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Foreword

The term biomineralization summarizes the natural processes by which living or-
ganisms form materials from bioorganic molecules and inorganic solids. This is a
fascinating topic, uniting the living and the (not always really) dead world sur-
rounding us. In fact, all of us have a direct relation to biomineralization, as we are
“biomineralisateurs” — producing each day crystals of a calcium phosphate (apa-
tite), embedded in an organic matrix (mostly collagen), as part of the formation
of bone material. These crystals are mere nanometers in size and are arranged in
a well-defined hierarchical structure, so that any of us may be rightly called a bio-
nano-engineer (a feat that might prove useful in grant applications).

The field of biomineralization not only connects the living and the mineral world,
but also brings together scientists from very diverging fields, ranging from geology,
mineralogy and crystallography via chemistry and biochemistry to biology and
medicine, as well as, possibly, biotechnology. Whereas research in this field was
dominated by a mostly descriptive approach throughout much of the last century, the
last ten to twenty years have witnessed an increasingly profound scientific under-
standing of the formation mechanisms of biominerals. This progress has been
fuelled by the application of modern molecular biology methods and the advent of
novel solid-state analytical techniques, but, most significantly, by their mutual inter-
action. From the point of view of biology, the ability of an organism to form an
inorganic solid material is a special feature that provides evolutionary advantages,
and thus certainly deserves elaborate biochemical and molecular-biological studies.
The growing interest among solid-state chemists and materials scientists lies in the
processes by which the often complex and intricate hierarchical architectures of bio-
minerals can be formed under conditions, which are incredibly mild, compared to
the usual techniques of preparative solid-state chemistry. This is combined with a
common general interest in the structures and processes occurring at the interfaces
between organic matter (not necessarily of biological origin) and inorganic solids
which are of utmost importance in many topical regimes of modern science (for ex-
ample, in heterogeneous catalysis, organic-inorganic hybrid materials, biomaterials
or in the attachment of cells to electronic devices). The idea of using synthesis
methods taken from nature in order to generate materials with superior properties
leads to bio-inspired preparation procedures (which take some key elements from
biomineralization, for example the templating action of bioorganic polymers during
precipitation of a solid) or bio-mimetic syntheses (which try to fully exploit the
mechanisms active in biomineral formation and which may thus also provide an
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insight into the natural processes themselves). Finally, if organisms could be con-
vinced by genetic engineering to produce certain materials with selected properties,
the biotechnological production of high-tech materials might become feasible.

The importance of biomineralization and its possible applications has recently
been reflected in the set-up of dedicated research programs, such as the establish-
ment of an Institute for Biologically Inspired Materials by NASA in the United
States. In Germany, research on the “Principles of Biomineralization™ has been fo-
cused on the priority research program of the Deutsche Forschungsgemeinschaft.

Of course, another clear indicator of the topical nature of this field is this volume
and the great success of its predecessor. Within only four years, it has become
necessary to publish a sequel, and as opposed to movies, in science sequels usually
represent true progress. Many chapters are new (in that they were not part of the
first edition) or novel (in that they have been totally rewritten by the authors) and
most of the others have been thoroughly reviewed, a stringent necessity in view of
the current progress in the field. Edmund Baeuerlein, as a professor emeritus now
(mostly) freed from his time-consuming research work at the bench and the burden
of administration, has devoted a lot of time and much effort to make this volume
not only a compendium of the latest research results but also a valuable introduc-
tion for newcomers to this field. He did this by careful selecting the contributions
and authors and by rigorous editing.

My wish is that this book will be at least as successful as its predecessor. May the
research results and ideas compiled here enlighten the reader.

Peter Behrens

Professor of Inorganic Chemistry at the
University of Hanover, Germany
Coordinator of the
DFG-Schwerpunktsprogramm 1117
“Prinzipien der Biomineralisation™
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Preface

Modern research in biomineralization was first summarized in 1989 in the basic
work “On Biomineralization™ by two of the pioneers in the field, M. A. Lowenstam
and S. Weiner. Parallel to this more biological review, its inorganic counterpart was
published the same year ““On Biomineralization: chemical and biochemical perspec-
tives”” by three pioneers of the chemical approach, S. Mann, J. Webb and R. P. R.
William. These perspectives were highlighted in 2001 in “Biomineralization: Princi-
ples and Concepts in Bioinorganic Materials Chemistry” by its guiding chemical
initiator Stephen Mann. It is obvious by these comprehensive volumes that biomi-
neralization was dominated for about 20 years by excellent and extended structural
and physiological research.

At the end of this period I had began to study magnetite crystal formation in bac-
teria. Parallel to progress in bacterial genetics the conviction was and is still grow-
ing on me that mechanisms in biomineralization will be predominantly elucidated
by methods of molecular biology. The term “mechanism in biomineralization” is
permanently discussed between chemists and biologists, whether the molecular pro-
cess or the coupled process of transport, directed saturation and interaction of sev-
eral organic compounds may be designated a mechanism.

