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Preface

Nanomaterials, characterized by at least one dimension in the nanometer range,

can be considered to constitute a bridge between single molecules and infinite bulk

systems. Besides individual nanostructures involving clusters, nanoparticles,

quantum dots, nanowires and nanotubes, collections of these nanostructures in

the form of arrays and superlattices are of vital interest to the science and technol-

ogy of nanomaterials. The structure and properties of nanomaterials differ signifi-

cantly from those of atoms and molecules as well as those of bulk materials. Syn-

thesis, structure, energetics, response, dynamics and a variety of other properties

and related applications form the theme of the emerging area of nanoscience, and

there is a large chemical component in each of these aspects. Chemistry plays a

particularly important role in the synthesis and characterization of nanobuilding

units such as nanocrystals of metals, oxides and semiconductors, nanoparticles

and composites involving ceramics, nanotubes of carbon and inorganics, nano-

wires of various materials and polymers involving dendrimers and block copoly-

mers. Assembling these units into arrays also involves chemistry. In addition, new

chemistry making use of these nanounits is making great progress. Electrochem-

istry and photochemistry using nanoparticles and nanowires, and nanocatalysis are

examples of such new chemistry. Nanoporous solids have been attracting increas-

ing attention in the last few years. Although the area of nanoscience is young, it

seems likely that new devices and technologies will emerge in the near future. This

book is intended to bring together the various experimental aspects of nanoscience

of interest to chemists and to show how the subject works.

The book starts with a brief introduction to nanomaterials followed by chapters

dealing with the synthesis, structure and properties of various types of nano-

structures. There are chapters devoted to oxomolybdates, porous silicon, polymers,

electrochemistry, photochemistry, nanoporous solids and nanocatalysis. Nano-

manipulation and lithography are covered in a separate chapter. In our attempt to

make each contribution complete in itself, there is some unavoidable overlap

amongst the chapters. Some chapters cover entire areas, while others expound on a

single material or a technique. Our gratitude goes to S. Roy for his valuable sup-

port in preparing the index manuscript.

We trust that beginners, teachers and practitioners of the subject will find the

xvi



book useful and instructive. The book could profitably be used as the basis of a

university course in the subject.

C. N. R. Rao

A. Müller

A. K. Cheetham

Preface xvii
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Nanomaterials – An Introduction

C. N. R. Rao, A. Müller, and A. K. Cheetham

The term nanotechnology is employed to describe the creation and exploitation of

materials with structural features in between those of atoms and bulk materials,

with at least one dimension in the nanometer range (1 nm ¼ 10�9 m). In Table

1.1, we list typical nanomaterials of different dimensions. Properties of materials

of nanometric dimensions are significantly different from those of atoms as well as

those of bulk materials. Suitable control of the properties of nanometer-scale

structures can lead to new science as well as new devices and technologies. The

underlying theme of nanotechnology is miniaturization. The importance of nano-

technology was pointed out by Feynman as early as 1959, in his often-cited lecture

entitled ‘‘There is plenty of room at the bottom’’. The challenge is to beat Moore’s

law, according to which the size of microelectronic devices shrinks by half every

four years. This implies that by 2020, the size will be in the nm scale and we

should be able to accommodate 1000 CDs in a wristwatch, as predicted by White-

sides.

There has been an explosive growth of nanoscience and technology in the last

few years, primarily because of the availability of new strategies for the synthesis of

nanomaterials and new tools for characterization and manipulation (Table 1.2).

There are many examples to demonstrate the current achievements and paradigm

shifts in this area. Scanning tunneling microscope (STM) images of quantum dots

(e.g. germanium pyramid on a silicon surface) and of the quantum corral of 48 Fe

atoms placed in a circle of 7.3 nm radius being familiar ones (Figure 1.1). Several

methods of synthesizing nanoparticles, nanowires and nanotubes, and their as-

semblies, have been discovered. Thus, nanotubes and nanowires of a variety of

inorganic materials have been discovered, besides those of carbon. Ordered arrays

or superlattices of nanocrystals of metals and semiconductors have been prepared.

Nanostructured polymers formed by the ordered self-assembly of triblock copoly-

mers and nanostructured high-strength materials are other examples.

