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1

General Introduction

Günter Schmid

In 1994 the book entitled ‘‘Clusters and Colloids – from Theory to Applications’’

was published with the goal of summarizing the state of the art in the field of

metal clusters and colloids. Nine years ago, interest was mainly focused on syn-

thetic and structural aspects. Theoretical considerations were limited to small

molecule-like organometallic clusters. The very first hints of important novel elec-

tronic properties of nanosized particles stimulated further activity. Practical appli-

cations could be foreseen – at least if the will was there.

Nine years of worldwide revolutionary developments in nanoscience, combining

physics, chemistry, material science, theory and even biosciences, have brought us

to another level of understanding. ‘‘Nanotechnology’’ became a key word of public

interest, since even politicians and economists realized the social power of nano-

technological developments. Nanotechnology is called the technology of the next

century, coming after microtechnology. Nanotechnology unfortunately also became

a catchword for people with ambitions in science fiction. Such people threaten us

with visions of horror, as when self-replicating machines will destroy mankind.

Nevertheless, nanoscience, and consequently nanotechnology, is going to initiate a

technological impact that can probably not be compared with any other technical

development up to the present time, since it will concern all aspects of human life,

ranging from novel building materials to medicine. Of course, it is sometimes dif-

ficult to distinguish between vision and reality. However, nanotechnology has

already become part of our daily lives, even if we do not recognize this. The

most revolutionary consequences can be expected if the most valuable properties of

nanoparticles, their electronic properties, are exploited. These are of a fascinating

nature and will bring about a real technological revolution. Meanwhile, we know

the most important basic facts about nanoparticles and so can predict future

applications based on their novel properties.

This book does not, of course, deal with any kind of unsubstantiated visions, in

either a positive or a negative sense. It reports strictly on the present state of sci-

entific development, which is impressive enough for any kind of science fiction to

be quite unnecessary.
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Semiconductor and metal nanoparticles occupy the center of scientific interest

because of their unique electronic nature: they follow quantum mechanical rules

instead of the laws of classical physics which govern bulk materials. Therefore,

small molecular clusters, mainly of the organometallic type, are not considered

further. It is also no longer helpful to strictly distinguish clusters from colloids. In

general, we call compounds of interest nanoparticles, which implies that predom-

inantly they do not exhibit classical bulk properties, while, on the other hand, dif-

fering from molecules in so far as they in some way represent pieces of matter

related to the bulk material they originate from.

Consequently the first chapter of this book is called ‘‘Quantum Dots’’, as it deals

with those very special properties of matter in the nanosize regime. The under-

standing of quantum-confined electrons in very small particles is the basis for the

understanding of properties which will be described in following chapters.

Although the principal synthetic routes to nanoparticles of semiconductor or

metallic nature have been well known for some decades, some novel developments

seem worth reporting here, and for reasons of completeness classical procedures

will at least briefly be reconsidered. Syntheses of semiconductor nanoparticles of

II–VI, III–V and Ib–VI types will be followed by routes to metal nanoparticles.

The science of nanoparticles during the last decade is characterized by, among

other things, the enormous efforts which have been made to organize nano-

particles in three and two dimensions, and to some extent one dimension. Three-

dimensional organization of atoms, ions, or molecules is a well-known natural

process, called crystallization. Three-dimensional organization of nanoparticles is,

however, not always a simple matter, since, with some exceptions, particles of a

few up to some dozens of nanometers in size usually do not possess exactly

the same number of atoms or, consequently, the same shape. Classically, only

identical species were believed to form crystals. Then we learned that particles of

similar but not identical size and shape may be able to organize three-, even two-

dimensionally. These aspects become important, as we shall see, in applications of

nanoparticles in future nanoelectronic or magnetic devices, for instance in relation

to storage problems. This is why the organization of semiconductor and metal

nanoparticles will be discussed in detail.