A “Workshop on Biomineralization and Nanofabrication”, organized by Richard
B. Frankel in May 1996, inspired me to edit a multi-author volume on “Biominer-
alization. From Biology to Biotechnology and Medical Application” in November
2000. The aim of this edition was to compare structure formation of inorganic ma-
terials in those organisms that were expected to be analyzed most likely in the near
future by genetics and molecular biology. At this time, prokaryotic and eukaryotic
unicellular organisms, the magnetotactic bacteria and the mineralizing algae, cocco-
lithophores and diatoms, were the prime candidates for these very biological ap-
proaches in biomineralization.

Almost complete genome sequences of 15 bacteria, including those of two mag-
netotactic bacteria, have been made available to the public domain surprisingly fast
by the Joint Genome Institute (IGE) of the U.S. Department of Energy. These two
genome sequences allowed studying magnetite nanocrystal formation at the ge-
nomic level. The human genome project was accomplished just before this work.
In addition sequencing of the genome of the zebra fish, an important model organ-
ism for the human being, began in 2001 (and should be finished in 2005). Because of
extended mutant analyses, I intended to introduce studies on mineral formation of
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this simple organism in this new edition, and at the beginning of this year I fortu-
nately succeeded in finding two such reports.

This progress by modern biological methods was paralleled by extraordinary
developments in modern physical methods, the highlight of which is cryo-electron
tomography, elaborated by W. Baumeister. Research in biomineralization not
only comes together with material science from the very edges of its biological and
physical parts, but also directly in the recent, epoch-making publication by M. O.
Stone and co workers on “Peptide Templates for Nanoparticle Synthesis derived
from Polymerase Chain Reaction-Driven Phage Display”.

I am very grateful to Professor Dieter Oesterhelt for the opportunity to stay as a
guest in his department, an opportunity which remarkably facilitates my task as
editor and author.

I thank very much to Professor Peter Behrens, the Organizer of the DFG-Priority
Program ‘‘Principles of Biomineralization™, for inviting me to several workshops of
this very interdisciplinary project.

The various information encouraged me to select new topics for this new edition,
among these are models of human biomineralization and modern physical methods.

July 2004 Edmund Bdiuerlein
Munich/Martinsried
Germany
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1 Peptides, Pre-biotic Selection
and Pre-biotic Vesicles

Edmund Bduerlein

1.1 Peptides as Templates for Inorganic Nanoparticles:
From Functional Groups to ‘“‘Peptide Group Selectivity”

The “Combinatorial Phage Display Peptide Library” is the result of a gigantic ran-
dom peptide synthesis initiative, based on molecular biology. In a special library [1],
about one billion (10°) peptides are present as combinations of 12 random amino
acids. Each of these 12-amino-acid peptides is expressed as a fusion with the small,
surface-displayed protein III of the bacteriophage M13. In addition, each phage
molecule has five copies of protein III and, consequently, five identical peptides on
its surface.

1.1.1 A Phage Display Peptide Library in ‘“Regular Panning” for
Mineral Binding and Synthesizing Peptides

This molecular biology approach became an important link to materials science,
as it was not only used to select for peptides that bind specifically to inorganic
materials — it was the brilliant idea of M. O. Stone that, vice versa, such peptides
should also be capable to generate inorganic structures to which they had bound.
The standard procedure [2a] describes a technique to select surface-specific peptides
and to subsequently identify a subpopulation of silica-precipitating peptides from
a larger pool of binders. This procedure, which includes multiple rounds of target
binding, elution and amplification, was designated ‘‘biopanning”. It is an additional
advantage of this method that the low number of eluted peptide bacteriophages
could be multiplied by infection of particular Escherichia coli host cells. It was
then easy to sequence them because the DNA sequence of an individual peptide
of the library is fused with that of the small surface-displayed protein III of the
bacteriophage — a sequence which is well known and used as primer.

A comprehensive study was begun with peptide-mediated synthesis of a target
silica. It was called biogenic, because the synthetic peptide RS, which contains 19
amino acid residues, was used [3]. It is the non-modified analog of the repeating se-
quence RS in native silaffin-1A (natSil-1A) [4], a major organic component of the
silica cell wall of the diatom Cylindortheca fusiformis which was recently described
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Figure 1.1 Multiple sequence alignment of silica-binding peptides obtained after the third and
fourth rounds of panning. The various phage display peptides were plated on LB plates containing
x-Gal and isopropyl-1-thio-f-D-galactopyranoside (IPTG). DNA was isolated from at least 10 inde-
pendent blue plaques and sequenced [2]. Si3-4 was the fourth clone selected from the third round of
panning. Amino acids with functional side chains that are able to interact with silica surface are
shaded. (According to [2a], courtesy of M. O. Stone.)

by Kroeger et al. [4]. A network of silica spheres with a diameter of 400—600 nm
was obtained when RS peptide was incubated in freshly prepared orthosilic acid
for 2—5 min at pH 7.5 and room temperature. The biosilica particles were subse-
quently washed several times to remove residual RS peptide before use.

