetosome membrane
MMP	many-celled magnetotactic procaryote
MRI	magnetic resonance imaging
MTB	magnetotactic bacteria
Myr	million years
NĂD	nicotinamide adenine dinucleotide
NADH	nicotinamide adenine dinucleotide, reduced
NADPH	nicotinamide adenine dinucleotide phosphate, reduced
NMR	nuclear magnetic resonance
OA	ornithineamidelipid
OATZ	oxic-anoxic transition zone
ORF	open reading frame
ОМ	outer membrane
Р	peptidoglycan layer
PC	phosphatidylcholine
PCR	polymerase chain reaction
PE	phosphatidylethanolamine
PET	positron emission tomography
PG	phosphatidylglycerol
PM	plasma membrane
R 123	Rhodamine 123
rRNA	ribosomal ribonucleic acid
SATA	succinimidyl-S-acethylthioacetat
SAED	selected area electron diffraction
SCID	severe combined immunodeficiency
SD	single-magnetic-domain
SDS	sodium dodecyl sulfate
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
SDV	silica deposition vesicle
SEM	scanning electron microscopy
SER/THR	serine/threonine
SIT	silicic acid transporters
STEM	scanning transmission electron microscope
STV	silicon transport vesicle
TEM	transmission electron microscope
TEOS	tetraethyleneoxysilane
TMPD	tetramethyl-p-phenylenediamine
TPR	tetratricopeptide repeat
UTP	uridine triphosphate

1 Peptides, Pre-biotic Selection and Pre-biotic Vesicles

Edmund Bäuerlein

1.1 Peptides as Templates for Inorganic Nanoparticles: From Functional Groups to "Peptide Group Selectivity"

The "Combinatorial Phage Display Peptide Library" is the result of a gigantic random peptide synthesis initiative, based on molecular biology. In a special library [1], about one billion (10^9) peptides are present as combinations of 12 random amino acids. Each of these 12-amino-acid peptides is expressed as a fusion with the small, surface-displayed protein III of the bacteriophage M13. In addition, each phage molecule has five copies of protein III and, consequently, five identical peptides on its surface.

1.1.1 A Phage Display Peptide Library in "Regular Panning" for Mineral Binding and Synthesizing Peptides

This molecular biology approach became an important link to materials science, as it was not only used to select for peptides that bind specifically to inorganic materials – it was the brilliant idea of M. O. Stone that, vice versa, such peptides should also be capable to generate inorganic structures to which they had bound. The standard procedure [2a] describes a technique to select surface-specific peptides and to subsequently identify a subpopulation of silica-precipitating peptides from a larger pool of binders. This procedure, which includes multiple rounds of target binding, elution and amplification, was designated "biopanning". It is an additional advantage of this method that the low number of eluted peptide bacteriophages could be multiplied by infection of particular *Escherichia coli* host cells. It was then easy to sequence them because the DNA sequence of an individual peptide of the library is fused with that of the small surface-displayed protein III of the bacteriophage – a sequence which is well known and used as primer.

A comprehensive study was begun with peptide-mediated synthesis of a target silica. It was called biogenic, because the synthetic peptide R5, which contains 19 amino acid residues, was used [3]. It is the non-modified analog of the repeating sequence R5 in native silaffin-1A (natSil-1A) [4], a major organic component of the silica cell wall of the diatom *Cylindortheca fusiformis* which was recently described

* Si3-3	Α	Ρ	Ρ	G	н	н	Н	W	н	1	н	н	
* Si3-4	М	S	А	S	S	Υ	А	S	F	S	W	S	
Si3-8		Κ	Р	S	Н	н	Н	Н	н	Т	G	А	Ν
*Si4-1	М	S	Р	Н	Ρ	Н	Р	R	н	Н	Н	Т	
*Si4-3	М	S	Р	Н	Н	М	Н	Н	S	Н	G	н	
Si4-7		L	Ρ	Н	Н	Н	Н	L	Н	Т	Κ	L	Ρ
Si4-8		А	Ρ	Н	Н	Н	Н	Ρ	Н	Н	L	S	R
* Si4-10		R	G	R	R	R	R	L	S	С	R	L	L
▶Ge4-1		Т	۷	А	S	Ν	S	G	L	R	Р	А	S

Figure 1.1 Multiple sequence alignment of silica-binding peptides obtained after the third and fourth rounds of panning. The various phage display peptides were plated on LB plates containing x-Gal and isopropyl-1-thio- β -D-galactopyranoside (IPTG). DNA was isolated from at least 10 independent blue plaques and sequenced [2]. Si3-4 was the fourth clone selected from the third round of panning. Amino acids with functional side chains that are able to interact with silica surface are shaded. (According to [2a], courtesy of M. O. Stone.)

by Kroeger et al. [4]. A network of silica spheres with a diameter of 400–600 nm was obtained when R5 peptide was incubated in freshly prepared orthosilic acid for 2–5 min at pH 7.5 and room temperature. The biosilica particles were subsequently washed several times to remove residual R5 peptide before use.

