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Nature has utilized catalysis by employing enzymes since time immemorial. For ex-
ample, the enzyme urease is one of the most effective catalysts nature has designed.
It is capable to catalyze the decomposition of urea 1014 times faster than what is pos-
sible in the uncatalyzed elimination reaction. In this highly efficient reaction, nature
(bacteria) decomposes the urea produced (in the Krebs Cycle) by mammals to ammo-
nia and carbon dioxide for future uptake by plants, which is one of the requirements
for their growth and ultimate ingestion by man; thus completing the life cycle. Na-
ture has had time in its favor to ingeniously design its catalytic systems. Man has had
a much shorter time span to discover desired catalysts for the production of useful
intermediates and products and thereby influencing the course of modern life.

It was Berzelius, who in 1835 first coined the word catalyst, describing it as a
substance capable of accelerating reactions without itself being destroyed in the
process. Some fifty years later, in 1891 Oswald developed his theory of catalysis
putting it on a thermodynamic basis and proposing the concept of microscopic re-
versibility. Then in the 1920’s Mittasch became one of the first to promote the
idea of a rational scientific approach to the design of catalytic materials. This no-
ble goal is some eighty years later still a subject of much debate and want.

While nature had time in its favor, it had to work with only a limited number of
elements from which to design its key catalytic functionalities (e.g. nickel in urease),
and being limited by temperature constraints, man on the other hand has the whole
periodic table at his disposal from which to select key catalytic elements and is not
bound by any significant temperature constraints. Thus, even in the absence of any
unified catalysis theory, the ingenuity of man and his persistence to succeed, and by
utilizing working hypotheses and refining them through experimental feed back,
has discovered over the past one hundred years several major industrial processes
based on heterogeneous catalysis. Among these are: the IG Farben Haber-Bosch pro-
cess for the synthesis of ammonia utilizing Fe-Al-oxide based catalysts; the Houdry
catalytic cracking process using Si-Al-oxides; the UOP Platforming process using Pt-
Al-oxides; the SOHIO acrylonitrile process using Bi-Mo-oxides; and the Mobil aro-
matics isomerization process using ZSM-5 zeolites, to name but a few.

All of these mentioned commercial processes have had a major impact on the
industrial world and hence indirectly also on man’s improved lifestyle over the
years. Currently and for the foreseeable future, the majority of industrial pro-
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cesses for the manufacture of petrochemical intermediates and organic chemicals
are based on heterogeneous catalysis.

The proverbial question remains, how can we accelerate the process of catalyst
discovery? Looking back, it is obvious that a great amount of ingenuity and chemi-
cal intuition, combined with hard work has gone into the discovery process. It is
very unlikely that purely empirical research would have led to the important cata-
lytic process discoveries of the past one hundred years. This is particularly true be-
cause many of the tools available to the researcher today were not available to him
or her some fifty years ago. For example, in the 1950’s GC and NMR were not
routinely available and product analysis became one of the major bottlenecks in
catalytic research. For these reasons it was common then to experiment with
100 g catalyst charges in order to collect sufficient material for product analysis,
which consisted often of making appropriate organic derivatives so that they could
be analyzed and quantized by chemical and IR analyses. Indeed a tedious and
time consuming process that often only allowed one experiment to be performed
per week! By the 1960’s the analytical methods had improved to the point that
many exploratory experiments could be performed on 5 g samples, which de-
creased to milligram samples by the 1970’s and thereafter. Nonetheless, most of
the exploratory catalytic research was performed in 1 to 5 g microreactors. Some
two or three tube microreactors were used in industrial laboratories by the 1980’s,
but those were rather rare and single tube microreactors much more common.

Now with the advent of high throughput screening techniques, also known as
combinatorial methodologies, pioneered by Symyx Technologies and the subject of
this book, the catalyst researcher is provided with an entirely new tool which al-
lows for experimentation to be accelerated by a factor of 102 to 104. This indeed is
remarkable as is amply described and dissected in the different contributions of
this book, for it is now possible to combine chemical know-how, experience, intui-
tion and fast experimentation all at once.