The phage display peptide library was now incubated with these particles. After
three or four rounds of panning the sequence of the peptide, the peptide phage
which remained bound to silica particles after stringent washing was determined.
The multiple sequence alignments of such silica-specific peptides are shown in Fig.
1.1 [2a]. Binding of the phage peptides to the surface of silica particles was substan-
tiated with a phage immunoassay and is presented in Fig. 1.2 [2a] using relative
units. Si4-1 and Si4-10 apparently interacted more strongly with the silica particles,
compared to the six other selected peptide phages.

The first, unprecedented step into materials production was now to examine the
phage peptides, which were selected by their binding capacity on silica particles, for
the formation of silica particles. They were incubated in a freshly prepared solution
of orthosilic acid as described above for peptide R5. The amount of silica generated
by phage peptides was quantified by the molybdate assay [5], as shown in Fig. 1.3.
The highest activity was repeatedly observed with Si4-1. The phage peptides Si3-3,
Si4-10, Ge4-1 and M 13 showed only minor or no silica-precipitating activity.

This first experiment of phage peptide-mediated material formation resulted in
the highest amounts of silica when three types of amino acid, i.e. hydroxyl- and
imidazole-containing as well as of high cationic charge, were present in the peptides.
Histidine and serine were found previously by Morse to be essential for catalysis by
silicatein, a protein with enzymatic activity similar to human protease Cathepsin L.
Silicateins were able to hydrolyze orthosilicic acid ester as tetraecthoxysilane at neu-
tral pH by simultaneous polycondensation to silica. Silicones were produced when
methyl or phenyl triethoxysilanes were used as substrates [6].

With respect to the following experiments and results, it should be emphasized
that here a subpopulation of phage peptides was obtained by standard panning
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Figure 1.2 Binding of phage display peptides to silica by phage immunoassay. The binding of
biotin-conjugated anti-Fd, an antibody raised against the plll coat protein of M13 phage, was de-
tected with the use of streptavidin—horseradish peroxidase. (According to [2a], courtesy of M. O.
Stone.)

(later in Fig. 1.4 designated as “‘regular panning”) which included amplification by
infection of E. coli host cells with the selected phage peptides. This limited amplifi-
cation [compared to the polymerase chain reaction (PCR), presented later] appears
to preferentially result in peptides, which in terms of structure and possibly dynam-
ics may be taken to be similar to active centers of enzymes [6], and, therefore, to act
by definite residues in binding as well as in material production.

Such a similarity was supported by the first results of peptide-mediated synthesis
and patterning of silver nanoparticles [2b]. These experiments were a kind of unex-
pected back reaction of Belcher’s pioneering experiments with the “Combinatorial
Phage Display Peptide Library”. She used the library to identify peptides recogniz-
ing a range of semiconductor surfaces with high specificity, depending on the crys-
tallographic orientation and composition of structurally similar materials (GaAs on
silicon) [7]. Stone succeeded here in performing the back reaction — not the produc-
tion of GaAs, but that of silver nanocrystals by a peptide of the phage display pep-
tide library, which had been selected by regular panning (Fig. 1.4) [2b]. Only three
different sequences, i.e. AG3, AG4 and AGS, of 30 independent assays were found
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Figure 1.3 Silica condensation of the selected phage display peptides (clones). Equal amounts of
phage particles (10'") were incubated for 5 min in Tris-buffered saline (pH 7.5) with hydrolyzed
tetramethyl orthosilicate. The silica precipitated was collected, washed and the amount of silica
was measured with the spectrometric molybdate assay. The silica concentration obtained with RS
peptide (100 pg) was 1.05 pmol. The amount of silica precipitated is proportional to the amount of
Si4-1 phage particles added (inset). (According to [2a], courtesy of M. O. Stone.)

in peptides which selectively bound to silver particles of a nano-sized activated pow-
der (Table 1.1).

These silver-binding 12-amino-acid peptides contain preferentially prolines and
hydroxyl amino acids:

AG3: 4 prolines 2 tyrosines 2 serines
AG4: 2 prolines 2 tyrosines 3 serines
AGS5: 4 prolines - 1 serine 2 threonine

For synthesis of silver nanoparticles, each of the three peptide phages was first
incubated in a solution of silver nitrate for 24-48 h at room temperature. The red-
dish color of the solution and, after centrifugation, of the precipitate was observed
using peptide phages AG3 and AG4, but not AGS. A characteristic surface plas-
mon resonance band about 440 nm was obtained in the ultraviolet-visible spectrum
of the reddish solution, reflecting the size and shape distribution of the silver nano-
particles [2b].