Besides the established techniques of electron microscopy, diffraction methods

and spectroscopic tools, scanning probe microscopies have provided powerful

means for studying nanostructures. Novel methods of fabrication of patterned

nanostructures as well as new device and fabrication concepts are constantly being
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discovered. Nanostructures are also ideal for computer simulation and modelling,

their size being sufficiently small to accommodate considerable rigor in treatment.

In computations related to nanomaterials, one deals with a spatial scaling from 1 Å

to 1 mm and a temporal scaling from 1 fs to 1 s, the limit of accuracy going beyond

1 kcal mol�1. Prototype circuits involving nanoparticles and nanotubes for nano-

electronic devices have been fabricated. Quantum computing has made a begin-

ning and appropriate quantum algorithms are being developed.

Let us not forget that not everything in nanoscience is new. Many existing tech-

nologies employ nanoscale processes, catalysis and photography being well-known

examples. Our capability to synthesize, organize and tailor-make materials at the

nanoscale is, however, of recent origin. Novel chemistry has been generated by

employing nanoparticles, nanowires and other nanostructures. This includes elec-

trochemical, photochemical, catalytic and other aspects. The immediate objectives

of the science and technology of nanomaterials are: (i) to fully master the synthesis

of isolated nanostructures (building blocks) and their assemblies with the desired

properties, (ii) to explore and establish nanodevice concepts and systems archi-

tectures, (iii) to generate new classes of high performance materials, (iv) to connect

Tab. 1.1. Examples of nanomaterials.

Size (approx.) Materials

Nanocrystals and clusters

(quantum dots)

diam. 1–10 nm Metals, semiconductors, magnetic

materials

Other nanoparticles diam. 1–100 nm Ceramic oxides

Nanowires diam. 1–100 nm Metals, semiconductors, oxides,

sulfides, nitrides

Nanotubes diam. 1–100 nm Carbon, layered metal chalcogenides

Nanoporous solids pore diam. 0.5–10 nm Zeolites, phosphates etc.

2-Dimensional arrays

(of nano particles)

several nm2–mm2 Metals, semiconductors, magnetic

materials

Surfaces and thin films thickness 1–1000 nm A variety of materials

3-Dimensional structures

(superlattices)

Several nm in the three

dimensions

Metals, semiconductors, magnetic

materials

Tab. 1.2. Methods of synthesis and investigation of nanomaterials.

Scale (approx.) Synthetic Method Structural Tool Theory and simulation

0.1 to@10 nm Covalent synthesis Vibrational spectroscopy

NMR

Diffraction methods

Electronic structure

<1 to@100 nm Techniques of

self-assembly

Scanning probe

microscopies

Molecular dynamics

and mechanics

100 nm to@1 mm Processing,

modifications

SEM, TEM Coarse-grained

models etc.
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nanoscience to molecular electronics and biology, and (v) to improve known tools

while discovering better tools of investigation of nanostructures.

1.1

Size Effects

Size effects constitute a fascinating aspect of nanomaterials. The effects deter-

mined by size pertain to the evolution of structural, thermodynamic, electronic,

spectroscopic, electromagnetic and chemical features of these finite systems with

increasing size. Size effects can be classified into two types, one dealing with spe-

cific size effects (e.g. magic numbers of atoms in metal clusters, quantum me-

chanical effects at small sizes) and the other involving size-scaling applicable to

relatively larger nanostructures. The former includes the appearance of new fea-

tures in the electronic structure. In Figure 1.2, we show how the electronic struc-

tures of metal and semiconductor nanocrystals differ from those of bulk materials

and isolated atoms. In Figure 1.3, we show the size-dependence of the average en-

ergy level spacing of sodium in terms of the Kubo gap (EF=N) in K. In this figure,

we also show the effective percentage of surface atoms as a function of particle

diameter. Note that at small size, we have a high percentage of surface atoms.

Size affects the structure of nanoparticles of materials such as CdS and CdSe,

and also their properties such as the melting point and the electronic absorption

spectra. In Figures 1.4 and 1.5, we show such size effects graphically. It should be

noted that even metals show nonmetallic band gaps when the diameter of the

nanocrystals is in the 1–2 nm range. Hg clusters show a nonmetallic band gap

which shrinks with increase in cluster size. It appears that around 300 atoms are

necessary to close the gap. It is also noteworthy that metal particles of 1–2 nm

diameter also exhibit unexpected catalytic activity, as exemplified by nanocatalysis

by gold particles.

