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Preface

Cell wall containing eubacteria have traditionally been divided into gram-positive
and gram-negative bacteria; according to their staining properties with crystal vio-
let, also know as Gram stain. Electron microscopic analysis into the structure of the
so-called gram-negative bacteria soon suggested that their cell wall contained an
additional membrane, called outer membrane [1]. The lipid composition of the
outer membrane composed of lipids and lipopolysaccharides is well known for a
long time. Starting with the early seventies of the last century knowledge accumu-
lated on the rather simple protein composition of the outer membrane: only a few
bands were observed on SDS-PAGE of outer membrane proteins. Some of them
are heat-modifiable because they change the position on SDS-PAGE when heated
to 100hC. Electron microscopic analysis of the surface of Escherichia coli outer
membrane revealed the presence of a protein with a regular structure [2]. This pro-
tein termed matrix protein’ was considered the permeability pathway for hydrophi-
lic solutes through the outer membrane. After identification of the pore-forming
unit in the outer membrane of Salmonella typhimurium [3] and E. coli [4] the
name porin for the outer membrane channels came into use.

The study of the amino acid composition of porins and the first amino acid se-
quence of a porin of E. coli deduced from the mature protein represented a big sur-
prise [5]. The porins had an amino acid composition similar to those of water-so-
luble proteins, containing more than 50 % hydrophilic amino acids. The primary
sequences of the first and all other outer membrane porins sequenced to date
do not show any indication for the presence of a-helical structures, which were
considered since Kyte and Doolittle [6] to represent the typical structural elements
of membrane proteins. Vogel and J�hnig [7] suggested that outer membrane pro-
teins are arranged in amphipathic b-strands and form a b-barrel cylinder. The cy-
lindrical structure implies that on average every second amino acid in membrane-
spanning b-sheets is hydrophobic because it faces the hydrocarbon core of the
membrane or it is hydrophilic and points to the channel interior. From the func-
tional standpoint porins were divided in general diffusion pores and substrate-spe-
cific porins. Besides these more classical porins, the outer membrane contains also
energy-coupled transporters and channel-tunnels (see below). General diffusion
pores represent more or less structured holes in the outer membrane but they
have a defined exclusion limit for the passage of hydrophilic solutes (see chapters



2 and 6). Specific porins contain binding sites for substrates such as sugars or nu-
cleosides (see chapters 9 and 10). Luckily enough it was possible to crystallize both,
general diffusion pores and specific porins of bacterial outer membranes. Chapter
2 describes structural properties of general diffusion porin and chapter 9 those of
specific porins. Surprisingly, the carbohydrate-specific LamB and ScrY have two b-
strands more than the general diffusion pores OmpF, OmpC and PhoE.

The expression of general diffusion pores and specific porins can be regulated
dependent on the requirements of the growth media. A interesting example for
porin regulation represents the regulation of OmpF/OmpC porins of E. coli by
the two-component regulatory system EnvZ/OmpR dependent on osmolarity, pH
and other environmental parameters (see chapter 1). This means that bacteria
are able to respond to environmental stress. Chapter 3 describes the role of bacter-
ial porins in antibiotic susceptibility. This chapter describes the relationships be-
tween porins and antibiotic molecules and its impact on the development of resis-
tance against certain antibiotics. Besides bacterial response against stress created
by antibiotics there exist also other mechanisms of outer membrane permeability
control. This type of control is described in chapter 5 of this book and deals with
rapid modulation of porin function. Other gram-negative bacteria have a certain
“natural“ resistance against many antibiotics. A prominent example of this intrin-
sic antibiotic resistance is the opportunistic human pathogen Pseudomonas aerugi-
nosa. Chapter 4 deals with the properties of the porins of this organism and ex-
plains the high intrinsic antibiotic resistance of this organism, which is in part
the result of the control of outer membrane permeability for hydrophilic solutes.
Part of this control is also OprF of P. aeruginosa outer membrane, which has not
the “classical“ trimeric form of outer membrane porins of the OmpF type as it
is described in chapter 7. OprF and also OmpA of E. coli and other enteric bacteria
exist in two different configurations. The majority of these outer membrane pro-
teins have 8 b-strands and a very low permeability, whereas a small fraction of
OprF and OmpA allow diffusion of large solutes that cannot penetrate OmpF of
E. coli (chapter 7).

