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Preface

The Federation of European Materials Societies (FEMS) organized the biannual
meeting of EUROMAT conference 2003 in Lausanne, Switzerland. This conference
was essentially focussed on materials development and application. One of the con-
ference topic was dedicated to PHASE TRANSFORMATION chaired by Professor
Wilfried Kurz, Lausanne. It consisted of two symposia S1 on SOLIDIFICATION and
S3 on SOLID STATE TRANSFORMATION.

Papers submitted originally to Symposium S2 MODELLING were integrated into
Symposium S1. All together 96 abstracts not only from Europe but also from Asia
and America were submitted to Symposium S1 with which S1 became the largest
symposium of EUROMAT 2003 conference. The papers were distributed to three
sessions on Modelling, two sessions on Microstructures and one session on Properties
of Melts, Nucleation, Dendritic Growth, Phase Selection, Multiphase Alloys and Processing
Methods, respectively. In addition there was a poster session.

The symposium was started with a plenary lecture by Professor Michel Rappaz on
Modelling of Solidification with Special Emphasis on the Last Stage Solidification. The
oral sessions and the poster session attracted many attendees and experienced vivid
discussions showing that the research area of solidification is carried by a large and
very active scientific community. In particular, remarkable progress was reported on
new experimental methods and techniques for direct observation and analysis of so-
lidification pathways both under near- and non-equilibrium conditions. Simulta-
neously, modelling of solidification proceeded to a big step forwards enabling now
even the computer assisted description of solidification phenomena in multiphase
and multicomponent alloys. Such progress is of fundamental interest for materials
science but also very important in developing innovative techniques in materials pro-
duction routes of improved efficiency in casting processes of foundry industry. Since
by far most of the materials are produced from the liquid state as their parent phase
even small but steady advances in solidification processing leads to correspondingly
large consequences in progress of economy and living conditions of daily human
life. It is therefore mandatory for a prosperous society.

The present Publications to EUROMAT 2003 contains selected papers of sympo-
sium S1 which have been invited for submission to publication in the present book.
Each manuscript was peer reviewed by two independent experts before acceptance
for publication. Certainly, the peer review process has essentially contributed to the
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quality of the present volume. I appreciate the valuable and important assistance of
all experts who delivered reports on submitted manuscripts.

I would like to extend my gratitude to Professor Wilfried Kurz for inviting me as
an organizer of the symposium Solidification of the topic of Phase Transformation,
and the colleagues who took over the chairmanship of the different sessions as An-
dreas Ludwig (Leoben), Michel Rappaz (Lausanne), Heike Emmerich (Dortmund),
A. Lindsay Greer (Cambridge), Heiner Müller-Krumbhaar (Jülich), Dirk Holland-
Moritz (Köln), Andy Mullis (Leeds), Lorenz Ratke (Köln), Peter Schuhmacher (Leo-
ben) and Britta Nestler (Karlsruhe). I enjoyed the cooperation with Michel Rappaz in
his help of combining Symposium S2 (Modelling) with Symposium S1 (Solidifica-
tion). My thanks are to the local organisers in Lausanne for an excellent conference
performance, Peter-Paul Schepp from the Deutsche Gesellschaft für Materialkunde
in the preparation of the programme, the Deutsche Forschungsgemeinschaft for
support within the priority program SPP1120 and Jörn Ritterbusch and Jörg Wrze-
sinski from WILEY-VCH for their great help in editing this book.

Köln, August 2004 Dieter M. Herlach
Organizer of Symposium
Solidification of EUROMAT 2003
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1
Complex Structures: A Symbiosis of Experiments and Numerical
Studies
J. H. Bilgram and H. M. Singer

Abstract

Dendrites are the best studied structures formed during solidification of under-
cooled melt. Additionally other complex structures have been found in experiments
and numerical studies. We perform 2D/3D-numerical simulations of solidification
processes and experiments which allow in situ investigations of three-dimensional
growth of xenon crystals into undercooled pure melt. Dendrites, seaweed, doublons,
triplons etc. can be produced in experiments and numerical studies depending on
initial conditions. In an interplay of numerical studies and experiments we use si-
mulations to interpret and to plan experiments. Experimental results are used as a
basis of model calculations and the development of models of complex shapes.
Three-dimensional growth shapes of crystals are reconstructed using sophisticated
image processing combined with experimentally determined shape parameters.

