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1 Introduction

Alexander K. Hartmann and Heiko Rieger

Optimization problems occur very frequently in physics. Some of them are easy to handle
with conventional methods also used in other areas such as economy or operations research.
But as soon as a huge number of degrees of freedom are involved, as is typically the case in
statistical physics, condensed matter, astrophysics and biophysics, conventional methods fail
to find the optimum in a reasonable time and new methods have to be invented. This book
contains a representative collection of new optimization algorithms that have been devised by
physicists from various fields, sometimes based on methods developed by computer scientists
and mathematicians. However, it is not a mere collection of algorithms but tries to demon-
strates their scope and efficiency by describing typical situations in physics where they are
useful.

The individual articles of this collections are self-contained and should be understandable
for scientists routinely using numerical tools. A more basic and pedagogical introduction into
optimization algorithms is our book on Optimization Algorithms in Physics, which can serve
as an appendix for the newcomer to this field of computational physics or for undergraduate
students. The reason why we found it necessary to compose another book in this field with
a greater focus is the fact that the application of optimization methods is one of the strongest
growing fields in physics. The main reasons for these current developments are the following
key factors:

First of all great progress has been made in the development of new combinatorial opti-
mization methods in computer science. Using these sophisticated approaches, much larger
system sizes of the corresponding physical systems can be treated. For many models the sys-
tems sizes which were accessible before, were too small to obtain reliable and significant data.
However, this is now possible. In this way computer science has helped physics.

But knowledge transfer also works the other way round. Physics provides still new insights
and methods of treating optimization problems, such as the earlier invention of the simulated
annealing technique. Recent algorithmic developments in physics are, e.g., the extremal opti-
mization method or the hysteric optimization approach, both covered in this book.

Moreover, phase transitions were recently found in “classical” optimization problems
within theoretical computer science, during the study of suitably parameterized ensembles.
These phase transitions very often coincide with peaks of the running time or with changes of
the typical-case complexity from polynomial to exponential. As well as the gain from taking
the physical viewpoint, by mapping the optimization problems to physical systems and ap-
plying methods from statistical physics, it is possible to obtain many results, which have not
been found with traditional mathematical techniques. This is true also for the analysis of the
typical-case complexity of (random) algorithms.
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Finally: All benefit from the increasing power of computers. Despite all predictions,
the speed of the hardware still seems to grow exponentially fast, making the application of
optimizations methods more and more valuable.

Thus the aim of this book is to promote progress in the fields given above. Physicists will
become familiar with the huge progress still taking place in the development of algorithmic
techniques. On the other hand, the new developments of physically inspired algorithms can
be very useful in computer science as well. In particular the application of physical methods
in the field of phase transitions seems to be a very promising field for the next decade.

Currently, the interactions between different communities, namely mathematics, computer
science, biology, economy and physics are still too weak. Only by gathering researchers from
these different groups and trying to find a common language, can real progress be achieved.
All problems, algorithms and results are presented here in a pedagogical way, which makes
the information available to a broad audience. This is the main purpose of this collection of
papers.

The book contains three main parts. In the first part, we focus on applications of opti-
mization algorithms to problems from physics. The standard way of solving computational
problems in statistical physics is to use a Monte Carlo simulation. In his contribution, Werner
Krauth shows that by using modern cluster algorithms, many previously inaccessible models
can be treated at low temperatures (obtaining low, i.e., minimum energies) or respectively,
high densities. He studies as examples the phase separation in binary mixtures and the appli-
cation of the algorithm to monomer-dimer models. Next, Olivier Martin surveys algorithms
for Ising spin-glass ground-state calculations and he explains one new Monte Carlo algorithm
in detail. It is a cluster method based on the real-space renormalization group.

