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Preface

The integration of biomolecules with electronic elements to form functional devices
attracts substantial recent research efforts. The entire field was named with the general
buzzword, ‘‘bioelectronics’’. Exciting advances in the area include the integration
of enzymes, antigen/antibodies, DNA, or bioreceptors with electronic units to yield
specific biosensors for clinical diagnosis, detection of pathogens, environmental and
food analysis, and homeland security applications. Another general scientific effort is
directed to the coupling of neurons with electronic elements to assemble neuroelectronic
junctions and neuronal networks that are anticipated to act as ‘‘brain computers’’
and information processing devices. Other merging research efforts include the
development of biofuel cells, and biomolecule-based motors and devices. Progress
in the rapidly developing area of nanotechnology introduced new concepts and
scientific paradigms to bioelectronics. Conjugation of biomolecules and metallic or
semiconducting nanoparticles yields hybrid materials with unique electronic and
photonic properties that provide fascinating scientific and technological opportunities.
New nanostructured sensors, electronic nanocircuitry based on biomolecular templates,
nanostructured devices and nanoscale drug delivery systems are a few viable examples
where bioelectronics ‘‘meet’’ nanotechnology.

The various topics covered highlight key aspects and the future perspectives of
bioelectronics. The book discusses theoretical limitations in the electronic coupling
of biomolecules with electronic elements, the chemical strategies to immobilize
biomolecules such as proteins or DNA on electronic transducers, and to apply the
systems as biosensors. The junction between bioelectronics and nanotechnology is
introduced by exemplifying the microscopic imaging of biomolecular assemblies on
surfaces at the single molecule level, the use of biomolecules as a mold to synthesize
functional nano-objects and devices, and the use of biomolecule-nanoparticle hybrid
systems as functional biosensing elements. The assembly of neuronal networks as
information processors, and the use of biomolecules as information storage and
computing systems are further topics that are discussed in detail.

The different topics addressed in this book will be of interest to the interdisciplinary
community active in the area of bioelectronics. It is hoped that the collection of the
different chapters will provide chemists, biologists, physicists, material scientists and
engineers with a comprehensive perspective of the field. Furthermore, the book is aimed
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to attract young scientists and introduce them to the field while providing newcomers
with an enormous collection of literature references. We, indeed, hope that the book
will spark the imagination of scientists to further develop the topic.

Finally, we would like to thank all scientists that contributed to this effort and made
possible the publication of this book.

Jerusalem, January 2005 Itamar Willner
Eugenii Katz
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1

1
Bioelectronics – An Introduction

Itamar Willner and Eugenii Katz

The integration of biomolecules with electronic elements to yield functional devices
attracts substantial research efforts because of the basic fundamental scientific questions
and the potential practical applications of the systems. The research field gained the
buzzword ‘‘bioelectronics’’ aimed at highlighting that the world of electronics could
be combined with biology and biotechnology [1–3]. Mother Nature has in course of
evolution processed the most effective catalysts (enzymes), and biomolecules of optimal
recognition and binding capabilities that lead to highly selective and specific biopolymer
complexes (antigen–antibody, hormone-receptor, or duplex DNA complexes). Similarly,
biology provides the fastest and most complex computing and imaging systems where
optical information is processed and stored in the form of three-dimensional memorable
images (vision process). The tremendous biochemical and biotechnological progress
in tailoring new biomaterials by genetic engineering or bioengineering provides
unique and novel means to synthesize new enzymes and protein receptors, and
to engineer monoclonal antibodies or aptamers for nonbiological substrates (such
as explosives or pesticides) and DNA-based enzymes. All these materials provide a
broad platform of functional units for their integration with electronic elements. The
latter electronic elements may involve, for example, electrodes, field-effect transistor
devices, piezoelectric crystal, magnetoresistance recording media, scanning tunneling
microscopy (STM) tips and others. The bioelectronic devices, Figure 1.1, may operate in
dual directions: In one configuration, the biological event alters the interfacial properties
of the electronic element, thus enabling the readout of the bioreaction by monitoring
the performance of the electronic unit such as the readout of the potential, impedance,
charge transport, or surface resistance of electrodes or field-effect transistors, or by
following the resonance frequencies of piezoelectric crystals. The second configuration
of bioelectronic systems uses the electronic units to activate the biomaterials toward
desired functions.