Reconstituted systems allow a meaningful study of porin function. As already
mentioned, chapter 5 deals with the study of porin modulation in model mem-
branes using the patch-clamp technique. Chapter 6 describes general diffusion
porin reconstitution in lipid bilayer membranes and chapter 10 the study of specif-
ic diffusion porins containing binding-sites in the same system. Porin trimers are
very stable and the lipid bilayer technique can be a useful tool in the area of devel-
opment of biosensors.

Besides the classical Omp pores also several outer membrane transporters for
iron chelates and one for vitamin B12 were crystallized (chapters 11 and 12).
These transporters are of special interest because the outer membrane is not ener-
gized. Energy is provided through proteins of the cytoplasmic membrane and their
coupling to the outer membrane transporter is of special interest. The transporter
have a novel structure of outer membrane proteins. In particular, they are formed
by a b-barrel cylinder of 22 b-strands. The hole in the cylinder is plugged by a cork
or a hatch as it is described for FhuA (siderophore receptor, chapter 11) and BtuB

XVPreface



(vitamin B12 receptor, chapter 12) of E. coli. Another class of outer membrane per-
meability pathway is formed by the channel tunnel prototype TolC of E coli, which
has also been crystallized (chapter 8). The outer membrane channels of the TolC-
type are formed by homotrimers. However, differently to the porins, the trimer
contains only one channel. The channel-tunnels can be divided into different
parts. The 4 nm long b-barrel cylinder of 12 b-barrels is connected to the 10 nm
long � helical tunnel domain of 12 a-helices, which presumably spans the periplas-
mic space. The channel-tunnels are important parts of efflux pumps exports sys-
tems as discussed in chapter 8.

Because of the homology of the electron transport chains and the existence of
two membranes, it has been hypothesized that mitochondria are descendants of
certain strictly aerobic bacteria. In any case, the permeability properties of the mi-
tochondrial outer membranes show some resemblance to those of bacterial outer
membranes as discussed in chapter 13. A considerable part of the permeability
properties of mitochondrial outer membranes is caused by the presence of a gen-
eral diffusion pore, called mitochondrial porin or VDAC [8], which forms voltage-
dependent channels in reconstituted systems. Mitochondrial porins have a second-
ary structure highly homologous to that bacterial outer membrane proteins, which
means that the channel formed by a porin monomer is essentially a b-barrel cylin-
der (chapter 13). Several different isoforms of not well understood function exist in
many organisms as discussed in chapters 14 and 15. Unfortunately, mitochondrial
porin or VDAC could not be crystallized to date in order to obtain any useful 3D-
structure, hence the exact 3D-structure is still not known and currently a matter of
debate. Chapter 16 describes that mitochondrial porins play an important role in
the physiology of these cell organelles, which means that they have a communica-
tive function. Mitochondrial porins/VDACs regulate the movement of mitochon-
drial metabolites between the cytosol and the mitochondrial compartments. They
are possible components of the mitochondrial permeability transition pore and
may participate in very interesting mitochondrial functions such as apoptosis
(see chapter 14 and 16).

I am very grateful to all authors who made valuable contributions in this book
and who produced their manuscript so promptly. Many thanks go also to Christian
Andersen who provided the picture of the front cover and Frank Orlik who helped
me with the index.

W�rzburg, June 2004 Roland Benz
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1
Regulation of Porin Gene Expression by the Two-component
Regulatory System EnvZ/OmpR

Don Walthers, Alvin Go and Linda J. Kenney

1.1
Introduction

The major paradigm for signal transduction in bacteria is the two-component reg-
ulatory system. The first component is a sensor kinase, most often a membrane
protein, which senses an environmental signal and is phosphorylated by ATP on
a conserved histidine residue. The second component is the response regulator,
which catalyzes the phosphotransfer of the phosphoryl group onto a conserved as-
partic acid residue (see [1, 2] for recent reviews). Most response regulators are two-
domain proteins and phosphorylation of the receiver domain alters the output of
the effector domain, which is usually a stimulation of DNA binding. In some sys-
tems, the histidine kinase alters the level of the phosphoresponse regulator by sti-
mulating its dephosphorylation, rather than by stimulating its phosphorylation.