Monte Carlo methods, like those shown in the first two contributions, are very efficient
and have a wide range of applicability, but they do not guarantee to find a global optimum
solution. In contrast, the Branch-and-Cut approach is an exact algorithm. It is presented
by Frauke Liers, Michael Jünger, Gerhard Reinelt and Giovanni Rinaldi. They explain the
method for an application to the max-cut problem, which is used here for the ground-state
calculation of three-dimensional Ising spin glasses.

Another important class of problems in statistical physics is the random-field Ising model.
Alan Middleton explains how one can calculate ground states using push/relabel algorithms in
polynomial time, how these algorithms perform near phase transitions and how one can use it
to characterize the ground-state landscape of the random-field model. In the last chapter of the
first part, Jean-Christian Anglès d’Auriac describes a new method for calculating the partition
function and other thermodynamic quantities of the infinite-state Potts model with random
bonds using a combinatorial optimization algorithm. The latter is based on the concept of
submodular functions, which might also prove useful in a number of other applications in the
near future.

The second part is dedicated to the study of phase transitions in combinatorial optimiza-
tion problems. First, Martin Weigt introduces the Satisfiability Problem (SAT), the most fun-
damental problem in computational complexity theory. He then shows how one can generate
large SAT formulas which have a solution but where the solution is hard to find for local
algorithms like Walksat. This behavior can be understood by solving the corresponding phys-
ical problem analytically by using techniques from statistical mechanics. Simona Cocco, Liat
Ein-Dor and Remi Monasson show how one can calculate the typical running time of exact
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backtracking algorithms for SAT and for the coloring problem. The basic idea is to investigate
the dynamics of the algorithm moving in the phase diagram of the problem. Finally, Riccardo
Zecchina presents the currently fastest Algorithm for SAT, the Survey Propagation algorithm,
which allows to solve SAT instances near the SAT-UNSAT phase transition of systems having
106 variables. The method is based on the cavity approach, an analytical technique used to
study mean-field-like disordered systems in statistical physics. Nevertheless, his presentation
is solely based on probability theory, making it also very accessible to non-physicists.

The third part of this book is on new heuristics and interdisciplinary applications. Károly
Pál presents an optimization method which is inspired by a physical technique, the measure-
ment of hysteresis in a magnetic system. The basic idea is to demagnetize a system by per-
forming hysteresis loops with continuously decreasing magnitude. He presents the algorithm
in a very general style, which in principle allows arbitrary applications. As examples, results
for spin glasses and the traveling salesman problem are shown. Stefan Boettcher explains an-
other very general algorithm, the extremal optimization algorithm. Its basic idea is very simple
and similar to genetic algorithms. The latter ones usually have many free parameters, which
must be tuned to obtain an efficient algorithm. Extremal optimization has the advantage that it
is, in the simplest variant, absolutely parameter free. Another major difference in comparison
with genetic algorithms is that fitness values are not assigned to different configurations but to
different particles of one configuration. Application to graph coloring, spin glasses and image
matching are given.

The last two contributions contain applications from Molecular Biology. After providing
some biological background, Alexander Hartmann explains alignment algorithms, which are
used to compare biological sequences by applying a shortest-path algorithm. As an applica-
tion, a method to obtain the rare-event tail of the statistics of protein alignments is presented.
Finally, Ulrich Hansmann reviews methods used to solve protein-folding problems via energy
minimization and in particular explains energy-landscape paving. The basic idea is that one
initially modifies the energy landscape such that the global minimum is easier to find. During
the simulation, the energy landscape gradually approaches the ordinal one. Furthermore, the
algorithm tries to avoid previously visited regions, if the energy is not low enough. Various
results for the influence of the temperature on helix formation are also shown.