It is believed that modern catalytic research has been altered by the advent of com-
binatorial methodology permanently and that it will behoove the researcher to em-
ploy these methods to enhance the process of discovery, thus shortening signifi-
cantly the time from inception, confirmation and ultimate commercialization of
promising catalytic systems. Combinatorial methodology is a tool that all catalyst
researchers should avail themselves of in order to enhance their discovery process.
It is a tool and in itself not exclusively sufficient for the discovery process, as several
contributors to this book attest. Combinatorial methodology needs to be combined
with sound chemical knowledge, structural and surface analyses, well thought out
working hypotheses, experience, intuition and theory, to achieve optimum results.

Robert K. Grasselli
Center for Catalytic Science and Technology
University of Delaware, USA, and
Institute of Physical Chemistry
University of Munich, Germany
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Rising economic demands for higher efficiency and productivity in Research and
Development in the chemical and refining industries have led to the implementa-
tion of high throughput, or combinatorial, methods in heterogeneous catalysis.
The key drivers have included the desire to reduce the time-to-market for new
and optimized catalysts and processes, increased probability of success and better
intellectual property protection from the ability to perform many more experi-
ments than in the past, shorter/more projects possible per unit time, and the in-
creased organizational efficiency resulting from improved data storage, access,
analysis, and sharing. The number of experiments that can now be screened can
be orders of magnitude higher than using traditional methods.

The combinatorial process in catalysis allows the exploration of large and di-
verse compositional and parameter spaces by utilizing integrated workflows that
include software-assisted design of diverse, high-density assemblies, or arrays, of
potential catalytic materials (known as “libraries”), and high-throughput synthesis,
characterization, and screening techniques that are characterized by the use of ro-
botics and advanced software. The integrated synthesis and screening of a plural-
ity of catalysts in library format has been recognized as an essential factor. Equip-
ment miniaturization and integrated data management systems are also key
aspects of successful workflows. The development and implementation of these
methods requires the involvement of unconventional engineering and software
resources not commonly available at chemical, refining and petrochemical com-
panies where heterogeneous and homogeneous catalysis is practiced.

This book will describe the current state of the art synthesis and screening tech-
niques for high throughput experimentation in chemical catalysis with a focus on
technology developed over the last 2–3 years. It will provide an up-to-date over-
view of the current status and advances that have been made in this rapidly grow-
ing field in both academia and industry. The targeted readership is the advanced-
level student, the catalytic or solid-state chemist in industrial and academic R&D
and engineers specializing in reactor technology, detection schemes and automa-
tion.

It has been a great pleasure and distinction for us to assemble a diverse group
of distinguished international authors from both academia and industry, each con-
tributing the most up-to-date results and status in their application of high
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throughput methodologies. The book covers reactor technology and integrated
synthesis and screening workflows, experiment design and search strategies, de-
tection schemes, and applications to liquid and gas phase heterogeneous catalysis,
fuel cell electrocatalysis and homogeneous catalysis. Diverse catalyst systems,
such as mixed metal oxides, supported metals, microporous systems/zeolites, me-
soporous sieves, as well as diverse chemical transformations (oxidations, dehydro-
genations, C1 chemistry, emissions control, petrochemical transformations, hydro-
genations, fuel processors) are discussed. We hope that this book will clearly dem-
onstrate the applicability, utility and advantage of combinatorial and high through-
put methodologies in chemical catalysis and that the reader will benefit from this
snapshot of a rapidly developing field in applied materials science.

We would like to thank all the authors for their contributions. We are thankful
to Silvia Lee for her help in putting the book together.

Santa Clara, May 2004 Alfred Hagemeyer
Peter Strasser
Anthony F. Volpe, Jr.
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1.1
Introduction

