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Preface

Much like the smile on Mona Lisa’s face: beautiful and mysterious…

Ever since the centrosome was discovered more than a hundred years ago, many
aspects of its structure, function and reproduction have been shrouded by mystery.
However, new information is now rapidly leading to a better understanding of this
fascinating organelle, particularly with regard to its role in reproduction, develop-
ment and disease. The centrosome is a tiny organelle intimately involved with the
organization of the microtubule cytoskeleton. Hence, it governs most microtubule-
related functions, including intracellular transport, cell motility and polarity, as
well as the segregation of chromosomes during cell division. Importantly, the cen-
trioles – cylindrical structures embedded within the animal centrosome – are evo-
lutionarily related to basal bodies. These in turn give rise to cilia and flagella which
perform key functions not only in specialized epithelia and motile gametes, but
also in many unicellular organisms, including parasites. Thus, wherever cen-
trioles/basal bodies have been conserved in evolution, they are indispensable for
cell cycle progression, cell motility or sensory perception. Likewise, the spindle
pole body (SPB) of yeast, a microtubule organizing center (MTOC) functionally
analogous to the centrosome, is essential for cell viability.
Many of the fundamental problems in centrosome biology, notably its mode of

reproduction and its relevance to human development and cancer, were already in-
troduced by Theodor Boveri (1862-1915), the eminent scientist who pioneered the
study of centrosomes at the end of the 19th century. However, the centrosome had
proven refractory to molecular analysis for decades, largely due to its low abun-
dance and small size. Thanks to modern techniques and the application of comple-
mentary research strategies to several distinct organisms, answers to long-standing
questions about the centrosome (and related microtubule-organizing centers) are
now beginning to emerge. In particular, forward and reverse genetics, mass spec-
trometry-based proteomics approaches, and the combination of live-cell imaging
and laser microsurgery have yielded important new information on the composi-
tion of the centrosome, its duplication and its role in the cell division cycle.
These results also set the stage for new enquiries into the role of the centrosome
in the etiology of cancer and other human diseases, its impact on stem cell biology,



human reproduction and infertility, and last but not least, its relevance to the pro-
pagation of intracellular parasites. From this perspective, I hope that this book will
serve as a rich source of information for a wide audience, experienced centrosome-
researchers and newcomers alike.
My sincere thanks go to all authors for contributing excellent, comprehensive

and authoritative chapters, to Ms Alison Dalfovo for expert secretarial assistance
and to Dr. Andreas Sendtko and his colleagues at Wiley-VCH for a very pleasant
collaboration throughout the preparation of this book.

Erich A. Nigg
Martinsried, June 2004
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Color Plates

Figure 3.5 Modified template model of gTuRC-mediated microtubule nucleation. (a) The original
template model proposed that g-tubulins bind to a-tubulins at the minus ends of protofilaments
similarly to longitudinal a/b-tubulin binding within a protofilament (reviewed in [15, 17]). (b) The
modified template model takes into account physical properties of g-tubulin and the mechanism
of g-tubulin-mediated microtubule nucleation by proposing that g-tubulin binds between proto-
filaments [26]. A gTuRC containing 12 g-tubulins is shown associated with the microtubule, but a
14-g-tubulin gTuRC could also be accommodated. (c) Cross-sectional views illustrating the pro-
posed binding sites for g-tubulins between the a-tubulins at the minus end of each protofilament.
This mode of binding provides an explanation for how a gTuRC containing an even number of g-
tubulins could template a 13-protofilament microtubule, the most common architecture observed
in vivo.
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Figure 4.2 Yeast Spindle Pole
Body. Shown here is a schematic
of the organization of most of
the components described in
Table 4.1.

Figure 5.5 The three fiber systems of the basal body
complex. (A) The mature basal bodies are shown in
red, the transition zones in peach and the probasal
bodies are shown in pink. The rootlet microtubules
have four microtubules (orange) or two microtubules
(yellow) and attach at specific triplet microtubules
of the basal body. The distal (solid) and proximal
(striped) striated fibers are shown in light blue. They
connect the two mature basal bodies at the two ends.
The lateral fibers are shown in green. They connect the
mature basal body to its daughter probasal body
across the rootlet microtubules. (B) Changes in the
fiber systems during the cell cycle. 1, During inter-
phase the basal bodies and transition zones are con-
tinuous with the flagella. The rootlet microtubules are
adjacent to the plasma membrane. One of the four-
membered rootlet microtubules lie adjacent to the
eyespot (rose). 2, Another view of interphase cells
illustrates that the basal bodies are connected to the
nucleus and to each other by centrin fibers. 3, At
preprophase, the flagella are lost. The probasal bodies
elongate. The distal and proximal striated fibers are