1.1
Introduction

Applications in automotive industry call for aluminium castings to be mass-produced
without casting defects. Predictive models are necessary to prevent such defects. Dur-
ing the growth of a solid from its undercooled parent melt microstructures are
formed. The best-known cases of such structures are dendrites. Microstructural
changes can be observed as undercooling is increased, namely the typical length
scales like the tip radius decrease with increasing undercooling [1, 2]. These are quan-
titative changes. In addition to that, for some materials it has been observed that they
also undergo an abrupt decrease in microscale with increasing undercooling. This ef-
fect is known as spontaneous grain refinement. It has been observed in solidification
from undercooled pure metallic melts [3] and alloys [4, 5]. Evidence has been found
that spontaneous grain refinement is initiated by changes in the morphology of the
microscopic structures [3]. This is in difference to the above mentioned quantitative
grain refinement with increasing undercooling. In order to obtain more information
on shapes, developed during solidification, numerical modeling and analytical stu-
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dies of the solidification process have been performed. Starting with a mathematical
formulation of the dendrite problem, the goal is to find out which solutions exist and
which morphologies are possible. Namely the stability of solutions has been studied
[6, 7, 8]. A very astonishing result was the discovery of a doublon in 2D studies [9]. It
is formed by two crystalline tips with a straight channel in between. This is a typical
non-equilibrium shape. It was followed up by numerical studies which found a triplet
in an 3D channel [8]. In a next step a morphology diagram has been developed for 2D
systems [10, 11]. Regions for stable fractal and compact growth of dendrites and sea-
weed have been determined. Seaweed has been considered to be built up from dou-
blons. In this study the stability regions of morphologies have been determined in a
field of supercooling of the melt vs. anisotropy of the surface free energy. Supercool-
ing is given in the range from 0 to 1 in dimensionless units and the anisotropy in the
range from 0 to 1. High anisotropies lead to dendritic growth, at low anisotropy and
sufficient undercooling seaweed is growing. The amount of noise in the system un-
der consideration may influence the position of the phase boundaries. Therefore the
phase diagram has to be considered to be a qualitative one.

To verify predictions, numerical and experimental studies have to be combined.
We hope that such combined studies will stimulate the application of theoretical re-
sults in the design casting processes.

1.2
Experimental Studies

Existing models for dendritic growth do not predict morphological parameters with
sufficient accuracy for reliable calculations to be applied in industrial casting pro-
cesses. Metallographic techniques show microstructures which have been trans-
formed during solidification and subsequent cooling. The study of decanted struc-
tures leads to an overestimation of the fraction of solid and does not provide infor-
mation of solidification kinetics. Time resolved synchrotron radiation imaging tech-
niques do no not provide a lateral resolution suficient to determine typical length
scales of the fine structure and it is not possible to study three-dimensional struc-
tures with this technique up to now [12]. Thus the use of transparent materials is the
only way to determine growth parameters of morphologies during the solidification
process. Two types of experiments have been performed: quasi two dimensional stu-
dies on organic alloys [13] and studies of pure materials during free growth in three
dimensions [14, 15, 16].

First experimental evidence of doublons has been achieved by Akamatsu et al. [13].
A thin cuvette was used and the material was an mixture of two organic liquids CBr4

and C2Cl6. This system has two properties,which are important for the experiment:
i) An alloy is used. It is well known that in alloys much higher constitutional under-
coolings are possible than for bulk undercoolings in a pure melt.
ii) Interface kinetics and surface free energy of the solid-liquid interface are anisotro-
pic. Therefore this system has the great advantage that it is possible to change aniso-
tropy of the surface free energy by changing the orientation of the seed crystal.
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In these experiments the growth of seaweed has been observed and phase dia-
grams of the type as developed by Brener et al. [11] have been verified.

The calculations of Brener et al. have been performed for a 2D system. The experi-
ments of Akamatsu et al. have been performed in a thin cuvette and thus it is a
quasi-two-dimensional system. A two-dimensional doublon is topologically different
from a doublon in three dimensions, because in 2D there is only one way out of the
channel, namely at the tips. In the 3D case it is possible to move out of the channel
in a direction perpendicular to the plane defined by the two branches limiting the
channel. This fact changes topology significantly and also the possibility for the la-
tent heat to diffuse away.