The sensor kinase EnvZ and the response regulator OmpR comprise the two-
component system that is responsible for the regulation of expression of the
outer membrane proteins OmpF and OmpC (see Figure 1.1). Porin levels are influ-
enced by a wide variety of environmental conditions, including osmolality, tem-
perature, pH and growth phase. Although the total amount of OmpF and OmpC
remains constant, the relative level of the two proteins fluctuates with respect to
the osmolality of the growth medium. At low osmolality, the major porin present
is OmpF, while at high osmolality, the expression of ompF is repressed and OmpC
becomes the predominant porin [3]. The two porins differ from one another by the
size of their pores and their flow rates, with OmpC having the smaller pore and
slower flux [4]. Sensing the osmolality of its surroundings is one strategy by
which Escherichia coli senses its environment and this ability is crucial for its
survival. It is proposed that osmosensing enables E. coli to determine whether
or not it is in a host environment (high osmolality) or a dilute environment (low
osmolality).



1.2
The Structure of EnvZ

EnvZ is a 450-amino-acid protein, located in the inner membrane (see Figure 1.2).
EnvZ is comprised of two transmembrane domains flanking a 117-amino-acid
periplasmic region at the N-terminus and a kinase/phosphatase catalytic domain
at the C-terminus (EnvZc). EnvZc can be further separated into two functionally
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Figure 1.1 Regulation of the porin genes by EnvZ/OmpR. When the osmolality of the growth
medium is low, OmpF is the predominant porin in the outer membrane. When the osmolality
increases, ompF is repressed and OmpC becomes the major porin in the outer membrane.
Regulation is mediated by the two-component regulatory system that consists of the two proteins
EnvZ and OmpR. EnvZ is a sensor kinase, located in the inner membrane. ATP phosphorylates
EnvZ on a conserved histidine residue and it transfers the phosphoryl group to OmpR. OmpR is a
two-domain response regulator. Phosphorylation in the N-terminal receiver domain at a con-
served aspartic acid residue alters the conformation of the C-terminal DNA binding domain.
Phospho-OmpR (OmpR-P) binds to the regulatory regions of the porin genes ompF and ompC
and alters their expression.



distinct subdomains. Domain A (amino acids 223–289) is the phosphorylation
and dimerization domain, and contains the site of autophosphorylation at
His-243. Domain B (amino acids 290–450) contains the ATP-binding site as well
as several regions conserved amongst all members of the histidine kinase family
[5–7].

Domain A of EnvZc is located in the cytosol and is separated from the second
transmembrane domain by a linker of approximately 43 amino acids. This
HAMP linker (histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis pro-
tein and phosphatase) likely consists of two amphipathic helices, is structurally
conserved among many sensor proteins and may play a role in signal transduction
[8]. When expressed separately, domain A forms a stable homodimer in solution
with an apparent molecular weight of 19 kDa [9]. The homodimer consists of a
four-helical bundle with 2-fold symmetry. Each monomer of domain A contains
two a-helices, a1 (residues 235–255) and a2 (residues 265–286), separated by a
9-amino-acid loop. The helices of the subunits pack in the dimer such that each
a1 is surrounded by and aligns antiparallel to an a2 of each subunit. The core
of the bundle is hydrophobic and is composed of a number of methyl-containing
residues, consistent with other histidine kinases. His-243, which lies in a1, is or-
iented opposite its counterpart in a1l and protrudes away from the helical bundle,
where it is solvent-accessible for phosphorylation by ATP. The phosphotransfer do-
mains of the histidine kinases CheA and ArcB also contain four-helix bundles. In
each of these structures, the active histidine (His-48 in CheA and His-717 in ArcB)
lies in the center of their respective helix and points outward [10, 11]. The structure
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Figure 1.2 EnvZ topology. EnvZ is located
in the inner membrane, with both N- and
C-termini in the cytoplasm. It has two trans-
membrane domains and a periplasmic loop.
Whether or not there is a role for the peri-
plasmic domain in osmoregulation has not
been clearly established. Structures of two
domains of the cytoplasmic portion of EnvZ
have been determined by nuclear magnetic
resonance spectroscopy (see insets). Domain
A consists of a four-helix bundle and is a
dimer in solution. The histidine that is phos-
phorylated is located in domain A. Domain B
contains the ATP binding site and is
composed of a conserved a/b fold that is
also found in other ATP binding proteins
(see text for details). OM ¼ outer membrane,
PP ¼ periplasm, IM ¼ inner membrane.



of domain A also resembles the cytoplasmic domains of the E. coli chemoreceptors
Tar and Tsr, which are the sensory components of the chemotaxis system [12]. Like
EnvZc, the functional chemoreceptor is a homodimer in which the cytoplasmic do-
mains of each monomer form a four-helical bundle.