The chapter on the various properties of nanoparticles is of central importance

in this book. With the parallel development of analytical tools, highly sophisticated

intrinsic properties of all kinds of nanoparticles became visible. Optical, electronic,

and magnetic properties of nanoparticles open up a novel world with immense

implications for future developments.

As already mentioned, biomaterials became part of nanoscience after we learned

to use biomolecules as tools to combine inorganic nanoparticles. DNA and pro-

teins developed into valuable materials of manifold excellent utility. The combina-

tion of inorganic and biochemical building blocks led to a wide variety of novel

hybrid systems with unexpected properties. This field of nanoscience is still at the

very beginning and is expected to develop very fast in the near future.

Just like its predecessor, ‘‘Clusters and Colloids’’, this book will need a successor

in a couple of years, because of the extremely rapid development of nanoscience.

1 General Introduction2



Therefore, it should be stated that this book simply gives an insight into our cur-

rent, short-lived knowledge of important aspects of nanoscience.

This brings us to those parts of nanoscience that will not be considered here,

because they would overstep the limits of this book too much. Thus, we will not

consider the rapidly growing field of nanorods and nanowires. Also, nanosized

biological and supramolecular aspects will not be discussed, except in some special

cases relating to quantum dots. Nanostructured surfaces will also not be explicitly

treated, except those resulting from decoration with nanoparticles. Indeed, these

are considerable restrictions. However, it is not the purpose of this work to serve as

an encyclopedia. Rather it is an attempt to describe one important part of nano-

science that may play a decisive role in future nanotechnology.

1 General Introduction 3
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Quantum Dots

Wolfgang Johann Parak, Liberato Manna, Friedrich Christian

Simmel, Daniele Gerion, and Paul Alivisatos

2.1

Introduction and Outline

In the last decade, new directions of modern research, broadly defined as ‘‘nano-

scale science and technology’’, have emerged [1, 2]. These new trends involve the

ability to fabricate, characterize, and manipulate artificial structures, whose fea-

tures are controlled at the nanometer level. They embrace areas of research as

diverse as engineering, physics, chemistry, materials science, and molecular biol-

ogy. Research in this direction has been triggered by the recent availability of

revolutionary instruments and approaches that allow the investigation of material

properties with a resolution close to the atomic level. Strongly connected to such

technological advances are the pioneering studies that have revealed new physical

properties of matter at a level intermediate between atomic/molecular and bulk.

Materials science and technology is a field that is evolving at a very fast pace and

is currently giving the most significant contributions to nanoscale research. It is

driven by the desire to fabricate materials with novel or improved properties. Such

properties can be, for instance, strength, electrical and thermal conductivity, optical

response, elasticity, or wear resistance. Research is also evolving toward materials

that are designed to perform more complex and efficient tasks. Examples include

materials that bring about a higher rate of decomposition of pollutants, a selective

and sensitive response toward a given biomolecule, an improved conversion of

light into current, or more efficient energy storage. For such and more complex

tasks to be realized, novel materials have to be based on several components whose

spatial organization is engineered at the molecular level. This class of materials

can be defined as ‘‘nano-composites’’. They are made of assembled nanosized ob-

jects or molecules. Their macroscopic behavior arises from the combination of the

novel properties of the individual building blocks and their mutual interaction.

In electronics, the design and the assembly of functional materials and devices

based on nanoscale building blocks can be seen as the natural, inevitable evolution

of the trend toward miniaturization. The microelectronics industry, for instance, is

fabricating integrated circuits and storage media whose basic units are approach-
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ing the size of few tens of nanometers. For computers, ‘‘smaller’’ means higher

computational power at lower cost and with higher portability. However, this race

toward higher performance is driving current silicon-based electronics to the limits

of its capability [3–6]. The design of each new generation of smaller and faster

devices involves more sophisticated and expensive processing steps, and requires

the solution of new sets of problems, such as heat dissipation and device failure.