Compiling this book would not have been possible without the help of many people and
various institutions. First of all, we would like to thank all authors for preparing their valu-
able contributions and also for their helpful cooperation. Furthermore, we are particularly
indebted to Vera Palmer, Uwe Krieg, and Cornelia Wanka from Wiley-VCH for the excellent
collaboration. Financial support was provided by the VolkswagenStiftung within the Program
“Nachwuchsgruppen an Universitäten”, by the Deutsche Forschungsgemeinschaft (DFG), by
the International Conference and Research Center for Computer Science Schloss Dagstuhl and
by the Institute for Scientific Interchange (ISI) Foundation in Turin. The European Commu-
nity supported this book financially via the Human Potential Program under contract num-
ber HPRN-CT-2002-00307 (DYGLAGEMEM), via the High-Level Scientific Conferences
(HLSC) program, and via the Complex Systems Network of Excellence “Exystence”. This
book was prepared in connection with the Dagstuhl Seminar No. 03381 “New Optimization
Algorithms in Physics”.





Part I: Applications in Physics





2 Cluster Monte Carlo Algorithms
Werner Krauth

In recent years, a better understanding of the Monte Carlo method has provided us with many
new techniques in different areas of statistical physics. Of particular interest are the so called
cluster methods, which exploit the considerable algorithmic freedom given by the detailed
balance condition. Cluster algorithms appear, among other systems, in classical spin models,
such as the Ising model [14], in lattice quantum models (bosons, quantum spins and related
systems) [5] and in hard spheres and other “entropic” systems for which the configurational
energy is either zero or infinite [4].

In this chapter, we discuss the basic idea of cluster algorithms with special emphasis on
the pivot cluster method for hard spheres and related systems, for which several recent appli-
cations are presented. We provide less technical detail but more context than in the original
papers. The best implementations of the pivot cluster algorithm, the “pocket” algorithm [10],
can be programmed in a few lines. We start with a short exposition of the detailed balance con-
dition, and of “a priori” probabilities, which are needed to understand how optimized Monte
Carlo algorithms may be developed. A more detailed discussion of these subjects will appear
in a forthcoming book [9].

2.1 Detailed Balance and a priori Probabilities

In contrast with the combinatorial optimization methods discussed elsewhere in this book,
the Monte Carlo approach does not construct a well-defined state of the system – minimiz-
ing the energy, or maximizing flow, etc – but attempts to generate a number of statistically
independent representative configurations a, with probability π(a). In classical equilibrium
statistical physics, π(a) is given by the Boltzmann distribution, whereas, in quantum statistics,
the weight is the diagonal many-body density matrix.

In order to generate these configurations with the appropriate weight (and optimal speed),
the Monte Carlo algorithm moves (in one iteration) from configuration a to configuration b
with probability P (a → b). This transition probability is chosen to satisfy the fundamental
condition of detailed balance

π(a)P (a→ b) = π(b)P (b→ a) (2.1)

which is implemented using the Metropolis algorithm

P (a→ b) = min
(

1,
π(b)
π(a)

)
(2.2)

or one of its variants.



8 2 Cluster Monte Carlo Algorithms

For the prototypical Ising model, the stationary probability distribution (the statistical
weight) of a configuration is the Boltzmann distribution with an energy given by

E = −J
∑
〈i,j〉

SiSj L > 0 (2.3)

as used and modified in many other places in this book. A common move consists of a spin
flip on a particular site i, transforming configuration a into another configuration b. This
is shown in Figure 2.1 (left). In a hard sphere gas, also shown in Figure 2.1 (right), one
typically displaces a single particle i from x to x + δ. There is a slight difference between
these two simple algorithms: by flipping the same spin twice, one goes back to the initial
configuration: a spin flip is its own inverse. In contrast, in the case of the hard-sphere system,
displacing a particle twice by the same vector δ does not usually bring one back to the original
configuration.

a b a b

Figure 2.1: Two examples of local Monte Carlo algorithms: the two-dimensional Ising model
with single-spin flip dynamics (left) and two-dimensional hard disks with a single-particle move
(right).

An essential concept is the one of an a priori probability: it accounts for the fact that the
probability P (a → b) is a composite object, constructed from the probability of considering
the move from a to b, and the probability of accepting it.