The structure of domain B consists of an a/b sandwich composed of a
five-stranded b-sheet (strands B: residues 319–323; D: 356–362; E: 367–373;
F: 420–423; and G: 431–436) on one fold and three a-helices (a1: 301–311; a2:
334–343; and a3: 410–414) on the other [13]. This structure resembles the
ATP-binding proteins Hsp90 and DNA gyrase B. Between these two folds is a
hydrophobic core containing many structural hydrophobic residues conserved
amongst other histidine kinases. Between a3 and a4, a long polypeptide loop
extends, termed the “central loop”, which has no defined structure and may be
mobile in solution. Binding of ATP occurs at a3 and the central loop, and also in-
volves contacts with b-strands F and G. This central loop is near the ATP-binding
pocket formed by Asp-347, Asp-373, Ile-378 and Phe-387, and may interact with
His-243 in domain A, possibly stabilizing phosphorylation. The triphosphate
chain of the ATP molecule is exposed on the surface of the protein, to allow the
transfer of the phosphate to His-243 in domain A. Several conserved glycines,
forming the G1 and G2 boxes, previously shown to be essential for kinase activity,
are also located in the catalytic core.

1.3
Biochemical Activities of EnvZ underlie Signaling

The EnvZ kinase has the following enzymatic activities:

(1) EnvZ þ ATP p EnvZ–P þ ADP (autophosphorylation)
(2) EnvZ–P þ OmpR p EnvZ þ OmpR-P (phosphotransfer)
(3) EnvZ þ OmpR-P p EnvZ þ OmpR þ Pi (phosphatase)

EnvZ could potentially modulate the level of OmpR-P by adjusting the activity of its
autokinase (1), the phosphotransferase activity (2) or the OmpR-P phosphatase ac-
tivity (3) separately, or in various combinations (see Figure 1.3).

It has been proposed that domain A contains the phosphatase activity of EnvZ
[14]. The half-life of OmpR-P alone was reported to be approximately 90 min,
whereas in the presence of domain A, the half-life of OmpR-P decreased to 8.7
min. This result led to the interpretation that the A domain was the source of
the phosphatase activity. However, if domains A and B were intact (i. e. EnvZc),
the half-life of OmpR-P further decreased to 2.5 min. It is evident that stimulation
of OmpR-P turnover by EnvZc is most efficient in the presence of the intact cyto-
plasmic domain. Either both A and B domains contribute to OmpR-P dephosphor-
ylation or the A domain must be in a preferred conformation that requires tether-
ing to the B domain in order for the A domain to fully function. An important re-
maining question is how the A and B domains of EnvZc are organized with respect
to one another in the intact protein.
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1.4
What is the EnvZ Activity Regulated by the Stimulus?

In a recent attempt to elucidate the stimulus to which EnvZ responds, the kinase
was overproduced, purified and reconstituted into proteoliposomes [15]. The EnvZ
autokinase activity was stimulated by addition of potassium (activity 1), but neither
phosphotransfer to OmpR (activity 2) nor the phosphatase activity of EnvZ (activity
3) were affected by the presence of potassium. However, the activities measured
were extremely low, making interpretation of the experiments difficult. An osmotic
upshift imposed by various sugars, glycine betaine, proline or Tris–MES was
without effect. Since potassium accumulation is an early response to osmotic
upshift by E. coli, it may be that the autokinase of EnvZ is sensitive to this step,
arguing that the kinase activity (1) is the osmosensitive reaction that is regulated.
A previous study also reported that potassium stimulated the level of OmpR-P,
but the autokinase and phosphotransferase activities of the kinase were not sepa-
rated [16]. Interestingly, the phosphorylation of an OmpR mutant (OmpR3, pheno-
type F–Cþ) was constitutively high at low KCl concentrations and was not
stimulated by further addition of KCl [16]. This result implies that the OmpR3 mu-
tant has altered interactions with EnvZ that lead to high levels of OmpR-P at low
potassium concentrations, or that the phosphotransfer activity is the step altered by
high potassium (activity 2), in contrast to the results of the proteoliposome study
[15].