Experiments in three dimensions to detect doublons and seaweed have been per-
formed in a growth vessel with a volume of 100 cm3 of pure liquid xenon. We use xe-
non as a transparent model substance for metals, because it forms a simple liquid, it
crystallizes in an fcc-lattice, and it forms a solid-liquid interface which is rough at
atomic scale. Details of the experimental setup are described in [16, 17]. At the begin-
ning of the experiment the melt is brought to a homogeneous temperature T�

which is below the melting temperature, i. e. the melt is homogeneously under-
cooled. Then a crystal is nucleated in a capillary and grows through the capillary into
the undercooled melt. The dimensions of the growth vessel are sufficiently large to
ensure free growth of the crystal. According to the properties of the solid-liquid inter-
face and the undercooling in the range of 10–3 to 10–2 in dimensionless units, a den-
drite grows to a stationary state after several minutes and the temperature distribu-
tion around the dendrite reaches a steady state. An important feature of the experi-
mental setup [17] is the possibility to shift this dendrite up and down inside of the
growth vessel. Shifting the dendrite in the growth vessel means to disturb the tem-
perature distribution around the crystal and to wash off the isotherms. Immediately
after such a shift the crystal is surrounded by melt with a spatial homogeneous tem-
perature. Any surface element of the dendrite tip is in contact with liquid at a tem-
perature close to T�. The thermal gradient at the crystal surface is everywhere the
same. (Neglecting that the surface has been non isothermal before shifting the crys-
tal.) Therefore any surface element of the crystal is growing with the same growth
rate. This leads to an increase in the tip radius of the dendrite (Figure 1.) With in-
creasing tip radius the dendrite reaches a state where the tip becomes unstable and
tip splitting is observed. After tip splitting two tips continue to grow and form a dou-
blon with a straight channel between the two tips. A sequence of contours is shown
in Figure 1. By this procedure it is possible to grow various morphologies. Figure 2
shows a dendrite, a doublon and a seaweed morphology.

In difference to Brener et al. [11] we distinguish between doublon and seaweed
morphology. This difference may originate from the three-dimensional geometry.
The three morphologies can be distinguished from symmetry considerations: A den-
drite shows a high degree of symmetry. For the seaweed no growth direction can dis-
tinguished in the plane of projection. The doublon has an axis of symmetry in the
center of the channel.

In three dimensions the morphological transitions are not limited to the three
cases shown in Figure 2. In addition to that we find triplons and quadruplons and
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even higher multiples of tips. Up to now we do not know the precise conditions for
the occurrence of a special morphology. Figure 3 shows the development of a triplon
out of a dendrite.

4 1 Complex Structures: A Symbiosis of Experiments and Numerical Studies

Fig. 1. A sequence of contours taken after the crystal has been shif-
ted in the growth vessel. First we have the shape of the dendrite (ar-
row 1). During the temporal development the tip radius increases
and the tip radius becomes unstable (arrow 2). Finally two tips are
formed with a straight channel of liquid in between forming a doub-
lon (arrow 3).

Fig. 2. Three morphologies: A dendrite, a doublon, and a seaweed.

Fig. 3. A crystal with three tips is formed in a similar process as
observed in Figure 1.



1.3
Numerical Studies

In order to verify and refine the qualitative analytical predictions by Brener et al. [11]
we have performed phase field simulations with two different phase field models in
2D and 3D. Phase field models are an elegant approach to solve the analytical equa-
tions numerically. Instead of calculating a sharp phase boundary between solid and
liquid in the Stefan- or sharp interface-problem every grid point holds in addition to
the temperature also its phase state. The phase may have arbitrary values between 0
(solid) and 1 (liquid). A thin, but finite region of steep changes between solid and li-
quid models the interface. This width can be chosen and determines how well the
approximation is in accordance with the sharp interface equations.

For our investigations we have chosen the models of Wheeler et al. [18] and Karma
et al. [19]. The main difference between the two models is that in the Wheeler model
the ratio between kinetic and capillary terms is fixed, where as in the Karma model
the kinetic term can be cancelled by appropriately chosen terms for low undercool-
ings. We have performed simulations on a 2000�2000 grid with different under-
coolings and anisotropies. The anisotropy axis goes from 0 to 6.5% as this is the
maximal value where a crystal still grows in rough growth. For higher anisotropies
the crystal becomes facetted as there occur forbidden growth directions. An initial
coarse scan of 100 simulations was used to partition the plane. Subsequently a bin-
ary search for the morphology boundary was performed. By this refinement we were
able to tie up the uncertainty region for the morphology boundary to up to 10–2%.
For lower undercoolings the simulation time increases significantly, therefore the
uncertainty becomes bigger. In Figure 4 the results for the 2D simulations can be
seen for both models. We have identified 3 regions of different morphologies: for
low anisotropies seaweed structures (sw) and for high anisotropies dendrites are ob-
served (den). For intermediate ansiotropies and high enough undercoolings dou-
blons are found (db). Both models show a similar behavior as the analytical predic-
tions for the morphology boundary (seaweed-dendrite): The shape is concave for in-
creasing anisotropy. However there is a big difference to the predictions for low un-
dercoolings: while the predictions state that the whole shape of the boundary is con-
cave we find in our simulations for low undercoolings and anisotropies a convex
boundary. Comparing the two phase field models with each other we find qualitative
correspondence. However we state that the boundary of the Karma model is slightly
more on the left than the one of the Wheeler model. A detailed discussion of this be-
havior can be found in [20].