Traditional methods of catalyst synthesis and testing are slow and inefficient.
Whether one considers either homogeneous or heterogeneous catalyst systems,
the root causes for this problem are the same: the ability to predict theoretically
the optimal catalyst structure, composition, and synthesis conditions is poor to
non-existent, and the catalyst and catalyst formulations are prepared and tested
one at a time in a manually intensive fashion. While chemical principles and
knowledge of the literature guide the chemist in designing targets and experi-
ments, even in the most well understood areas of catalysis the parameter space
that one needs to explore is huge. The result is that the chemist using traditional
methods must navigate a complex and unpredictable diversity space with a limit-
ed data set to make discoveries, a situation that is perhaps acceptable for the opti-
mization of known systems where the synthesis–structure–property surface is
smooth, but unacceptably inefficient for the optimization of systems where
this surface is jagged or for the discovery of unprecedented catalytic systems. The
reliance on traditional methods of catalyst research leads to a bottleneck in the
supply of fundamentally new classes of catalytic materials (which we refer to as
“hits”) and enormous competition in industrial and academic laboratories during
the optimization of the precious few new systems that are discovered and pub-
lished. Given the inefficiency of traditional optimization of new homogeneous
and heterogeneous catalytic systems, the competition in recent decades is not sur-
prising, such as for metallocene olefin polymerization catalysts and the MoVNb-
oxide partial oxidation catalysts discussed below.

Until the publication of Schultz [1] in 1995 describing broadly “combinatorial”
or “high-throughput” methods for materials discovery, including homogeneous
and heterogeneous catalysts, and the creation of Symyx Technologies, the first
company dedicated to developing and applying these methods, efforts to improve
the efficiency of R&D were largely limited to enhancing analytical techniques to
better understand catalyst structure, computational approaches for the prediction
of structure–property relationships, improving the precision of laboratory reactor
data and its correlation to the commercial process, and the use of statistically de-
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signed experiments to minimize the number of experiments necessary to advance
a target. Miniaturization of reactor screening technologies existed before 1995, but
efforts to create highly automated and massively parallel workflows did not. Com-
binatorial methods were developed in the 1980s to improve the efficiency of drug
discovery, and these involve various high-dimensional experimental techniques in-
cluding the use of “split-pool” synthetic procedures where mixtures of thousands
of compounds are created on beads, parallel synthesis to produce a collection of
related organic compounds known as a “library”, and new property-screening tech-
nologies that allow the scientist to sort through large collections of potential leads
in an efficient and increasingly precise fashion. Philosophically related to these
methods, but differing substantially in application, Symyx developed a hierarchical
approach to create entire workflows for the synthesis and screening of homogeneous
and heterogeneous catalyst libraries. The hierarchical screening philosophies are
similar but the physical embodiments of high-throughput drug discovery and
high-throughput catalyst discovery and optimization are utterly different. These cat-
alyst discovery workflows can be considered as assembly lines, which allow one to
methodically and efficiently generate arrays of new classes of materials in a specific
format (a library) designed to maximize the ease of screening for various catalytic
transformations, and, then, upon the discovery of “hits” to optimize them efficiently
to create “leads” which become commercial development candidates for the targeted
process and product. In the following we refer to the use of these workflows as
“high-throughput research and development” (HT-R&D) and define this term to in-
clude both the synthesis and property evaluation of the catalyst libraries.

The hierarchical workflow shown in Fig. 1.1 illustrates three distinct phases of
research leading to commercialization.

The first phase, known as “primary screening”, is designed for broadly and effi-
ciently screening a large and diverse set of families of materials that logically could
perform the desired catalytic transformation. It is during this phase that “hits”,
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truly new classes of materials that show promise for a specific catalytic transfor-
mation, can be efficiently discovered, and a key bottleneck in the R&D process
can be eliminated. Predictably, it is this phase with which the traditional catalytic
chemist is the most uncomfortable. All well trained chemists have been taught
rigor in the synthesis and characterization of the materials they produce before
testing for the desired application. They have also been taught to maximize the
quality and precision of the catalytic testing data by using reactors that have a
high level of process control and that are as close as possible to the “real” process
in which the material will be commercialized. These are all good things and are
necessary, but only at a later stage of the hierarchical workflow where optimiza-
tion and commercial development occur. While we seek to maximize the quality
of data and mimic the “real” process conditions during primary screening, the
sheer volume of experiments, often thousands per day, makes it extremely diffi-
cult to obtain conventional laboratory quality data. Fortunately, this does not pose
a problem. In some cases, to get the throughput necessary for a program, we do
not screen for the exact property that we seek, but rather screen for an easier and
faster observable that represents a necessary but not sufficient property of the tar-
geted material [2]. We trade precision for throughput in a rational way that in-
creases the probability of success and shortens time to commercialization. The
key in this enterprise is to create a validated primary screen (i.e., a screen where
we have proven that we can “rediscover” state-of-art catalysts and observe known
trends). In a primary screen we seek qualitative trends in the data to eliminate
families of materials from diverse libraries and to identify hits that have the poten-
tial to become a lead, i.e., materials that warrant testing in a secondary screen. We
design our primary screening technologies to minimize both false negatives and
false positives, the latter of which waste time and money in the slower and more
precise hit validation phase. To the uninitiated the issue of false negatives is
usually the biggest concern; methods of minimizing the risk of “missing a hit”
have been well described for homogeneous catalyst workflows [2] and Chapter 3
discusses this issue as it relates to primary screening for heterogeneous catalysts.