The major activities in the field of bioelectronics relate to the development of
biosensors that transduce biorecognition or biocatalytic processes in the form of
electronic signals [4–6]. Other research efforts are directed at utilizing the biocatalytic
electron transfer functions of enzymes to assemble biofuel cells that convert organic
fuel substrates into electrical energy [7, 8]. Exciting opportunities exist in the electrical
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interfacing of neuronal networks with semiconductor microstructures. The excitation of
ion conductance in neurons may be followed by electron conductance of semiconductor
devices, thus opening the way to generating future neuron-semiconductor hybrid
systems for dynamic memory and active learning [9]. The recent progress in nano-
technology and specifically in nanobiotechnology adds new dimensions to the area
of bioelectronics. Metal and semiconductor nanoparticles, nanorods, nanowires, and
carbon nanotubes represent nano-objects with novel electronic properties. Recent
studies revealed that the integration of these objects with biomolecules yields new
functional systems that may yield miniaturized biosensors, mechanical devices and
electronic circuitry [10–12].

A fundamental requirement of any bioelectronic system is the existence of electronic
coupling and communication between the biomolecules and the electronic supports.
Special methods to immobilize biomolecules on solid supports while preserving
their bioactive structures were developed. Ingenious methods to structurally align
and orient biomaterials on surfaces in order to optimize electronic communication
were reported [13]. Although impressive advances in the functional tailoring of
biomolecule electronic units–hybrid systems were accomplished, challenging issues
await scientific solutions. The miniaturization of the bioelectronic systems is a
requisite for future implantable devices, and these types of applications will certainly
introduce the need for biocompatibility of the systems. The miniaturization of the
systems will also require the patterned, dense organization of biomolecules on
electronic supports. Such organized systems may lead to high throughput parallel
biosensing and to devices of operational complexity. The development of methods
to address and trigger specific biomolecules in the predesigned arrays is, however,
essential. This book attempts to highlight different theoretical and experimental
topics that place bioelectronics as a modern interdisciplinary research field in
science.

The understanding of charge transport phenomena through biological matrices
attracted in the past decades, and continues to evolve, intensive theoretical and
experimental work. The seminal contributions of the Marcus theory [14], the
superexchange charge transfer theory [15], and the definition of superior tunneling
paths in proteins [16] had a tremendous impact on the understanding of biological
processes such as the electron transfer in the photosynthetic reaction center, or
the charge transport in redox-proteins that are the key reactions for numerous
electrochemical and photoelectrochemical biosensing systems. A continuous feed
back between elegant experimental work employing structurally engineered proteins
and theoretical analysis of the results led to the formulation of a comprehensive
paradigm for electron transport in proteins [17]. This topic is addressed in detail in
Chapter 2. The charge transport through DNA has recently been a serious scientific
debate [18, 19], and contradicting results claiming conductive [20], superconductive [21],
semiconductive [22] or insulating [23] properties of DNA were reported. Theories
describing charge transport through DNA (electrons or holes) that included hopping
mechanisms, tunneling paths, or ion-assisted electron transfer were developed [24, 25].
Charge transport through DNA is anticipated to play a key role in the electrical detection
of DNA and in the analysis of base mismatches in nucleic acids, in the use of DNA
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nanowires as circuitry in devices, and as a means to readout sequence specific DNA
structures (DNA computers).