P (a→ b) = A(a→ b)︸ ︷︷ ︸
consider a→b

× P̃ (a→ b)︸ ︷︷ ︸
accept a→b

In usual Monte Carlo terminology, if a → b is rejected (after having been considered), then
the “move” a→ a is chosen instead and the system remains where it is.

With these definitions, the detailed balance condition Eq. (2.1) can be written as

P̃ (a→ b)
P̃ (b→ a)

=
π(b)

A(a→ b)
A(b→ a)
π(a)

and implemented by a Metropolis algorithm generalized from Eq. (2.2):

P̃ (a→ b) = min
{

1,
π(b)

A(a→ b)
A(b→ a)
π(a)

}
(2.4)

It is very important to realize that the expression “a priori probability A(a → b)” is
synonymous to “Monte Carlo algorithm”. A Monte Carlo algorithm A(a → b) of our own
conception must satisfy three conditions:
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1. It must lead the state of the system from a configuration a to a configuration b, in such a
way that, eventually, all configurations in phase space can be reached (ergodicity).

2. It must allow to compute the ratio π(a)/π(b). This is trivially satisfied, at least for
classical systems, as the statistical weight is simply a function of the energy.

3. It must allow, for any possible transition a→ b, to compute both the probabilities A(a→
b) and A(b→ a). Again, it is the ratio of probabilities which is important.

A trivial application of a priori probabilities for hard spheres is given in Figure 2.2. (Sup-
pose that the points a and b are embedded in a large two-dimensional plane.) On the left side
of the figure, we see one of the standard choices for the trial moves x → x + δ of a particle
in Figure 2.1: The vector δ is uniformly sampled from a square centered around the current
position. If, however, we decide for some obscure reason to sample δ from a triangle, we
realize that in cases such as the one shown in Figure 2.2 (right), the a priori probability for
the return move vanishes. It is easy to see from Eq. (2.4) that, in this case, both P (a→ b) and
P (b→ a) are zero.

a

b

a

b

Figure 2.2: A priori probabilities for the hard-sphere system. Left: “square” – A(a → b) is
constant within the square boundary, and zero outside. By construction, A(a → b) = A(b →
a). Right: “triangle” – for the analogous (if hypothetical) case of a triangle, there are pairs a, b,
where A(a → b) is finite, but A(b → a) = 0. Both rates P (a → b) and P (b → a) vanish.

Notwithstanding its simplicity, the triangle “algorithm” illustrates that any Monte Carlo
method A(a → b) can be made to comply with detailed balance, if we feed it through
Eq. (2.4). The usefulness of the algorithm is uniquely determined by the speed with which
it moves through configuration space, and is highest if no rejections at all appear. It is to be
noted, however, that, even if P̃ (a→ b) is always 1 (no rejections), the simulation can remain
rather difficult. This happens, for example, in the two-dimensional XY -model and in several
examples treated below.

Local algorithms are satisfactory for many problems but fail whenever the typical differ-
ences between relevant configurations are much larger than the change that can be achieved
by one iteration of the Monte Carlo algorithm. In the Ising model at the critical point, for
example, the distribution of magnetizations is wide, but the local Monte Carlo algorithm im-
plements a change of magnetization of only ±2. This mismatch lies at the core of critical
slowing down in experimental systems and on the computer.
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In liquids, modeled e.g. by the hard-sphere system, another well-known limiting factor is
that density fluctuations can relax only through local diffusion. This process generates slow
hydrodynamic modes, if the overall diffusion constants are small.

Besides these slow dense systems, there is also the class of highly constrained models, of
which binary mixtures will be treated later. In these systems, the motion of some degrees of
freedom naturally couple to many others. In a binary mixture, e. g., a big colloidal particle is
surrounded by a large number of small particles, which are influenced by its motion. This is
extremely difficult to deal with in Monte Carlo simulations, where the local moves x → x+δ
are essentially the unconstrained motion of an isolated particle.