An earlier study by Jin and Inouye [17] proposed that at high osmolality, OmpR-P
levels increase as a result of a decrease in the phosphatase of EnvZ (activity 3). This
hypothesis is based on experiments with a chimeric kinase Taz, which contains the
periplasmic domain of the aspartate chemoreceptor Tar fused to the cytoplasmic
domain of EnvZ [18]. This construct activates ompC in response to aspartate. How-
ever, this construct has several serious limitations, which cast doubt on whether
conclusions based on this construct are physiologically meaningful. For example,
Taz requires 1–5 mM aspartate to activate ompC compared to Tar, which binds as-
partate with a Kd of 1.2 mM [19] and the addition of maltose, which also binds to
Tar, did not enhance ompC expression. Furthermore, aspartate did not affect
ompF transcription. In any case, the results from several Tar and Trg chimeras sup-
port a view that a common transmembrane signal transduction mechanism exists
[20, 21].

Activation of EnvZ, by an as yet undetermined signal, leads to phosphorylation at
His-243 from ATP and subsequent phosphorylation of OmpR at Asp-55. Phosphor-
ylation of OmpR increases its affinity by at least 10-fold for the regulatory regions
upstream of the ompF and ompC genes [22]. More recently, it was shown that the
presence of DNA stimulates OmpR phosphorylation [23], i. e. the communication
between OmpR domains is bidirectional. These experiments led to the proposal
that OmpR might be activated while bound to its target DNA. This series of activa-
tion events would require that a complex exists between the membrane-embedded
sensor kinase EnvZ with OmpR while complexed to the regulatory regions of ompF
and ompC DNA. Genetic evidence for such a kinase/response regulator/DNA com-
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plex has been reported by Silhavy et al. in the homologous Cpx system that senses
envelope stress (P. DiGiuseppi and T. J. Silhavy, personal communication). A four-
state model can be described (Figure 1.4) in which OmpR exists as an equilibrium
mixture between the unphosphorylated form (A), OmpR-P (B), the unphosphory-
lated, DNA-bound form (C) and the phosphorylated form bound to DNA (D). The
reaction step that is most affected by the presence of DNA depends upon the
phosphodonor employed. When phosphorylating with the small molecule phos-
phodonor, acetyl-phosphate, DNA binding dramatically stimulates the rate
of phosphorylation with little effect on the dephosphorylation rate of OmpR-P.
Estimates of initial rates indicate that phosphorylation by acetyl-phosphate is at
least 25-fold faster in the presence of DNA than in its absence (i. e. C to D is
much faster than A to B, Figure 1.4 [23]). Furthermore, DNA binding slows depho-
sphorylation about 2-fold (D to C is slightly slower than B to A, Figure 1.4 [23]). In
contrast, when phosphorylating with the phosphokinase (EnvZ-P), the step most
affected by DNA binding is the rate of EnvZ-stimulated OmpR-P dephosphoryla-
tion (i. e. D to C is much slower than B to A, Figure 1.4 [24]). In either case, the
overall effect of DNA is to increase the net rate of OmpR-P formation on the
order of 50-fold. Based on their findings, Qin et al. proposed that when OmpR-P
binds to DNA, it is effectively made inaccessible to EnvZ and thus DNA binding
inhibits EnvZ stimulation of OmpR-P breakdown [24]. If this proposal were true,
it is difficult to imagine how the phosphatase activity (activity 3) could be the im-
portant physiologically regulated step [17], since OmpR-P bound to DNA would
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Figure 1.3 Biochemical activities of EnvZ control the concentration of OmpR-P. At low osmol-
ality, the OmpR-P concentration is low, either because the EnvZ kinase activity is low or the
phosphatase activity is high (right arrows). OmpR-P levels increase at high osmolality – this is
either due to stimulation in the EnvZ kinase or a reduction in the EnvZ phosphatase activity (left
arrows).



