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Preface

Josef Winter, Claudia Gallert, Universität Karlsruhe, Germany
Hans-Joachim Jördening, Technische Universität Braunschweig, Deutschland

The growing awareness of environmental problems, caused especially by the pre-
dominate use of fossil resources in connection with pure chemical pathways of pro-
duction, has led the focus on those alternatives, which sounds environmentally
more friendly. Here, biotechnology has the chance to influence and improve the
quality of the environment and production standards by:
– introduction of renewable instead of fossil raw materials
– controlled production of very specific biocatalysts for the
– development of new and environmentally improved production technologies with

less purified substrates and generation of fewer by-products 
– bioproducts as non-toxic matters, mostly recyclable.

Some impressive studies on industrial applications of biotechnology are published
in two OECD reports, which summarized, that biotechnology has the potential of a
reduction of operational and/or capital cost for the realization of more sustainable
processes (OECD1, OECD2). However, until today the sustainability of technical
processes is more the exception than the rule and therefore so-called “End-of-Pipe”-
technologies are absolutely necessary for the treatment of production residues.

In 1972 the Club of Rome published its study “Limits of Growth” and prognosted
an upcoming shortage of energy and primary resources as a consequence of expo-
nential growth of population and industry (Meadows et al. 1972). Although the
quantitative prognoses of Dennis Meadows and his research team have not been ful-
filled, the qualitative statements are today well accepted. Aside of a shortage of re-
sources for production of commodities the limits for an ecologically and economi-
cally compatible disposal of production residues and stabilized wastes have to be
more and more taken into consideration. The limits for disposal of solid and liquid
pollutants in soil and water or of waste gases in the atmosphere are a major issue,
since soil, water and air are no longer able to absorb/adsorb these emissions without
negative consequences for ecology and life in general. The ultimate oxidation prod-
uct of organic residues by incineration or – more smooth – by biological respiration
in aquatic or terrestric environment led to a significant increase of the carbon diox-
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ide content of the atmosphere in the last centuries and thus influences the overall
climate. This increase is abundantly attributed to combustion of fossil fuels by traf-
fic and of fossil fuels and coal for industrial production processes and house heat-
ing. Increasing concentrations of carbon dioxide in the atmosphere from incinera-
tion of fossil energy sources and from decomposition of organic matter are the main
reason for the greenhouse effect.

Whereas the pollution of soil with waste compounds and subsequently with their
(bio)conversion products generally remains a locally restricted, national problem, as
long as evaporation of volatile compounds into the air or solubilization of solids in
rain or groundwater can be prevented, emissions into water or the atmosphere are
spreading rapidly and soon reach an international dimension. A disturbance of the
equilibrium of the natural cycles of carbon, nitrogen, phosphate, sulfur or halogen
compounds causes an ecological imbalance and endangers nature. In the Brundt-
land-report “Our common future” (Hauff 1987) a discussion was started about “sus-
tainable development”. The practical realization of this concept was suggested at the
“Conference on Environment and Development” of the United Nations in Rio de
Janeiro in 1992 and enforced as an action programme in the so-called Agenda 21. 
A sustainable development to maintain the basis for future generations is contra-
indicated by exploitation of non-regenerative energy and material resources and a
shortening of life cycles (e.g. in information technologies).

A life cycle assessment is required to reduce or at least to bring to everybodies at-
tention the flood of waste material. By the obligate demand for recycling of waste
components, which is fixed in European Council Directive 91/156/EEC and e.g.
translated to the German waste law (KrW/AbfG 1996), production and the use of
commodities should minimize the amount of wastes. The practicability of this ap-
proach must be demonstrated in industrialized countries and then should be adopt-
ed by less developed or developing countries.

Environmental biotechnology initially started with wastewater treatment in urban
areas at the turn of the 19/20th century (Hartmann 1999) and has been extended
among others to soil remediation, off gas purification, surface and groundwater
cleaning, industrial wastewater purification, deposition techniques of wastes in san-
itary landfills and composting of bioorganic residues, mainly in the second half of
the 20 century.