If the trend toward further miniaturization persists, silicon technology will soon

reach limits at which these problems become insurmountable. In addition to this,

scientists have found that device characteristics in very small components are

strongly altered by quantum mechanical effects. In many cases, these effects will

undermine the classical principles on which most of today’s electronic compo-

nents are based. For these reasons, alternative materials and approaches are cur-

rently being explored for novel electronic components in which the laws of quan-

tum mechanics regulate their functioning in a predictable way. Perhaps in the near

future a new generation of computers will rely on fundamental processing units

that are made only of a few atoms.

Fortunately, the advent of new methods for the controlled production of nano-

scale materials has provided new tools that can be adapted for this purpose. New

terms such as nanotubes, nanowires, and quantum dots are now common jargon

of scientific publications. These objects are among the smallest man-made units

that display physical and chemical properties which make them promising candi-

dates as fundamental building blocks for novel transistors. The advantages envis-

aged here are higher device versatility, faster switching speed, lower power dis-

sipation, and the possibility of packing many more transistors on a single chip.

Prototypes of these new single nano-transistors are nowadays fabricated and

studied in research laboratories and are far from commercialization. How millions

of such components could be arranged and interconnected in complex archi-

tectures and at low cost still remains a formidable problem to be solved.

With a completely different objective, the pharmaceutical and biomedical indus-

tries try to synthesize large supramolecular assemblies and artificial devices that

mimic the complex mechanisms of nature or that can be potentially used for more

efficient diagnoses and better cures for diseases. Examples in this direction are

nanocapsules such as liposomes, embodying drugs that can be selectively released

in living organs, or bioconjugate assemblies of biomolecules and magnetic (or

fluorescent) nanoparticles that may provide faster and more selective analysis of

biotissues. These prototype systems may one day evolve into more complex nano-

machines with highly sophisticated functional features able to carry out compli-

cated tasks at the cellular level in a living body.

This chapter is not meant as a survey of the present state and future develop-

ments of nanoscale science and technology, and the list of examples mentioned

above is far from being complete. Nanoscience and nanotechnology will definitely

have a strong impact on our lives in many disparate areas. We can mention, as the

most significant examples, information technology and the telecommunications

industry, materials science and engineering, medicine. In this introductory chap-

ter, we want to stress the point that any development in nanoscience necessarily

2.1 Introduction and Outline 5



requires an understanding of the physical laws that govern matter at the nanoscale

and of how the interplay of the various physical properties of a nanoscopic system

translates into some novel behavior or into a new physical property. In this sense,

the chapter will serve as an overview of basic physical rules governing nanoscale

materials, with a particular emphasis on quantum dots, including their various

physical realizations and their possible applications. Quantum dots are the ulti-

mate example of a solid in which all dimensions shrink down to a few nanometers.

Moreover, semiconductor quantum dots are probably the most studied nanoscale

systems.

The outline of this chapter is as follows. In Section 2.2 we try to explain with a

few examples why the behavior of nanoscale materials can be remarkably different

from that of bulk materials and from their atomic counterparts, and how quantum

mechanics can help us in rationalizing this. Following this discussion, we give a

definition of a ‘‘quantum dot’’. In Section 2.3 we follow a bottom-up approach and

give the simplified picture of a solid as being a very large molecule, where the en-

ergy levels of the individual atomic components have merged into bands. The

electronic structure of a quantum dot, being intermediate between that of the two

extreme cases of single atoms and bulk material, will then be an easier concept to

grasp. In Section 2.4 we use the model of a free-electron gas and the concept of

quantum confinement to explain what happens to a solid when its dimensions

shrink one by one. This leads us to a more accurate definition of quantum well,

quantum wire, and quantum dot. In Section 2.5 we examine in more detail the

electronic structure of quantum dots, although we try to keep the discussion at a

simple level. Section 2.6 is a brief overview of the most popular methods used to