2.2 The Wolff Cluster Algorithm for the Ising Model

The local spin-flip Monte Carlo algorithm not being satisfactory, it would be much better to
move large parts of the system, so called clusters. This cannot be done by a blind flip of one
or many spins (with A(a → b) = A(b → a)), which allows unit acceptance rate both for the
move a → b and its reverse b → a only if the energies of both configurations are the same.
One needs an algorithm whose a priori probabilities A(a → b) and A(b → a) soak up any
differences in statistical weight π(a) and π(b).

This can be done by starting the construction of a cluster with a randomly sampled spin
and by iteratively adding neighboring sites of the same magnetization with a probability p. To
be precise, one should speak about “links”: if site i is in the cluster and a neighboring site j is
not, and if, furthermore, Si = Sj , then one should add link 〈i, j〉 with probability p. A site is
added to the cluster if it is connected by at least one link. In configuration a of Figure 2.3, the
cluster construction has stopped in the presence of 9 links “−−” across the boundary. Each
of these links could have been accepted with probability p, but has been rejected. This gives a
term (1− p)9 in the a priori probability. Flipping the cluster brings us to configuration b. The
construction of the cluster for configuration b would stop in the presence of 19 links “++”
across the boundary (a priori probability ∝ (1 − p)19)).

This allows us to compute the a priori probabilities

A(a→ b) = Ainterior × (1 − p)9

A(b→ a) = Ainterior × (1 − p)19

Ea = Einterior + Eexterior − 9 × J + 19 × J (πa = exp[−βEa])
Eb = Einterior + Eexterior − 19 × J + 9 × J (πb = exp[−βEb])

In these equations, the “interior” refers to the part of the cluster which does not touch the
boundary. By construction, the “interior” and “exterior” energies and a priori probabilities
are the same for any pair of configurations a and b which are connected through a single
cluster flip.

We thus dispose of all the information needed to evaluate the acceptance probability P̃ in
Eq. (2.4), which we write more generally in terms of the number of “same” and of “different”
links in the configuration a. These notions are interchanged for configuration b (in Figure 2.3,
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a b

Figure 2.3: The Wolff cluster algorithm for the Ising model adds, with probability p, a link
connecting a site outside the cluster to a site already in the cluster (thereby adding the site). In
the configuration a, construction of the cluster (as shown) stopped with 9 links “−−”, corre-
sponding to an a priori probability A(a → b) = Ainterior×(1−p)9. The return move stops with
probability A(b → a) = Ainterior × (1 − p)19, as there are 19 links “++” across the boundary
in configuration b.

we have nsame = 9, ndiff = 19). With the energy scale J set to 1, we find

P̃ (a→ b) = min
{

1,
eβndiffe−βnsame

(1 − p)nsame

(1 − p)ndiff

e−βndiffeβnsame

}

= min
{

1,
[
e−2β

1 − p

]nsame [1 − p

e−2β

]ndiff
}

(2.5)

Once the cluster construction stops, we know the configuration b, may count nsame and ndiff,
and evaluate P̃ (a → b). Of course, a lucky coincidence1 occurs for p = 1 − exp[−2Jβ].
This special choice yields a rejection-free algorithm whose acceptance probability is unity
for all possible moves and is implemented in the celebrated Wolff cluster algorithm [14], the
fastest currently known simulation method for the Ising model. The Wolff algorithm can be
programmed in a few lines, by keeping a vector of cluster spins, and an active frontier, as
shown below. The algorithm below presents a single iteration a → b. The function ran[0, 1]
denotes a uniformly distributed random number between 0 and 1, and p is set to the magic
value p = 1 − exp[−2Jβ]. The implementation uses the fact that a cluster can grow only at
its frontier (called the “old” frontier Fold, and generating the new one Fnew). It goes without
saying that for the magic value of p we do not have to evaluate P̃ (a→ b) in Eq. (2.5), as it is
always 1. Any proposed move is accepted.