Fig. 1.1. STM image of a quantum corral of 48 Fe atoms

placed in a circle of 7.3 nm [IBM Research].
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1.2

Synthesis and Assembly

The synthesis of nanomaterials and assembling the nanostructures into ordered

arrays to render them functional and operational are crucial aspects of nano-

science. The materials/structures include nanoparticles, nanowires, nanotubes,

Fig. 1.2. Density of states for metal and semiconductor

nanocrystals compared to those of the bulk and of isolated

atoms [from C. N. R. Rao, G. U. Kulkarni, P. J. Thomas,

P. P. Edwards, Chem-Euro J., 2002, 8, 29.].
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nanocapsules, nanostructured alloys and polymers, nanoporous solids and DNA

chips. What is also noteworthy is that chemists have synthesized molecular entities

of nanometric dimensions. In Figure 1.6, we show a two-dimensional crystalline

array of thiolized metal nanocrystals to illustrate self-assembly.

1.3

Techniques

The emerging nanoworld encompasses entirely new and novel means of inves-

tigating structures and systems, besides exploiting the well known microscopic,

diffraction and spectroscopic methods. Species as small as single atoms and mole-

cules are manipulated and exploited as switches. Computer-controlled scanning

probe microscopy enables a real-time, hands-on nanostructure manipulation.

Nanomanipulators have also been designed to operate in scanning and transmis-

sion electron microscopes. A nanomanipulator gives virtual telepresence on the

Fig. 1.3. A plot of the average electronic

energy level spacing (Kubo gap, d) of sodium

as a function of the particle diameter. Also

shown is the percentage of sodium atoms at

the surface as a function of particle diameter

[From P. P. Edwards, R. L. Johnston and

C. N. R. Rao, in Metal Clusters in Chemistry,

ed. P. Braunstein et al., John Wiley, 1998.].
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surface, with a scale factor of a million to one. Optical tweezers provide another

approach to holding and moving nanometer structures, a capability especially use-

ful in investigating the dynamics of molecules and particles. Questions such as,

how does a polymer move, generate force, respond to an applied force and unfold,

can be answered by the use of optical tweezers. It is noteworthy that the position-

ing of nanoparticles accurately and reliably on a surface by using the tip of an

atomic force microscope as a robot has already been accomplished. Large-scale op-

erations requiring parallel tip arrays are being explored in several laboratories.
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Fig. 1.4. (a) Size dependence of the melting temperature of

CdS nanocrystals. (b) Size dependence of the pressure-induced

wurtzite–rock salt transformation in CdSe nanocrystals [from

A. P. Alivisatos, J. Phys. Chem., 1996, 100, 13226.].
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1.4

Applications and Technology Development

Some of the important applications and technologies based on nanomaterials are

the following: (i) Production of nanopowders of ceramics and other materials, (ii)

nanocomposites, (iii) development of nanolectrochemical systems (NEMS), (iv)

Applications of nanotubes for hydrogen storage and other purposes, (v) DNA chips

and chips for chemical/biochemical assays, (vi) gene targeting/drug targeting and

(vii) nanoelectronics and nanodevices. The last one, which is probably the most

challenging area, includes new lasers, nanosensors, nanocomputers (based on

nanotubes and other materials), defect-free electronics for future molecular com-

puters, resonant tunneling devices, spintronics and the linking of biological mo-

tors with inorganic nanodevices.

1.5

Nanoelectronics

The multidisciplinary area of nanoelectronics has two objectives: (i) utilization of a

single nanostructure (e.g. nanocrystal, quantum dot, nanotube) for processing

electrical, optical or chemical signals, and (ii) utilization of nanostructured materi-

als involving assemblies of nanostructures for electronic, optoelectronic, chemical

and other applications. While it is often difficult to make distinctions between the

two, the first category is specifically intended to obtain single-electron devices and

the second category is for the purpose of miniaturization in information storage

Fig. 1.6. Two-dimensional array of thiolized Pd561Ni561 nano-

crystals [from P. J. Thomas, G. U. Kulkarni, C. N. R. Rao, J.

Nanosci. Nanotechnol., 2001, 1, 267.].
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