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Preface

At a time, when more than 150 bacterial and archaebacterial genomes, two plant
genomes and a series of avertebrate and vertebrate genomes including the
human genome have been deciphered base by base (some gaps notwithstanding),
and more than 400 other genomes are in the mill, a Handbook of Plant Genome
Mapping (Genetic and Physical Mapping) might seem a bit out of time. In fact, for
many plants and animals genetic maps with vastly different densities are available
and being improved continuously. Some of the scientific journals already begin to
discourage authors to publish such increasingly dense maps and ask for more de-
tailed informations such as genes isolated by map-based cloning.
In essence, genetic maps are by no means orphanized anymore. Also, if not yet

available, genetic maps can be generated with speed and relative ease, provided a
good selection of polymorphic parents, a wonderful and numerous segregating
progeny, a highly resolving molecular marker system, powerful computer
packages, a lot of people and enough money are at hand. So, in a not-too-far future,
genetic maps will be commonplace given the relative ease of their generation.
The situation is quite different for physical maps of genomes. First of all, a phys-

ical map traditionally depends on the availability of a genetic map. Despite other
approaches, the most practical method to establish a physical map still requires
a large-insert clone bank on one hand, and a preferably highly dense genetic
map on the other. And each and every marker, or marker bundle, that allows
easy identification of the underlying DNA clones of whatever make-up (BAC clones
seem to have won the race by now, and YAC clones lost because of chimerism and
redundancies) is welcome. A highly resolving physical map, however, still requires
a lot more input in labour, time, knowledge and funds than a genetic map. It is for
this reason, that physical maps are available only for relatively few higher organ-
isms, though common for prokaryota, whose chromosomes are sequenced and di-
rectly aligned into an ultimate physical map. Such complete genomic sequences
(i. e. complete physical maps) are still an exception for eukaryotes. And, with
one single exception, techniques used for the assembly of whole genome se-
quences still makes use of genetic and physical maps. The exception to this rule
is the HAPPY mapping procedure, an ingenious tool with which physical maps
can directly and happily be generated. This exception aside, the treadmill for
many postdocs is and will be for the foreseeable future, the establishment of ge-



netic maps of the target organism as a prerequisite, including the production of
BAC libraries and the physical alignment of the thousands of clones into contigs,
at least for a region of interest. And genetically mapped markers will still serve to
guide the way.
In appreciation of these facts, we set out to invite internationally renowned and

highly competent plant researchers with an undisputed scientific reputation to por-
tray their contributions to the genetic and physical mapping of plant genomes. The
present “Handbook of Plant Genome Mapping: Genetic Mapping, Physical Map-
ping” is the most complete, up-to-date and competently written and compiled trea-
tise of this complex topic. All the authors have striven to report the latest achieve-
ments and developments in their fields and did not spare any pains to introduce
their areas of research, to detail methodological aspects and to present the state-
of-the-art and future perspectives as well. This Handbook reflects the quality of
worldwide research on plant genetic and physical mapping.
The editors most cordially appreciate the various contributions to make this book

a standard for plant genome mapping for the foreseeable future.

November 2004

Khalid Meksem G�nter Kahl
Carbondale (IL, USA) Frankfurt am Main (Germany)
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Mapping Populations and Principles of Genetic Mapping

Katharina Schneider

Overview

Mapping populations consist of individuals of one species, or in some cases they
derive from crosses among related species where the parents differ in the traits
to be studied. These genetic tools are used to identify genetic factors or loci that
influence phenotypic traits and to determine the recombination distance between
loci. In different organisms of the same species, the genes, represented by alternate
allelic forms, are arranged in a fixed linear order on the chromosomes. Linkage va-
lues among genetic factors are estimated based on recombination events between
alleles of different loci, and linkage relationships along all chromosomes provide a
genetic map of the organism. The type of mapping population to be used depends
on the reproductive mode of the plant to be analyzed. In this respect, the plants fall
into the main classes of self-fertilizers and self-incompatibles. This chapter illus-
trates the molecular basis of recombination, summarizes the different types of
mapping populations, and discusses their advantages and disadvantages for differ-
ent applications.