fabricate quantum dots. Different methods lead to different varieties of quantum

dots, which can be suited for specific applications. In Section 2.7 we discuss the

optical properties of quantum dots. As they are quite unique for this class of

materials, the optical properties are probably the most important reason why the

research on quantum dots has exploded in the last decade. The discussion here

will be focused more on colloidal nanocrystal quantum dots. Electrical and trans-

port properties are nonetheless extremely relevant, as is described in Section 2.8,

since, for instance, the addition or subtraction of a charge from a quantum dot

leads to dramatic modification of its electronic structure and of the way the dot will

handle a further addition or subtraction of a charge. This can be of fundamental

importance for future applications in electronics.

2.2

Nanoscale Materials and Quantum Mechanics

2.2.1

Nanoscale Materials as Intermediate between Atomic and Bulk Matter

Nanoscale materials frequently show behavior which is intermediate between that

of a macroscopic solid and that of an atomic or molecular system. Consider, for

2 Quantum Dots6



instance, the case of an inorganic crystal composed of few atoms. Its properties

will be different from those of a single atom, but we cannot imagine that they will

be the same as those of a bulk solid. The number of atoms on the crystal’s surface,

for instance, is a significant fraction of the total number of atoms, and therefore

will have a large influence on the overall properties of the crystal. We can easily

imagine that this crystal might have a higher chemical reactivity than the corre-

sponding bulk solid and that it will probably melt at lower temperatures. Consider

now the example of a carbon nanotube, which can be thought of as a sheet of

graphite wrapped in such a way that the carbon atoms on one edge of the sheet are

covalently bound to the atoms on the opposite edge of the sheet. Unlike its indi-

vidual components, a carbon nanotube is chemically extremely stable because the

valences of all its carbon atoms are saturated. Moreover, we would guess that

carbon nanotubes can be good conductors because electrons can freely move along

these tiny, wire-like structures. Once again, we see that such nanoscopic objects

can have properties which do not belong to the realm of their larger (bulk) or

smaller (atoms) counterparts. However, there are many additional properties spe-

cific to such systems which cannot easily be grasped by simple reasoning. These

properties are related to the sometimes counterintuitive behavior that charge car-

riers (electrons and holes) can exhibit when they are forced to dwell in such struc-

tures. These properties can only be explained by the laws of quantum mechanics.

2.2.2

Quantum Mechanics

A fundamental aspect of quantum mechanics is the particle-wave duality, intro-

duced by De Broglie, according to which any particle can be associated with a

matter wave whose wavelength is inversely proportional to the particle’s linear

momentum. Whenever the size of a physical system becomes comparable to the

wavelength of the particles that interact with such a system, the behavior of the

particles is best described by the rules of quantum mechanics [7]. All the infor-

mation we need about the particle is obtained by solving its Schrödinger equation.

The solutions of this equation represent the possible physical states in which the

system can be found. Fortunately, quantum mechanics is not required to describe

the movement of objects in the macroscopic world. The wavelength associated with

a macroscopic object is in fact much smaller than the object’s size, and therefore

the trajectory of such an object can be excellently derived using the principles of

classical mechanics. Things change, for instance, in the case of electrons orbiting

around a nucleus, since their associated wavelength is of the same order of mag-

nitude as the electron-nucleus distance.

We can use the concept of particle-wave duality to give a simple explanation of

the behavior of carriers in a semiconductor nanocrystal. In a bulk inorganic semi-

conductor, conduction band electrons (and valence band holes) are free to move

throughout the crystal, and their motion can be described satisfactorily by a linear

combination of plane waves whose wavelength is generally of the order of nano-

meters. This means that, whenever the size of a semiconductor solid becomes

2.2 Nanoscale Materials and Quantum Mechanics 7



comparable to these wavelengths, a free carrier confined in this structure will

behave as a particle in a potential box [8]. The solutions of the Schrödinger equa-

tion in such case are standing waves confined in the potential well, and the en-

ergies associated with two distinct wavefunctions are, in general, different and

discontinuous. This means that the particle energies cannot take on any arbitrary

value, and the system exhibits a discrete energy level spectrum. Transitions be-

tween any two levels are seen as discrete peaks in the optical spectra, for instance.