then be inaccessible to EnvZ. In order to address this question, OmpR was labeled
with a fluorescent probe and equilibrium binding was measured using fluores-
cence anisotropy. The Kd for EnvZ binding to OmpR was 425 nM and the presence
of ompF or ompC DNA did not affect the interaction [25]. However, when OmpR
was phosphorylated, the affinity of interaction with EnvZ was so low (at least 10-
fold lower) that it was not measurable. These results are in conflict with the pro-
posed role of DNA in the OmpR/OmpR-P equilibrium mediated by EnvZ, in
which DNA prevents the interaction of EnvZ with OmpR [24]. However, the results
are consistent with previous measurements in the chemotaxis system in which
phosphorylation of the OmpR-homolog CheY reduced its affinity for the kinase
CheA [26]. The lower affinity for CheA of CheY-P also favors binding to the switch
proteins of the flagellar motor. In keeping with this analogy, if OmpR were phos-
phorylated by EnvZ-P while bound to DNA, the reduced affinity of OmpR-P for
EnvZ would favor the release of EnvZ, enabling OmpR to interact with RNA poly-
merase and activate transcription. With a cellular concentration of OmpR of 3.5 mM
and an EnvZ concentration of 180 nM [27], an apparent Kd i 5 mM for EnvZ bind-
ing to OmpR-P indicates that these two partners would only rarely be associated.
Our favored interpretation is that OmpR-P dephosphorylation is sufficiently
rapid in vivo to promote turnover and that the more likely osmosensitive reaction
of EnvZ is the autokinase activity (activity 1). This view is consistent with the ob-
servation of Jung et al. that potassium stimulates autophosphorylation [15].

The issue of bifunctionality of the sensor kinase (i. e. phosphorylation and de-
phosphorylation functions) was addressed and a system with these features was
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Figure 1.4 Model for OmpR phosphorylation and DNA binding. OmpR is depicted as a two-
domain protein with the N-terminus joined to the C-terminus by a flexible linker region. The
protein is shown alone (A), phosphorylated (B), bound to DNA (C), and phosphorylated and
bound to DNA (D). The arrows depict transitions between these states. Note that the confor-
mation of the linker changes when OmpR is phosphorylated (B), bound to DNA (C) or both (D).



compared to one in which spontaneous dephosphorylation of the response regula-
tor was the sole means of turnover [28]. The concentrations of EnvZ and OmpR
were varied independently, and the effect on ompF and ompC transcription was de-
termined at low and high osmolality. The authors tested whether or not the system
was robust with respect to the components EnvZ and OmpR. Changes in EnvZ le-
vels had little effect on ompF and ompC transcription, whereas increasing the con-
centration of OmpR dramatically increased ompC transcription. This effect was not
observed until OmpR levels had risen at least 10-fold and was especially pro-
nounced at high osmolality. Presumably, the over-expression of OmpR enables un-
phosphorylated protein to occupy the low-affinity sites, and stimulate ompC tran-
scription and repress ompF.

1.5
How is the Signal Propagated?

Reports differ as to the domains of EnvZ that are essential for signal transduction.
An early study engineered large deletions (24–40 amino acids) in the periplasmic
domain and examined porin phenotypes [16]. The resulting EnvZ constructs pro-
duced constitutive expression of a high osmotic phenotype, (i. e. OmpF–,
OmpCc), regardless of the osmolality of the growth medium. Although the con-
struction of the mutants resulted in the addition of a few extra amino acids and
the mutants were over-expressed, the study suggested that in a low osmotic envir-
onment, there was an interaction with the periplasmic domain of EnvZ that was
removed or not present at high osmolality. The authors further claimed that the
mutants were defective in the EnvZ-stimulated dephosphorylation of OmpR-P (ac-
tivity 3), although the autokinase activity and phosphotransferase activities were
not examined in detail [16]. An interesting observation was that the EnvZ mutants
produced pleiotropic phenotypes that were PhoA–, LamB– and Mal–. The explana-
tion for the effects on multiple pathways outside of the normal porin repertoire
was that the accumulation of OmpR-P as a result of the altered dephosphorylation
by EnvZ enabled OmpR to act on genes that it normally does not regulate. This
hypothesis has not been adequately tested to determine whether or not OmpR-P
levels are actually higher in these EnvZ backgrounds or whether OmpR-P directly
affects these additional genes, but it remains an intriguing hypothesis.

A more recent study compared EnvZ molecules from two different organisms
[29] and noted the absence of a periplasmic domain in the EnvZ from Xenorhabdus
nematophilus. Interestingly, envZ from X. nematophilus was able to complement an
envZ-null strain of E. coli and restore osmoregulation of the porin genes [29]. Re-
placement of the periplasmic domain of EnvZ with the non-homologous domain of
PhoR (a sensor kinase not involved in porin gene expression) produced a chimera
capable of osmoregulation of ompF and ompC [30]. However, a 91-amino-acid peri-
plasmic deletion showed a similar phenotype (F–Cc) reported in the Tokoshita study
[16]. It would be of interest to compare a randomized amino acid sequence in the
periplasmic domain, rather than the replacement with the sensing domain from
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