The available processes for the protection of the terrestric and aquatic environ-
ment were summarized in the first edition of “Biotechnology” still in one volume.
Some ten years later in the second edition of “Biotechnology” the development in
the above mentioned environmental compartments was updated and decribed by ex-
perts in the field from Europe and the United States of America. Although the de-
scription was kept very stringent, the above mentioned areas of environmental pro-
cesses finally were issued in 3 volumes. Volume 11a of “Biotechnology” was subti-
tled “Environmental Processes I – Wastewater Treatment” (edited in 1999) and was
devoted to general aspects and the process development for carbon, nitrogen and
phosphate removal during wastewater treatment and anaerobic sludge stabilization.
Volume 11b of “Biotechnology” was subtitled “Environmental Processes II – Soil
Decontamination” (edited in 2000) and summarized microbial aspects and the pro-



cesses that were applied for soil (bio-)remediation and Volume 11 c, subtitled “Envi-
ronmental Processes III – Solid Waste and Waste Gas Treatment, Preparation of
Drinking water” (edited in 2000) covered general aspects, microbiology and process-
es for solid waste treatment, waste gas purification and potable water preparation.

The new book “Environmental Biotechnology” covers what we think the most rel-
evant topics of the previous volumes 11a, b and c of “Biotechnology” in a compre-
hensive form. The invited authors were given the opportunity to update their contri-
butions when a significant progress was achieved in their field in recent years. For
instance, although many alternatives were existing in the past for domestic sewage
treatment to remove nitrogenous compounds, the development of new biological
processes for nitrogen removal in the laboratory and in pilot scale-dimension was re-
ported recently. These processes work with a minimized requirement for an addi-
tional carbon source. Although these processes are not yet widely applicated in praxi,
they are investigated in detail in pilot- or demonstration-scale in single wastewater
treatment plants. The results seem to be promissing and might get importance in
the future.

The authors and the editors of the new book hope that the presented comprehen-
sive overview on processes of environmental biotechnology for liquid, solid and gas-
eous waste treatment will help students and professional experts to obtain a fast fun-
damental information and an overview over the biological background and general
process alternatives. This might then be a useful basis or starting point to tackle a
specific process in more detail.

Josef Winter, Claudia Gallert, Hans-Joachim Jördening
Karlsruhe and Braunschweig, September 2004
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1
Bacterial Metabolism in Wastewater Treatment Systems

Claudia Gallert and Josef Winter

1.1
Introduction

Water that has been used by people and is disposed into a receiving water body with
altered physical and/or chemical parameters is defined as wastewater. If only the
physical parameters of the water were changed, e.g., resulting in an elevated tem-
perature after use as a coolant, treatment before final disposal into a surface water
may require only cooling close to its initial temperature. If the water, however, has
been contaminated with soluble or insoluble organic or inorganic material, a combi-
nation of mechanical, chemical, and/or biological purification procedures may be
required to protect the environment from periodic or permanent pollution or dam-
age. For this reason, legislation in industrialized and in many developing countries
has reinforced environmental laws that regulate the maximum allowed residual
concentrations of carbon, nitrogen, and phosphorous compounds in purified waste-
water, before it is disposed into a river or into any other receiving water body How-
ever, enforcement of these laws is not always very strict. Enforcement seems to be
related to the economy of the country and thus differs significantly between wealthy
industrialized and poor developing countries. In this chapter basic processes for bi-
ological treatment of waste or wastewater to eliminate organic and inorganic pollu-
tants are summarized.

1.2
Decomposition of Organic Carbon Compounds in Natural and Manmade Ecosystems

Catabolic processes of microorganisms, algae, yeasts, and lower fungi are the main
pathways for total or at least partial mineralization/decomposition of bioorganic and
organic compounds in natural or manmade environments. Most of this material is
derived directly or indirectly from recent plant or animal biomass. It originates from
carbon dioxide fixation via photosynthesis (→ plant biomass), from plants that
served as animal feed (→ detritus, feces, urine, etc.), or from fossil fuels or biologi-
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cally or geochemically transformed biomass (→ peat, coal, oil, natural gas). Even the
carbon portion of some xenobiotics can be tracked back to a biological origin, i.e., if
these substances were produced from oil, natural gas, or coal. Only because the
mineralization of carbonaceous material from decaying plant and animal biomass
in nature under anaerobic conditions with a shortage of water was incomplete, did
the formation of fossil oil, natural gas, and coal deposits from biomass occur
through biological and/or geochemical transformations. The fossil carbon of natu-
ral gas, coal, and oil enters the atmospheric CO2 cycle again as soon as these com-
pounds are incinerated as fuels or used for energy generation in industry or private
households.