lost. 4, The two-membered rootlet microtubules shorten. The centrioles (without transition
zones) are found at the poles of the spindle. The four-membered rootlet microtubules arc over
the spindle. The eyespot is disassembled. 5, Cytokinesis is initiated at one end of the cell. This
will be followed by extension of the two-membered rootlet microtubules, the striated fibers, and
assembly of new rootlet microtubules and of a new eyespot in association with the new four-
membered rootlet microtubules.
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Figure 7.2 A selection of differently tagged, novel centrosome proteins. Rows from top to bottom
show Cep63, Cep70 and Cep78. Columns from left to right show N-terminal GFP, C-terminal GFP
and N-terminal myc-tagged proteins, respectively. The most right-hand column shows the results
of very high overexpression of these proteins (tagged at the N-terminus with GFP), generating
large aggregates or a high cytoplasmic background. Green, ectopically expressed centrosomal
proteins; red, g-tubulin; blue, DNA (DAPI). The arrowhead points to the position of the centro-
some. Scale bars, 10 mm; panels in the three left columns are to the same scale as the top right
panel.
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Figure 8.3 Proposed functions
for the centrosome in cytokinesis.
(A) Centrosomes have been impli-
cated in a number of different pro-
cesses that ultimately lead to, and
in some cases are required for,
mitotic exit and cytokinesis. On
a temporal basis, these can be
divided into mitotic spindle and
contractile ring positioning, cleav-
age furrow and midbody formation,
cell separation and abscission.
However, we emphasize that there
is likely to be significant overlap in
the biochemical pathways required

for each of these endpoints. Examples of proteins that localize to mitotic centrosomes and are
implicated in these pathways are indicated in dark blue. (B) One of the most intriguing questions
relating to the role of the centrosome in cytokinesis is why the mother centriole migrates towards
the midbody prior to cell abscission. HeLa cells are shown following methanol fixation and
staining with antibodies against a-tubulin (green) and g-tubulin (red). DNA is stained with
Hoechst 33258 (blue). Scale bar, 10 mm.
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Figure 11.1 Centrosome alterations in response to heat, genotoxic and aggresome stress. In
diverse systems, g-tubulin (red) localizes to centrosomes at the mitotic spindle poles (A, B, B)
and close to interphase nuclei (C). In Chinese hamster ovary (CHO) cells, heat stress (A) triggers
loss of g-tubulin localization to the poles (courtesy of H. Hut) while genotoxic stress (B) leads to
mitotic centrosome fragmentation. Electron microscopic examination demonstrates that the
centrosome fragments contain single centrioles (insets). In response to heat shock and genotoxic
stress, centrosome disruption is associated with failures of mitotic division and mitotic cata-
strophe. In Drosophila embryos, genotoxic stress also leads to dissociation of g-tubulin from the
spindle poles (B) and mitotic catastrophe. Over-expression of a mutant form of GFP taggered the
Huntingtin protein (green) in hamster cells (C), leads to aggresome formation around interphase
centrosomes (courtesy of F. Salomons and M. Rujano). The significance of aggresome formation
is not known, but this structure may contribute to neurodegeneration in a number of pathological
conditions. In all panels, g-tubulin is in red and DNA is in blue. In B, the kinetochore marker
MeiS332 is in green. In C the Huntingtin-GFP protein is in green.



XXVIII Color Plates

Figure 12.2 The ultrastructure of the C. elegans centrosome. (A) Schematic representation of the
triplet structure of centrioles found in mammalian cells (top) and the singlet structure observed
in C. elegans (bottom). (B) Electron micrographs of wild-type centrioles in cross-section and
longitudinal orientation (left) and wild-type centriole pairs in orthogonal orientation (right).
(C) 3-D model of a centriole pair during prometaphase derived from a tomographic recon-
struction. Microtubules (red) are organized mainly around one centriole (blue), referred to as the
mother centriole. Note that the minus ends of the microtubules do not come in contact with this
centriole. Scale bars ¼ 250 nm.

nFigure 12.3 PCM recruitment and spindle assembly in C. elegans. Early embryos at different
stages of the cell cycle were fixed and labeled for DNA (blue), microtubules (green) and g-tubulin
(red). Z-stacks through entire embryos were acquired, the images deconvolved and shown as two-
dimensional projections. Scale bar ¼ 10 mm. The anterior is to the left in all the images. (a) An
acentrosomal meiotic spindle can be observed soon after fertilization (arrow). At this stage the
centrosome contributed by the sperm has yet to separate. (b) At the beginning of pronuclear
migration, the sperm-derived centrosome has separated and recruited some g-tubulin therefore
increasing the amount of microtubules it is able to nucleate. (c) At the time when the pronu-