1 This accident explains the deep connection between the Ising model and percolation.
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algorithm wolff-cluster
begin
i := random particle;
C := {i};
Fold := {i};
while Fold �= {} do
begin

Fnew := {};
for ∀ i ∈ Fold do
begin

for ∀ j neighbor of i with Si = Sj , j �∈ C do
begin

if ran[0, 1] < p then
begin

Fnew := Fnew ∪ {j};
C := C ∪ {j};

end
end

end
Fold := Fnew;

end
for ∀ i ∈ C do
Si := −Si;

end

2.3 Cluster Algorithm for Hard Spheres and Related
Systems

We want to further exploit the analogy between the spin model and the hard-sphere system.
As the spin-cluster algorithm constructs a cluster of spins which flip together, one might think
that a cluster algorithm for hard spheres should identify “blobs” of spheres that move together.
Such a macroscopic ballistic motion would replace slow diffusion.

To see that this strategy cannot be successful, it suffices to look at the generalized detailed
balance condition in the example shown in Figure 2.4: any reasonable algorithm A would
have less trouble spotting the cluster of dark disks in configuration a than in b. This means
that A(a→ b) 	 A(b→ a) and that the acceptance rate P̃ (a→ b) would be very small.

The imbalance between A(a → b) and A(b → a) can, however, be avoided if the two
transition probabilities are protected by a symmetry principle: the transformation T producing
b from a must be the same as the one producing a from b. Thus, T should be its own inverse.

In Figure 2.5, this program is applied to a hard disk configuration using, as transforma-
tion T , a rotation by an angle π around an arbitrarily sampled pivot (denoted by ⊕, for each
iteration a new pivot is used). Notice that for a symmetric particle, the rotation by an angle π
is identical to the reflection around the pivot. It is useful to transform not just a single particle,
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a b

Figure 2.4: The dark disks are easier to identify as a cluster in configuration a than in b, where
they are fused into the background. This means that, for the configurations a and b shown in
this figure, A(a → b) � A(b → a) for any generic Monte Carlo algorithm. As π(a) = π(b),
the acceptance probability P̃(a → b) in Eq. (2.4) will be extremely small. The problem can be
avoided [4] if the transformation a → b is protected by a symmetry principle: it must be its own
inverse.

but the whole original configuration a yielding the “copy”. By overlaying the original with
its rotated copy, we may identify the invariant sub-ensembles (clusters) which transform inde-
pendently under T . For example, in Figure 2.5, we may rotate the disks numbered 6, 8, and 9,
which form a cluster of overlapping disks in the ensemble of overlayed original and copy.

In Figure 2.5, there are the following three invariant clusters:

{6, 8, 9}, {2, 3, 4, 7}, {1, 5} (2.6)

The configuration b in Figure 2.5 shows the final positions after rotation of the first of
these clusters. By construction, A(a → b) = A(b → a) and π(a) = π(b). This perfect
symmetry ensures that detailed balance is satisfied for the non-local move. Notice that moving
the cluster {1, 5} is equivalent to exchanging the labels of the two particles and performing
two local moves. Ergodicity of the algorithm follows from ergodicity of the local algorithm,
as a local move x → x + δ can always be disguised as a cluster rotation around the pivot
x + δ/2.

Figure 2.5 indicates the basic limitation of the pivot cluster approach: if the density of
particles becomes too large, almost all particles will be in the same cluster, and flipping it
will essentially rotate the whole system. Nevertheless, even though above the percolation
threshold in the thermodynamic limit there exists a large cluster containing a finite fraction
of all particles, the remaining particles are distributed among a distribution of small clusters.
This means that finite clusters of various sizes will be produced. These may give rise to useful
moves, for example in the case of dense polydisperse disks discussed below. Even small
clusters provide non-diffusive mass transport if they contain an odd number of particles (cf.
the example in Figure 2.5) or particles of different type.