Secondary screening plays two roles. First, it validates or eliminates hits gener-
ated from the primary screen. As mentioned above, often the primary screen
seeks to identify a property that is easy to measure in a high-throughput fashion
that is a necessary but not sufficient condition for the hit to be active and/or selec-
tive for the targeted chemical transformation. Here, the secondary screen is the
first test for the “real” property, and often hits fall out of the program at this
stage. In a second role for secondary screening, once a hit, identified by primary
screening or identified in the literature, has been validated, secondary screening
tools are used to optimize the hit to create a “lead” material. In secondary screen-
ing, rigorous catalyst synthesis procedures are important, and, since most optimi-
zations require multiple modifications with small improvements in performance
at each successful step, the data quality and precision need to be on a par with a
typical laboratory reactor. Therefore, automated laboratory-scale synthetic tech-
niques and highly parallel reactor systems for various processes have been devel-
oped. Some of the systems invented at Symyx Technologies are described in Chap-
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ter 3. This technology has evolved to the point that the quality of the data ob-
tained during the secondary screening stage allows for the synthesis and screen-
ing of hundreds of catalytic materials per week with data quality that is equivalent
or superior to that obtained using conventional laboratory technologies.

Optimized leads identified in the secondary screening phase of a HT-R&D pro-
gram are then taken to the tertiary screening phase to generate commercial develop-
ment candidates. This usually takes the form of a conventional mini- or pilot-plant.

Finally, the workflow must include advanced experimental design, library de-
sign, data management, database, and data mining software. When taken together
and executed properly, HT-R&D programs generate vast data sets with concomi-
tant knowledge derived therefrom, shorten time scales for completing a program,
increase the probability of success of the program, and increase the strength of an
intellectual property portfolio. The talented synthetic chemists should not fear
that HT-R&D technologies will render them less important because robots do the
chemistry. The opposite is true for several reasons. First, in a HT-R&D environ-
ment the number of variables in diversity space that one is able to address is so
large that insightful and creative thinking based on sound chemical knowledge
and principles is necessary to reduce the number of experiments to a realistic
level. This is no different than in traditional laboratories; it is just that one can ex-
plore one’s concepts more rapidly and more thoroughly. Secondly, since the num-
ber of projects one can initiate and conclude in one’s career is substantially larger,
the chemist will be constantly challenged to create new concepts for new prob-
lems. Finally, the increase in R&D efficiency due to HT-R&D technologies will re-
sult in a lower unit cost for research and increase the desire for industry to invest
in the development of advanced technologies.

To illustrate the power of integrated workflows consisting of primary and sec-
ondary screening technologies we briefly describe two examples from our own lab-
oratories.

1.2
Application of HT-R&D Methods in Heterogeneous Catalysis

The discovery of catalytic systems and processes that selectively convert unsatu-
rated hydrocarbons such as ethane and propane into higher value chemicals, such
as ethylene, acrylic acid, and acrylonitrile, is a key R&D goal within the chemical
and petrochemical industries. The dominant process targeted for these advances
involves the use of heterogeneous catalysis in either fixed bed or fluidized bed
processes. The chemical challenge is great due to the difficulty of selectively acti-
vating saturated hydrocarbons at low temperature, the dominance of inherently
unselective free radical pathways at high temperatures, and the fact that the de-
sired products are often more easily oxidized than the saturated hydrocarbon start-
ing material, leading to low selectivity at commercially viable conversions.