Three-dimensional simulations are very time-consuming. Even though we use an
adaptive mesh code which runs parallel on 32 processors, it was not possible to ob-
tain the same fine resolutions as for 2D simulations. As we have found qualitative
agreement between the two models we have preformed 3D simulations in a domain
4003 only for the Karma model. The results are qualitatively similar to the 2D case
however with two exceptions: i) The morphology boundary for the same parameters
as in the 2D case is shifted along the anisotropy axis to the right by an amount of
0.32%. This result can be explained by the topological difference between 2D and
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3D: in 3D there is one additional dimension where heat can be transported away,
therefore more anisotropy is needed to stabilize the structure to be dendritic. ii) No
doublon region at all was found in 3D as opposed to 2D where we also started all si-
mulations with the same initial conditions (a small spherical seed) and found a dis-
tinct doublon region. When starting with a spherical seed in 3D only seaweeds or
dendrites can be simulated. It was however possible to simulate 3D doublons never-
theless by using special initial conditions [20]: by placing two identical seeds at a
large enough distance, both start growing as a dendrite. However very soon they
start interacting with each other and instead of developing four fins each they grow
in parallel and develop only 3 fins each as observed in our experiments (Figure 3).

1.4
Conclusions

Quenching of metals during solidification provides some information on micro-
structures but not on the dynamics of morphology transitions during the solidifica-
tion process. Transparent substances have been used to simulate solidification of me-
tals. Rare gases have low melting entropy and form a „simple liquid“ similar to me-
tals and can therefore be used as model substances to simulate transparent metals.
In these systems the solidification process can be studied in situ. Up to now the in-
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Fig. 4. Morphology diagram in 2 dimensions of the Wheeler model
and the Karma model [20]. The zones marked with Wheeler and
Karma correspond to the uncertainty regimes given by these models.
The dendritic domain is denoted as “den”. Seaweed as “sw” and
doublon as “db”.



formation from model experiments with transparent model substances has been
limited because no 3D information on the microstructure formed during solidifica-
tion was available.

Two new features have been introduced into the study of solidification by model
experiments: 1.) the study of various morphologies and morphological transitions,
and 2.) the possibility to reconstruct the shapes of transparent 3D objects [21]. Mor-
phology changes seem to lead to an explanation of grain refinement in metals, a fea-
ture that remained unexplained since a long time. The determination of the 3D
shape of objects formed during freezing provides for the first time the possibility to
determine 3D shape parameters necessary to apply theories in industrial processes.
We have started to determine such parameters and to characterize various morpholo-
gies formed during solidification and their transitions. We have the unique possibi-
lity to combine theoretical studies with experiments.

The interaction of experiment and theory is crucial. Theoretical studies are stimu-
lated by unexpected experimental observations, and using an expression coined by
L. Pasteur, the eye of the experimentalist is trained by theoretical results to see new
structures.
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2
Thermal Roughening of a Solid-on-Solid Model with
Elastic Interaction
Frank Gutheim, Heiner Müller-Krumbhaar, Efim Brener and
Christoph Pütter

2.1
Introduction

At low temperatures crystal surfaces are known to assume the shape of a plane facet.
With increasing temperature, fluctuations gradually contribute a nonzero thickness
to the initially flat facet. This surface thickness finally diverges at a finite tempera-
ture, the roughening temperature, where the order of the facet is lost completely. For
kinetics of crystal growth and solidification, the roughening transition plays a deci-
sive role. This transition can be described by a set of renormalization group equa-
tions first analyzed by Kosterlitz and Thouless [1]. Because of its unusual properties
and the relation to the two-dimensional Coulomb gas, this roughening transition
has attracted substantial attention.