The electrical contacting between biomolecules and electrodes is an essential feature
for most bioelectronic systems. Numerous redox enzymes exchange electrons with other
biological components such as other redox-proteins, cofactors or molecular substrates.
The exchange of electrons between the redox-centers of proteins and electrodes could
activate the biocatalytic functions of these proteins, and may provide an important
mechanism for numerous amperometric biosensors. Nonetheless, most of the proteins
lack direct electron transfer communication with electrodes, and the lack of electrical
communication between the biomaterials and the electronic elements presents one
of the fundamental difficulties of bioelectronic systems. Although the barriers for
charge transport between redox-proteins are easily explained by the Marcus theory
and the spatial insulation of the redox-centers of enzymes by the protein matrices,
they hinder the construction of electrically communicated biomolecular-electronic
hybrid systems. Ingenious methods for the electrical contacting of biomolecular
assemblies associated with electronic units were developed in recent years [13]. The
structural engineering of proteins with electron relays [26], the immobilization of redox
enzymes in conductive polymers or redox-active polymers [5], the steric alignment
of proteins on electron relays associated with electrodes [27], or the incorporation
of redox-active intercalators in DNA [28] represent a few means to electronically
communicate the biomolecules with the electronic elements. These aspects are
addressed in several sections of the book (Chapters 3 and 4) and are exemplified
here with the electrical communication of redox enzymes with electrodes for the
generation of amperometric biosensors and biofuel cells, and with the intercalation
of a redox-label into double-stranded DNA for the electrical probing of DNA.
The integration of glucose oxidase, which lacks direct electrical communication
with electrodes, into a redox-active hydrogel film consisting of tethered Os(II)-
polypyridine complex (1) units, and linked to the electrode, facilitates the electrical
contact between the enzyme and the conductive support, Figure 1.2(A). The flexible
redox-units linked to the polymer electrically wire the redox-center of the enzyme
with the electrode by mediated electron transfer. Glucose sensing electrodes based
on this charge transport concept are already on the market, and the design of
microsized electrically wired enzyme electrodes for invasive continuous monitoring
of glucose are close to commercial realization [29]. A different application of electrically
contacted enzyme electrodes rests in the design of biofuel cells [7, 8], Figure 1.2(B).
Fuel cell systems represent a well-established technology, where electrical power is
generated by two complementary oxidation and reduction processes occurring at a
catalytic anode and cathode, respectively. While the generation of electrical power
by electrically contacted redox enzymes, in a biofuel cell configuration has probably
little value in global energy production, the systems might have important merit as
implantable devices that generate electrical power from body fluids. For example,
a glucose-based biofuel cell utilizing electrically contacted enzyme electrodes could
use blood as a fuel for the electrical powering of pace makers, insulin pumps or
prosthetic elements.
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Fig. 1.2 (A) Electrical contacting of a redox-enzyme with an electrode by an electroactive
polymer and the application of the system as an amperometric biosensor. (B) A biofuel cell
configuration based on electrically contacted enzyme electrodes.
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The electrical contacting between molecular species and electrodes may be stimulated
by specific biorecognition events. For example, the intercalation of doxorubicin (2) into
the double-stranded DNA formed between a primer nucleic acid associated with an
electrode and the complementary analyte DNA enables the electrochemical reduction
of the intercalator and the subsequent catalytic reduction of O2 to H2O2, Figure 1.3. The
latter product induces in the presence of luminol and horseradish peroxidase (HRP)
the formation of chemiluminescence as a readout signal for the DNA duplex formation
on the electrode [28]. The analysis of DNA by different electrochemical methods is
discussed in Chapter 5.

Scanning probe microscopy techniques have introduced exciting opportunities in
surface science and specifically in the characterization of biomolecules on surfaces.
Scanning tunneling microscopy allows one to probe tunneling currents through
proteins, thereby imaging the structure of individual protein molecules. Atomic
force microscopy (AFM) not only permits the imaging of single biomolecules on
surfaces but also permits the specific affinity interactions between complementary
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Fig. 1.3 The biochemiluminescent detection of DNA by the intercalation of a redox-active
substrate into the double-stranded DNA assembly and its electrochemical activation.
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Fig. 1.4 (A) AFM image of a retronectin protein array generated by dip-pen nanolithography.
(B) AFM image of a patterned surface consisting of a DNA monolayer treated with a
DNase-modified AFM tip that cleaves off the DNA units upon contact with the surface.
(Part A is adapted from [33] and Part B is adapted from [32], with permission).

antigen–antibody pairs, or double-stranded DNA complexes to be followed [30, 31].
Scanning probe microscopes also add new dimensions as tools for patterning surfaces
with biomolecules. The use of dip pen–lithography for the generation of biomolecular
patterns [32], Figure 1.4(A) or the application of enzyme-functionalized AFM tips as
a biocatalytic patterning tool [33], Figure 1.4(B), are just two examples demonstrating
the potential of these nano-tools to fabricate dense biomolecular arrays. Realizing that
bioelectronics involves the intimate coupling of biomolecules to electronic supports, the
use of scanning probe microscopy to characterize the structure-function relationships
of single biomolecules, and to actuate single biomolecules are inevitable for the future
development of the field. Some aspects of scanning probe microscopy for bioelectronic
applications and the manipulation of single biomolecules are addressed in Chapters 6
and 10.