Abstract

In genetics and breeding, mapping populations are the tools used to identify the
genetic loci controlling measurable phenotypic traits. For self-pollinating species,
F2 populations and recombinant inbred lines (RILs) are used; for self-incompatible,
highly heterozygous species, F1 populations are mostly the tools of choice. Back-
cross populations and doubled haploid lines are a possibility for both types of
plants. The inheritance of specific regions of DNA is followed by molecular mar-
kers that detect DNA sequence polymorphisms. Recombination frequencies be-
tween traits and markers reveal their genetic distance, and trait-linked markers
can be anchored, when necessary, to a more complete genetic map of the species.
For map-based cloning of a gene, populations of a large size provide the resolution
required.



Due to intensive breeding and pedigree selection, genetic variability within the
gene pools of relevant crops is at risk. Interspecific crosses help to increase the
size of the gene pool, and the contribution of wild species to this germ plasm in
the form of introgression lines is of high value, particularly with respect to traits
like disease resistance. The concept of exotic libraries with near-isogenic lines,
each harboring a DNA fragment from a wild species, implements a systematic
scan of the gene pool of a wild species.
To describe the complexity of genome organization, genetic maps are not suffi-

cient because they are based on recombination, which is largely different along all
genomes. However, genetic maps, together with cytogenetic data, are the basis for
the construction of physical maps. An integrated map then provides a detailed view
on genome structure and enforces positional cloning of genes and ultimately the
sequencing of complete genomes.

1.1
Introduction

Since Mendel formulated his laws of inheritance in 1865, it is a core component of
biology to relate genetic factors to functions visible as phenotypes. At Mendel’s
time, genetic analysis was restricted to visual inspection of the plants. Pea
(Pisum sativum [Fabaceae]) was already a model plant at the time, and Mendel stu-
died visible traits such as seed and pod color, surface structure of seeds and pods
(smooth versus wrinkled), and plant height. These traits are, in fact, the first ge-
netic markers used in biology. In 1912 Vilmorin and Bateson described the first
work on linkages in Pisum. However, the concept of linkage groups representing
chromosomes was not clear in Pisum until 1948, when Lamprecht described the
first genetic map with 37 markers distributed on 7 linkage groups (summarized
in Swiecicki et al. 2000). Large collections of visible markers are today available
for several crop species and for Arabidopsis thaliana (Koornneef et al. 1987; Neuffer
et al. 1997).
In the process of finding more and more genetic markers, the first class of char-

acters scored at the molecular level was isoenzymes. These are isoforms of proteins
that vary in amino acid composition and charge and that can be distinguished by
electrophoresis. The technique is applied to the characterization of plant popula-
tions and breeding lines and in plant systematics, but it is also used for genetic
mapping of variants, as shown particularly in maize (Frei et al. 1986, Stuber et
al. 1972). However, due to the small number of proteins for which isoforms
exist and that can be separated by electrophoresis, the number of isoenzyme mar-
kers is limited.
The advance of molecular biology provided a broad spectrum of technologies to

assess the genetic situation at the DNA level. The first DNA polymorphisms de-
scribed were restriction fragment length polymorphism (RFLP) markers (Botstein
et al. 1980). This technique requires the hybridization of a specific probe to re-
stricted genomic DNA of different genotypes. The whole genome can be covered
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by RFLP and, depending on the probe, coding or non-coding sequences can be ana-
lyzed. The next generation of markers was based on PCR: rapid amplified poly-
morphic DNA (RAPD) (Williams et al. 1990; Welsh and McClelland 1990) and am-
plified fragment length polymorphism (AFLP) (Vos et al. 1995). Recently, methods
have been developed to detect single nucleotide polymorphisms (summarized in
Rafalski 2002). Because these methods have the potential for automatization and
multiplexing, they allow the establishment of high-density genetic maps.
Whereas RAPD and AFLP analyses are based on anonymous fragments, RFLP