It is also useful to discuss what will happen if the “copy” does not stem from a symmetry
operation, for example, if the copy is obtained from the original through a simple translation
with a vector δ. In this case, there would still be clusters, but they no longer appear in pairs. It
would still be possible to flip individual clusters, but not to conserve the number of particles
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Figure 2.5: The pivot cluster algorithm performs a symmetry operation which is its own inverse.
In this system of hard disks (with periodic boundary conditions), a rotation by an angle π around
an arbitrarily sampled pivot (⊕) is shown: a is the original configuration, b the rotated copy. The
intermediate pictures show the superposed system of original and copy before and after the flip.
The final configuration, b, is also shown. Notice that the transformation maps the simulation box
(with periodic boundary conditions) onto itself. If this is not the case, the treatment of boundary
conditions becomes more involved, and generates rejections.

on each plate. This setting can also have important applications, it is very closely related to
Gibbs ensemble simulations and provides an optimal way of exchanging particles between
two plates. The two plates would no longer describe the same system but would be part of a
larger system of coupled plates.
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algorithm pocket-cluster
begin

rpivot := random point in box;
i := random particle;
P := {i};
O := {all particles} \ {i};
while P �= {} do
begin
i := any element of P;
P := P \ {i};
r(i) := reflection of r(i) around rpivot;
for ∀ j ∈ O do
if j ∩ i then
begin

O := O \ {j};
P := P ∪ {j};

end
end

end

Having discussed the conceptual underpinnings of the pivot cluster algorithm, it is inter-
esting to understand how it can be made into a working program. Figure 2.5 suggests that one
should use a representation with two plates, and perform cluster analyses, very similar to what
is done in the Wolff algorithm.

However, it is not necessary to work with two plates. The transformation can be done on
the system itself and does not even have to consider a cluster at all. This ultimately simple
solution is achieved in the “pocket” algorithm [10]: it merely keeps track of particles which
eventually have to be moved in order to satisfy all the hard-core constraints. After sampling
the pivot (or another symmetry operation), one chooses a first particle, which is put into the
pocket. At each stage of the iteration, one particle is taken from the pocket, and the transfor-
mation is applied to it. At the particle’s new position, the hard-core constraint will probably
be violated for other particles. These have simply to be marked as “belonging to the pocket”.
One single “move” of the cluster algorithm consists of all the stages until the pocket is empty
or, equivalently, of all the steps leading from frame a to frame e in Figure 2.6. The inherent
symmetry guarantees that the process will end with an empty pocket, and detailed balance
will again be satisfied as the output is the same as in the two-plate version.

In the printed algorithm, P stands for the “pocket”, and O is the set of “other” particles
that currently do not have to be moved to satisfy the hard-core constraints. The expression
j ∩ i is “true” if the pair i, j violates the hard-core constraint.
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Figure 2.6: One iteration of the pocket algorithm (“pocket” ≡ “dark disks”). Initially (frame a),
a pivot is chosen and a starting disk (here disk 4) is put into the pocket. At each subsequent step,
a disk is removed from the pocket and transformed with respect to the pivot. Any overlapping
disks are added to the pocket. For example, in frame b, overlaps exist between disk 4 (which
has just been moved) and disks 2 and 7. Only one of these disks is transformed in frame c. The
pocket algorithm is guaranteed to move from a valid hard-disk configuration to another one,
and to respect detailed balance. It can be implemented in a few lines of code, as shown in the
algorithm on page 15.

2.4 Applications

2.4.1 Phase Separation in Binary Mixtures

Figure 2.7: Entropic interaction between two colloids (squares of edge length dlarge) in a sea of
small particles (of size dsmall). Left: Small particles cannot penetrate into the slit between the
large particles. The concentration difference leads to an effective entropic interaction between
colloids, which is attractive at small separation. Right: At large distances between colloids, the
effective interaction vanishes.

The depletion force – one of the basic interactions between colloidal particles – is of purely
entropic origin. It is easily understood for a system of large and small squares (or cubes): In
the left picture of Figure 2.7, the two large squares are very close together so that no small