In 1978 Union Carbide scientists reported the discovery and optimization of oxi-
dative dehydrogenation catalysts for converting ethane into ethylene that were
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based on mixed metal oxides consisting of Mo, V, and Nb [3]. This study de-
scribed a systematic evaluation of the effect of composition (i.e., the ratio of the
three metals in the tertiary composition) on performance as measured by space–
time yield. The composition Mo0.72V0.26Nb0.02Ox was reported to be optimum.

More than a decade after the publication of the MoVNb catalyst system, scien-
tists at Mitsubishi Chemical reported that modifying this family of mixed metal
oxides with Te produced a catalyst for the amoxidation of propane to acrylonitrile
[4] and the oxidation of propane to acrylic acid [5]. Modification of the Union Car-
bide catalyst system with Te was probably not a random choice as it is a known
propylene activator [5b] and the molybdate phase TeMoOx oxidizes propylene into
acrolein and ammoxidizes propylene to acrylonitrile [6], a key intermediate in the
commercial production of acrylic acid using Mo-based oxides. Significant efforts
to optimize this and related mixed metal oxides continues for the production of
both acrylic acid and acrylonitrile, with the main participants being Asahi, Rohm
& Hass, BASF, and BP.

In 1998 scientists at Hoechst reported that the addition of Pd to the MoVNb
ethane dehydrogenation catalyst enabled the efficient production of acetic acid
from ethane [7]. Doping of this known ethane dehydrogenation catalyst with Pd
was probably not random, but predicted on the basis of the classical Wacker cata-
lysis.

Fig. 1.2 summarizes the lineage of discoveries based on the MoVNb “hit” pub-
lished in 1978 and is included to emphasize the importance of the discovery of
new starting points in chemical catalysis.

Symyx entered this competition in 1997 in collaboration with Hoechst with the
goal of creating and validating primary and secondary synthesis and screening
technologies and the use of this workflow to broadly explore mixed metal oxide
compositions so as to discover and optimize new “hits”. The initial goal was a 10-
fold increase in the space–time yield relative to the state-of-the-art MoVNb system
for the ethane oxidative dehydrogenation reaction to ethylene.

In the workflow used in this program (Fig. 1.3) primary screening is carried out
in “wafer” format. The libraries are synthesized from soluble metal precursors
using specialized library design software [8] and liquid-dispensing robots in a ter-
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tiary phase diagram format. The automated process involves creating arrays of
mixtures of metal precursors under conditions where the mixtures remain in so-
lution and then depositing 1–2 �l aliquots onto a quartz wafer that has been
etched to create an ordered array of micro-wells. Multiple “daughter” wafers are
prepared and then calcined under various conditions to minimize the chances of
false negatives and/or to help identify optimal processing conditions for bulk cata-
lyst synthesis. Variable space for primary screening includes elemental composi-
tion, choice of support (starting material wafers with microgram quantities of
powders derived from any commercial or proprietary supports can be produced
using similar robotics), choice of metal precursor, and calcining conditions. The
wafer-based libraries can be characterized by scanning XRD using commercially
available equipment and proprietary methods [9] when appropriate.

The performance of each library member can be screened by several proprietary
primary screening technologies [10], including the scanning mass spectrometer
(SMS) technology shown in Fig. 1.3. The wafer is placed on a motion control
stage capable of positioning a single library element approximately 100 microns
below a probe that flows the feed of the starting material over the catalyst surface
and removes reaction products to a mass spectrometer and/or other detector tech-
nologies. The individual catalyst elements are heated to a preset reaction tempera-
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ture using an IR laser from the backside of the quartz wafer and an IR camera is
used to monitor temperature. The power of the laser is adjusted to control tem-
perature. This is a rapid serial method requiring approximately 2–3 min per sam-
ple. The system is fully automated and, after the library is placed on the motion
control stage and the experiment initiated, the entire library can be screened unat-
tended.