The phage display peptide library was now incubated with these particles. After three or four rounds of panning the sequence of the peptide, the peptide phage which remained bound to silica particles after stringent washing was determined. The multiple sequence alignments of such silica-specific peptides are shown in Fig. 1.1 [2a]. Binding of the phage peptides to the surface of silica particles was substantiated with a phage immunoassay and is presented in Fig. 1.2 [2a] using relative units. Si4-1 and Si4-10 apparently interacted more strongly with the silica particles, compared to the six other selected peptide phages.

The first, unprecedented step into materials production was now to examine the phage peptides, which were selected by their binding capacity on silica particles, for the formation of silica particles. They were incubated in a freshly prepared solution of orthosilic acid as described above for peptide R5. The amount of silica generated by phage peptides was quantified by the molybdate assay [5], as shown in Fig. 1.3. The highest activity was repeatedly observed with Si4-1. The phage peptides Si3-3, Si4-10, Ge4-1 and M13 showed only minor or no silica-precipitating activity.

This first experiment of phage peptide-mediated material formation resulted in the highest amounts of silica when three types of amino acid, i.e. hydroxyl- and imidazole-containing as well as of high cationic charge, were present in the peptides. Histidine and serine were found previously by Morse to be essential for catalysis by silicatein, a protein with enzymatic activity similar to human protease Cathepsin L. Silicateins were able to hydrolyze orthosilicic acid ester as tetraethoxysilane at neutral pH by simultaneous polycondensation to silica. Silicones were produced when methyl or phenyl triethoxysilanes were used as substrates [6].

With respect to the following experiments and results, it should be emphasized that here a subpopulation of phage peptides was obtained by standard panning

Figure 1.2 Binding of phage display peptides to silica by phage immunoassay. The binding of biotin-conjugated anti-Fd, an antibody raised against the pIII coat protein of M13 phage, was detected with the use of streptavidin–horseradish peroxidase. (According to [2a], courtesy of M. O. Stone.)

(later in Fig. 1.4 designated as "regular panning") which included amplification by infection of *E. coli* host cells with the selected phage peptides. This limited amplification [compared to the polymerase chain reaction (PCR), presented later] appears to preferentially result in peptides, which in terms of structure and possibly dynamics may be taken to be similar to active centers of enzymes [6], and, therefore, to act by definite residues in binding as well as in material production.

Such a similarity was supported by the first results of peptide-mediated synthesis and patterning of silver nanoparticles [2b]. These experiments were a kind of unexpected back reaction of Belcher's pioneering experiments with the "Combinatorial Phage Display Peptide Library". She used the library to identify peptides recognizing a range of semiconductor surfaces with high specificity, depending on the crystallographic orientation and composition of structurally similar materials (GaAs on silicon) [7]. Stone succeeded here in performing the back reaction – not the production of GaAs, but that of silver nanocrystals by a peptide of the phage display peptide library, which had been selected by regular panning (Fig. 1.4) [2b]. Only three different sequences, i.e. AG3, AG4 and AG5, of 30 independent assays were found

Figure 1.3 Silica condensation of the selected phage display peptides (clones). Equal amounts of phage particles (10^{11}) were incubated for 5 min in Tris-buffered saline (pH 7.5) with hydrolyzed tetramethyl orthosilicate. The silica precipitated was collected, washed and the amount of silica was measured with the spectrometric molybdate assay. The silica concentration obtained with R5 peptide (100 µg) was 1.05 µmol. The amount of silica precipitated is proportional to the amount of Si4-1 phage particles added (inset). (According to [2a], courtesy of M. O. Stone.)

in peptides which selectively bound to silver particles of a nano-sized activated powder (Table 1.1).

These silver-binding 12-amino-acid peptides contain preferentially prolines and hydroxyl amino acids:

AG3:	4 prolines	2 tyrosines	2 serines	
AG4:	2 prolines	2 tyrosines	3 serines	
AG5:	4 prolines	_	1 serine	2 threonine

For synthesis of silver nanoparticles, each of the three peptide phages was first incubated in a solution of silver nitrate for 24–48 h at room temperature. The reddish color of the solution and, after centrifugation, of the precipitate was observed using peptide phages AG3 and AG4, but not AG5. A characteristic surface plasmon resonance band about 440 nm was obtained in the ultraviolet-visible spectrum of the reddish solution, reflecting the size and shape distribution of the silver nanoparticles [2b].