Various discrete solid-on-solid (SOS) models have been shown to undergo this
type of transition. Most of these models incorporate local interactions, at most next-
nearest neighbor interactions. Within some of these models a transition involving
in-plane disorder is possible, usually referred to as preroughening.

Interaction of surface defects by means of elastic deformation of the crystal, how-
ever, is of a long-ranged nature and has apparently not been previously studied in
the context of roughening. Leaving the matter of preroughening aside, we will try to
elucidate the effects of long-range elastic interactions on the roughening process.

2.2
Step Interaction

Elastic step interaction on the surface of a semi-infinite crystal can be described in
terms of elastic force dipoles located at the step edges. Using symmetry arguments one
can determine two types of force dipoles that are considered to be present at a step.
One type involves in-plane forces perpendicular to the step, the other arises from forces
orthogonal to the crystal surface. The former leads to attractive or repulsive interaction
depending on the signs of the steps, the latter produces a sign-independent behavior,
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which is strictly repulsive. There are materials where the sign-dependent contributions
are small compared to the step repulsion caused by in-plane forces. Thus we restrict
our model to the case, where we can neglect sign-dependence of the steps [2]. We can
make another simplification of the step-step interaction by assuming a scalar w ~ 1/r3

interaction associated with isotropic dipoles at the step. From this, the energy per unit
length of the line for a configuration with two parallel steps at distance d is just

�Wscalar � � �
1

d�
� � �

1
��
� �1�

where the interaction is limited to distances greater than �. The factor � is given by

� � 1� �2

�E
Q2� �2�

where Q is the dipole moment per unit length of the step, � the Poisson ratio and E
Young’s modulus.

2.3
Model Description

Within the framework of a solid-on-solid model we describe the crystal surface by a
simple height field hi of integer multiples of the lattice constant a. Like in a common
SOS model, overhangs are forbidden. We define an elastic step interaction by intro-
ducing a field of elastic dipole charges q. To every lattice site k a dipole charge qk pro-
portional to the number of height differences to the four neighboring sites is as-
signed. The elastic dipole charges interact, in consequence of Eq. (1), via a modified
r–3 interaction potential �pmax

,l (r),

�pmax�l �r� �
min �a�r�3� pmax

� �
if r � l

0 if r � l

�
�3�

where r is the in-plane distance between two lattice sites and pmax is a number limiting
the interaction potential in vicinity of r = 0. We also introduce the cutoff length l, i. e.,
the potential vanishes for distances greater than l. This gives rise to the elastic energy

Eel � wel

2

�
i�j

qiqj�pmax�l �rij�� �4�

where rij is the distance between lattice sites i and j and wel can be adjusted to give
the desired interaction strength. Note that the case i = j is not excluded from the
summation. For two straight steps of length L with distance d and without cutoff
this elastic energy contribution consists of the self energies of the steps and the ex-
pected ~ d–2 step interaction term
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112.3 Model Description
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Fig. 1 Roughening transition of a surface under elastic interaction without
cutoff. The height field of our model for three different configurations, T �
4.5 wel , T � 13 wel (top to bottom), are shown as topviews. The heights are
coded in grayscales. The average height corresponds to 100 atomic units.



Eint � 8 wel
L

d2 � �5�

for large distances d � a.
Modifying pmax the self energy contribution of a straight step can be adjusted to

the desired line energy, independently of the step-step interaction amplitude.
For given pmax the relative amplitude of line energy and step-step interaction is

fixed and we can concentrate on the crossover from a local to a long-range model de-
pending on the cutoff length l, which is studied using the interaction potentials �1,l

where pmax = 1. Later, however, other relative amplitudes are studied for the potential
�pmax,�

without cutoff.
The simulation is carried out on a square lattice of size (L/a)2 = 64�64 to 128�128.

In order to calculate the difference in energy for every metropolis Monte Carlo trial, we
apply a multigrid scheme based on Ref. [3], which reduces computational cost and
which has already been applied successfully to submonolayer epitaxy [4].
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Fig. 2 Height-height correlation function without cutoff along the
main directions of the lattice. Left: The correlation function saturates
for all temperatures due to the finite size of the system. Right: Same
plot, but with finite size correction [2]. The correlation function satu-
rates for small temperatures and shows logaritzmic behavior for
T � TR. The first straight line gives an estimate of knTR/wel � 9.0.