Biological degradation of recent biomass and of organic chemicals during solid
waste or wastewater treatment proceeds either in the presence of molecular oxygen
by respiration, under anoxic conditions by denitrification, or under anaerobic condi-
tions by methanogenesis or sulfidogenesis. Respiration of soluble organic com-
pounds or of extracellularly solubilized biopolymers such as carbohydrates, pro-
teins, fats, or lipids in activated sludge systems leads to the formation of carbon
dioxide, water, and a significant amount of surplus sludge. Some ammonia and H2S
may be formed during degradation of sulfur-containing amino acids or heterocyclic
compounds. Oxygen must either be supplied by aeration or by injection of pure oxy-
gen. The two process variant for oxygen supply differ mainly in their capacity for
oxygen transfer and the stripping efficiency for carbon dioxide from respiration.
Stripping of carbon dioxide is necessary to prevent a drop in pH and to remove heat
energy. Respiration in the denitrification process with chemically bound oxygen
supplied in the form of nitrate or nitrite abundantly yields dinitrogen. However,
some nitrate escapes the reduction to dinitrogen in wastewater treatment plants and
contributes about 2% of the total N2O emissions in Germany (Schön et al., 1994).
Denitrifiers are aerobic organisms that switch their respiratory metabolism to the
utilization of nitrate or nitrite as terminal electron acceptors, if grown under anoxic
conditions. Only if the nitrate in the bulk mass has been used completely does the
redox potential become low enough for growth of strictly anaerobic organisms, such
as methanogens or sulfate reducers. If anaerobic zones are allowed to form in
sludge flocs of an activated sludge system, e.g., by limitation of the oxygen supply,
methanogens and sulfate reducers may develop in the center of sludge flocs and
form traces of methane and hydrogen sulfide, found in the off-gas.

Under strictly anaerobic conditions, soluble carbon compounds of wastes and
wastewater are degraded stepwise to methane, CO2, NH3, and H2S via a syntrophic
interaction of fermentative and acetogenic bacteria with methanogens or sulfate re-
ducers. The complete methanogenic degradation of biopolymers or monomers via
hydrolysis/fermentation, acetogenesis, and methanogenesis can proceed only at a
low H2 partial pressure, which is maintained mainly by interspecies hydrogen trans-
fer. Interspecies hydrogen transfer is facilitated when acetogens and hydrogenolytic
methanogenic bacteria are arranged in proximity in flocs or in a biofilm within
short diffusion distances. The reducing equivalents for carbon dioxide reduction to
methane or sulfate reduction to sulfide are derived from the fermentative metab-
olism, e.g., of clostridia or Eubacterium sp., from â oxidation of fatty acids, or the ox-
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idation of alcohols. Methane and CO2 are the main products in anaerobic environ-
ments where sulfate is absent, but sulfide and CO2 are the main products if sulfate
is present.

1.2.1
Basic Biology, Mass, and Energy Balance of Aerobic Biopolymer Degradation

To make soluble and insoluble biopolymers – mainly carbohydrates, proteins, and
lipids – accessible for respiration by bacteria, the macromolecules must be hydro-
lyzed by exoenzymes, which often are produced and excreted only after contact with
respective inductors. The exoenzymes adsorb to the biopolymers and hydrolyze
them to monomers or at least to oligomers. Only soluble, low molecular weight
compounds (e.g., sugars, disaccharides, amino acids, oligopeptides, glycerol, fatty
acids) can be taken up by microorganisms and be metabolized for energy produc-
tion and cell multiplication.

Once taken up, degradation via glycolysis (sugars, disaccharides, glycerol), hydrol-
ysis and deamination (amino acids, oligopeptides), or hydrolysis and â oxidation
(phospholipids, long-chain fatty acids) proceeds in the cells. Metabolism of almost
all organic compounds leads to the formation of acetyl-CoA as the central interme-
diate, which is used for biosyntheses, excreted as acetate, or oxidized to CO2 and re-
ducing equivalents in the tricarboxylic acid (TCA) cycle. The reducing equivalents
are respired with molecular oxygen in the respiration chain. The energy of a maxi-
mum of only 2 mol of anhydridic phosphate bonds of ATP is conserved during gly-
colysis of 1 mol of glucose through substrate chain phosphorylation. An additional
2 mol of ATP are formed during oxidation of 2 mol of acetate in the TCA cycle,
whereas 34 mol ATP are formed by electron transport chain phosphorylation with
oxygen as the terminal electron acceptor. During oxygen respiration, reducing
equivalents react with molecular oxygen in a controlled combustion reaction.