Several proprietary secondary screening technologies for fixed bed processes
have been described [11], one of which is depicted in Fig. 1.3. The 48-channel re-
actor includes a single feed system that supplies reactants to a set of flow restric-
tors. The flow restrictors divide the flows evenly among the reactors. The back
pressure created by the flow restrictors is designed to be large compared with any
pressure drop caused by the catalyst bed or downstream plumbing to ensure that
an even flow occurs through each reactor. The multichannel fixed bed reactor
(MCFB) shown in Fig. 1.3 and used in the ethane oxidative dehydrogenation pro-
gram is in a 6 �8 rectangular array format and can accommodate up to 100 mg of
solid catalyst in each reactor.

A more detailed description of heterogeneous catalyst library synthesis (primary
and secondary), primary screening, and secondary screening technologies is given
in Chapter 3 and references therein.

The first step in this or any new HT-R&D program is to validate the workflow.
In the oxidative dehydrogenation of ethane program, primary screening validation
was accomplished by “rediscovering” the trends and optimum composition for the
MoVNb catalyst system described in 1978 by Union Carbide. Duplicate 66-mem-
ber libraries (11 members on each diagonal of the phase diagram) were synthe-
sized using soluble Mo, V, and Nb precursors. The libraries were calcined and
then characterized by scanning XRD, confirming that the thick film library ele-
ments had similar phase composition to bulk samples prepared using traditional
methods. The libraries were placed on the SMS motion control stage and
screened in a rapid serial mode using a mass spectrometer to quantify COx and a
laser pump–probe measurement to quantify ethylene. These detectors were cali-
brated and together allowed the ranking of both activity and selectivity at low con-
version.

Fig. 1.4 compares, in topological format, the space–time yield versus composi-
tion for the data presented in the 1978 Union Carbide publication and the activity
rankings observed in the SMS in an experiment that took less than 4 h, most of
which was unattended. The correlation is remarkable. The primary synthesis and
screening components of the workflow were thus validated. “Hit” criteria were es-
tablished that involved ranking the yield of the reaction over the various catalysts
(the activity figure of merit multiplied by selectivity). The “hit” criteria perfor-
mance bar increased as the discovery program evolved and improved systems
were discovered.

The 48-channel MCFB reactor and the catalyst synthesis workflow components
were similarly validated in experiments where bulk samples were prepared in li-
brary format, screened in the array format, and the data compared with known ex-
amples. This part of the workflow was used for initial hit validation and to opti-
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mize those systems that exhibited acceptable performance under commercially
realistic conditions.

The discovery program began by broadly screening ternary mixed-metal oxide
compositions. Although many catalyst compositions can be prepared and
screened using this workflow, testing of all possible ternary mixed-metal oxide
compositions is impractical. The combination of all possible ternary combinations
(assuming 70 metal oxides) with 10% gradient steps results in millions of unique
compositions. This number increases by many factors as one explores multiple li-
brary processing conditions and alternate metal precursor options. Thus, priority
decisions based on sound chemical knowledge were made. Since the focus of the
research was the low temperature partial oxidation of ethane to ethylene the scope
of the search could be reduced by the assumption that the ternary mixed-metal
oxides should contain at least two different metal oxides that can be reduced by
hydrocarbons and their reduced forms oxidized by molecular oxygen at low tem-
perature. The third metal oxide component was generally designed to act as a ma-
trix or stabilizer and was not required to be redox-active under catalytic condi-
tions. In this way, synergy between different redox-active metals could be ex-
plored. With these assumptions the diversity space was narrowed to about 100000
composition and processing experiments.

Nickel-based systems containing certain other metals such as Ta, Nb and Ce
emerged as lead candidates. The best Ni-based catalysts showed activities as mea-
sured by SMS that were 50–100 � that of the best MoVNb systems. In secondary
screening the Ni-based systems distinguished themselves from the Mo-based sys-
tems in terms of both space–time yield and the unique and highly desired prop-
erty of having a flat selectivity versus conversion (i.e., selectivity vs. temperature)
relationship relative to the state-of-the-art MoNbV systems. Fig. 1.5 shows a time-
line of how the performance characteristics of the best Ni-based systems evolved
in terms of activity measured in the primary screen, space–time yield measured
in the MCFB secondary screen, and in a ternary screen carried out in pilot plant
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the composition as measured by
Thorsteinson et al. [3] using tra-
ditional methods and by Symyx
scientists using wafer-based
primary screening technologies
where the innermost enclosed
areas represent the highest STY.