and SNP analyses allow the choice of expressed genes as markers. Genes of a
known sequence and that putatively influence the trait of interest can be selected
and mapped. In this way function maps can be constructed (Chen et al. 2001;
Schneider et al. 2002). Phenotypic data of the segregating population, correlated
to marker data, prove or disprove potential candidate genes supporting mono-
and polygenic traits.
The basis for genetic mapping is recombination among polymorphic loci, which

involves the reaction between homologous DNA sequences in the meiotic pro-
phase. Currently, the double-strand-break repair model (Szostak et al. 1983) is ac-
knowledged to best explain meiotic reciprocal recombination (Figure 1.1). In this
model, two sister chromatids break at the same point and their ends are resected
at the 5l ends. In the next step the single strands invade the intact homologue and
pair with their complements. The single-strand gaps are filled in using the intact
strand as template. The resulting molecule forms two Holliday junctions. Upon re-
solution of the junction, 50% of gametes with recombinant lateral markers and
50% non-recombinants are produced. In the non-recombinants, genetic markers
located within the region of strand exchange may undergo gene conversion,
which can result in nonreciprocal recombination, a problem interfering in genetic
mapping. In plants, gene conversion events were identified by B�schges et al.
(1997) when cloning the Mlo resistance gene from barley.
The likelihood that recombination events occur between two points of a chromo-

some depends in general on their physical distance: the nearer they are located to
each other, the more they will tend to stay together after meiosis. With the increase
of the distance between them, the probability for recombination increases and ge-
netic linkage tends to disappear. This is why genetic linkage can be interpreted as a
measure of physical distance. However, taking the genome as a whole, the fre-
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Figure 1.1. Generation of recombinants by chiasma for-
mation. In the meiotic prophase, two sister chromatids of
each parent (labeled in red and green, respectively) align
to form a bivalent. A chiasma is formed by a physical
strand exchange between two non-sister chromatids.
Breakage and reunion of reciprocal strands leads to the
generation of recombinants.



quency of recombination is not constant because it is influenced by chromosome
structure. An example is the observation that recombination is suppressed in the
vicinity of heterochromatin: here, the recombination events along the same chro-
matid appear to be reduced, an observation called positive interference. It reduces
the number of double recombinants when, for example, three linked loci are con-
sidered.
Linkage analysis based on recombination frequency and the order of linked loci

is evaluated statistically using maximum likelihood equations (Fisher 1921; Hal-
dane and Smith 1947; Morton 1955). Large amounts of segregation data are routi-
nely processed by computer programs to calculate a genetic map; among the most
popular are JoinMap (Stam 1993) and MAPMAKER (Lander et al. 1987).

1.2
Mapping Populations

The trait to be studied in a mapping population needs to be polymorphic between
the parental lines. Additionally, a significant trait heritability is essential. It is al-
ways advisable to screen a panel of genotypes for their phenotype and to identify
the extremes of the phenotypic distribution before choosing the parents of a map-
ping population. It is expected that the more the parental lines differ, the more ge-
netic factors will be described for the trait in the segregating population and the
easier their identification will be. This applies to monogenic as well as to polygenic
traits.
A second important feature to be considered when constructing a mapping po-

pulation is the reproductive mode of the plant. There are two basic types. On the
one hand are plants that self naturally, such as Arabidopsis thaliana, tomato, and
soybean, or that can be manually selfed, such as sugar beet and maize; on the
other hand are the self-incompatible, inbreeding-sensitive plants such as potato.
Self-incompatible plants show high genetic heterozygosity, and for these species
it is frequently not possible to produce pure lines due to inbreeding depression.
Usually only self-compatible plants allow the generation of lines displaying a maxi-
mum degree of homozygosity. In conclusion, the available plant material deter-
mines the choice of a mapping population. Other factors are the time available
for the construction of the population and the mapping resolution required.
Based on these concepts, this section will be divided into seven parts:

1. mapping populations suitable for self-fertilizing plants,
2. mapping populations for cross-pollinating species,
3. two-step strategies for mapping mutants and DNA fragments,
4. chromosome-specific tools for mapping,
5. mapping in natural populations/breeding pools,
6. mapping genes and mutants to physically aligned DNA, and
7. specific mapping problems.
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