Self-organization of biomolecules leads to unique 2D- and 3D-nanostructures that
include structurally defined pores or channels. These materials may act as templates
for the assembly of other materials, and the generation of systems of hierarchical
structural complexity. Figure 1.5 shows a scanning force microscopy image of S-layer
protein from Bacillus sphaericus on a silicon surface exhibiting square lattice symmetry
with a lattice constant of 13.1 nm. Alternatively, the pore or channel structures may
be utilized as ‘‘microreactors’’ of predefined dimensions for the synthesis of metallic
or semiconductor nano-objects. This topic is addressed in Chapter 13, where the
applications of S-layer proteins in bioelectronic systems are discussed.
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Fig. 1.5 AFM image of an S-layer protein from Bacillus sphaericus on a silicon surface.
The image size corresponds to 150 × 113 nm.
(Adapted from http://nanotechweb.org/articles/news/2/3/15/1, with permission).

Nanoparticles exhibit unique electronic, optical, catalytic and photoelectrochemical
properties [34–36]. The dimensions of nanoparticles are comparable to those of
biomolecules such as enzymes, antigens/antibodies or DNA. Not surprisingly, the
conjugation of biomolecules with metal and semiconductor nanoparticles yields hybrid
systems of new electronic and optoelectronic properties. Indeed, tremendous progress
was accomplished in the realization of biomolecule–nanoparticle hybrid systems for
various bioelectronic applications [37]. The electrical contacting of redox enzymes with
electrodes by means of Au nanoparticles [38], the use of metal nanoparticle–nucleic acid
conjugates for the catalytic deposition of metals and inducing electrical conductivity
between electrodes [39], the electrochemical analysis of metal ions originating from
the chemical dissolution of metallic [40] or semiconductor [41] nanoparticle labels
associated with DNA, or the photoelectrochemical assay of enzyme reactions by
means of semiconductor nanoparticles [42] represent a few examples that highlight
the potential of biomolecule–nanoparticle hybrid systems in biosensor design.
Recent advances in the integration of biomolecules with semiconductors and the
application of biomolecule–nanoparticle hybrids in bioelectronics are highlighted in
Chapters 7 and 8, respectively. Several other applications of biomolecule–nanoparticle
or biomolecule–carbon nanotube systems are also discussed in other sections of
the book.
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Exciting opportunities exist in the applications of biomolecules as templates for the
synthesis of metallic or semiconductor nanowires [43]. Such nanowires provide great
promise for future nanocircuitry and for the assembly of nanodevices. The possibility
of preparing DNA of desired shapes and base sequence, the availability of enzymes
acting as biocatalytic tools for manipulating DNA, the binding of metal ions to the
phosphate units of DNA chains, the specific intercalation of molecular components
into the DNA biopolymers, and the specific DNA–protein interactions, turn DNA into
an ideal matrix for its use as a template in the synthesis of nanowires consisting of
metals or semiconductors. Indeed, tremendous progress has been accomplished by
using DNA as a template for the generation of nanowires and patterned nanowires [44].
This subject is highlighted in Chapter 9, which demonstrates the use of patterned Au
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Fig. 1.6 (A) Assembly of a nanotransistor based on a carbon nanotube bridging two Au
nanocontacts on a DNA template. The carbon nanotube is positioned on the DNA by the
initial binding of RecA protein to the DNA, followed by the association of RecA-antibody
and a biotinylated anti-antibody, and the fixation of avidin-coated tube to the assembly.
(B) Formation of a Ag wire in the channel of a diphenylamine peptide tube, followed by the
enzymatic dissolution of the peptide template.
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Fig. 1.7 (A) Neurons on top of a multielectrode array (adapted from
http://physicsweb.org/article/news/7/4/17#neuronsonelectrode with
permission). (B) A neuroelectronic hybrid system consisting of two
neurons; the first neuron is activated by a capacitive stimuli, the signal
transmission occurs through a neuronal network to a second neuron,
where the information is recorded by a transistor.

nanowires on DNA as electrical contacts for the assembly of a nanotransistor. The
construction of the biomolecule-base nanotransistor [45], Figure 1.6(A), is based on the
assembly of a carbon nanotube between gold contacts formed on a DNA template
using biorecognition events as driving motives for the construction of the nanodevice.
Recent advances in this area suggest that self-assembled protein tubules or filaments
may similarly be employed as templates for the synthesis of nanowire system [46].