When carbohydrates are respired by aerobic bacteria, about one third of the initial
energy content is lost as heat, and two thirds are conserved biochemically in 38
phosphoanhydride bonds of ATP. In activated sludge reactors or in wastewater
treatment ponds that are not loaded with highly concentrated wastewater, wall irra-
diation and heat losses with the off-gas stream of aeration into the atmosphere pre-
vent self-heating. In activated sludge reactors for treatment of highly concentrated
wastewater, however, self-heating up to thermophilic temperatures may occur if the
wastewater is warm in the beginning, the hydraulic retention time for biological
treatment is short (short aeration time), and the air or oxygen stream for aeration is
restricted so as to supply just sufficient oxygen for complete oxidation of the pollu-
tants (small aeration volume).

The conserved energy in the terminal phosphoanhydride bond of ATP, formed
during substrate chain and oxidative phosphorylation by proliferating bacteria is
partially used for maintenance metabolism and partially for cell multiplication. Par-
titioning between both is not constant, but depends on the nutritional state. In high-
ly loaded activated sludge reactors with a surplus or at least a non-growth–limiting
substrate supply, approximately 50% of the substrate is respired in the energy me-
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tabolism of the cells and 50% serves as a carbon source for cell growth (Table 1.1).
The biochemically conserved energy must be dissipated to be used for the mainte-
nance metabolism of existing cells and cell growth.

If the substrate supply is growth-limiting, e.g., in a low-loaded aerobic treatment
system, a higher proportion of ATP is consumed for maintenance, representing the
energy proportion that bacteria must spend for non-growth–associated cell survival
metabolism, and less energy is available for growth. Overall, more of the substrate
carbon is respired, and the ratio of respiration products to surplus sludge formed is
higher, e.g., around 70% : 30% (Table 1.1). In a trickling filter system, an even high-
er proportion of the substrate seems to be respired. This might be due to protozoa
grazing off part of the biofilm.

For comparison, Table 1.1 also summarizes carbon dissipation in anaerobic me-
thanogenic degradation. Only about 5% of the fermentable substrate is used for cell
growth (surplus sludge formation) in anaerobic reactors, whereas 95% is converted
to methane and CO2, and most of the energy of the substrates is conserved in the
fermentation products.

1.2.1.1 Mass and Energy Balance for Aerobic Glucose Respiration 
and Sewage Sludge Stabilization

In most textbooks of microbiology, respiration of organic matter is explained by
Eq. 1, with glucose used as a model substance. Except for an exact reaction stoichi-
ometry of the oxidative metabolism, mass and energy dissipation, if mentioned at
all, are not quantified. Both parameters are, however, very important for activated
sludge treatment plants. The surplus sludge formed during wastewater stabilization
requires further treatment, causes disposal costs, and – in the long run – may be an
environmental risk, and heat evolution during unevenly high-loaded aerobic treat-
ment may shift the population toward more thermotolerant or thermophilic species
and thus, at least for some time, may decrease the process efficiency.

1 mol C6H12O6 + 6 mol O2 → 6 mol CO2 + 6 mol H2O + heat energy (1)
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Table 1.1 Carbon flow during (A) aerobic degradation in an activated sludge system under (a) sat-
urating and (b) limiting substrate supplya and during (B) anaerobic degradation.

(A) Aerobic degradation:

(a) Saturating substrate supply = high-load conditions

1 unit substrate carbon → 0.5 units CO2 carbon + 0.5 units cell carbon

(b) Limiting substrate supply = low-load conditions

1 unit substrate carbon → 0.7 units CO2 carbon + 0.3 units cell carbon

(B) Anaerobic degradation:

1 unit substrate carbon → 0.95 units (CO2 + CH4) carbon + 0.05 units cell carbon

a Estimated from surplus sludge formation in different wastewater treatment plants.