The system is then also referred to as ‘‘quantum confined’’. If all the dimensions of

a semiconductor crystal shrink down to a few nanometers, the resulting system is

called a ‘‘quantum dot’’ and will be the subject of our discussion throughout this

chapter. The main point here is that in order to rationalize (or predict) the physical

properties of nanoscale materials, such as their electrical and thermal conductivity

or their absorption and emission spectra, we need first to determine their energy

level structure.

For quantum-confined systems such as quantum dots, the calculation of the

energy structure is traditionally carried out using two alternative approaches. One

approach has just been outlined above. We take a bulk solid and we study the evo-

lution of its band structure as its dimensions shrink down to a few nanometers.

This method will be described in more detail later (Section 2.4). Alternatively, we

can start from the individual electronic states of single isolated atoms as shown in

Section 2.3 and then study how the energy levels evolve as atoms come closer and

start interacting with each other.

2.3

From Atoms to Molecules and Quantum Dots

From the point of view of a chemist, the basic building blocks of matter are atomic

nuclei and electrons. In an atom, electrons orbit around the single nucleus, and the

number of electrons depends on the element. In the simplest case of the hydrogen

atom, one electron orbits around one proton. The electronic states of the hydrogen

atom can be calculated analytically [9, 10]. As soon as more than one electron

is involved, however, the calculation of the energy levels becomes more compli-

cated, since, in addition to the interaction between the nucleus and the electron, now

also electron-electron interactions have to be taken into account. Although the en-

ergy states of many-electron atoms can no longer be derived analytically, approx-

imations such as the Hartree-Fock method exist [10]. Each electron can be ascribed

to an individual orbit, called an atomic orbital (AO), with an associated discrete

energy level. Depending on the angular moment of the orbit, AOs can have

spherical (s-orbital), club-like (p-orbital) or a more complicated (d-, f -orbitals)
shape. The eight valence electrons of a neon atom, for example, occupy one s- and
three p-orbitals around the nucleus, one spin up and one spin down per orbit [10],

where the energy level of the s-orbital is lower than that of the p-orbitals. In accor-

dance with the rules of quantum mechanics, the energy levels are discrete.

The next bigger structure, obtained from the combination of several atoms, is

2 Quantum Dots8



the molecule. Now electrons orbit collectively around more than one nucleus. In a

molecule, electrons that are responsible for the covalent bonds between individual

atoms can no longer be ascribed to one individual atom, but they are ‘‘shared’’. In

methane (CH4), for instance, each of the four sp3 atomic orbitals of the central

carbon atom is linearly combined with the s orbital of a hydrogen atom to form a

bonding (s) and an anti-bonding (s�) orbital, respectively [9]. Since these orbitals

are ‘‘shared’’ between the atoms, they are called molecular orbitals (MO, see Figure

2-1). Only the lowest energy (bonding) orbitals are occupied, and this explains the

relative stability of methane [10]. Using the same principle, it is possible to derive

the electronic structure of more complex systems such as large molecules or

atomic clusters. When combining atoms to form a molecule, we start from discrete

energy levels of the atomic orbitals and we still end up obtaining discrete levels for

the molecular orbitals [9].

When the size of a polyatomic system becomes progressively larger, the calcula-

tion of its electronic structure in terms of combinations of atomic orbitals becomes

unfeasible [11–13]. However, simplifications arise if the system under study is a

periodic, infinite crystal. The electronic structure of crystalline solids can be in fact

described in terms of periodic combinations of atomic orbitals (Bloch functions)

[14, 15]. In this model, perfect translational symmetry of the crystal structure is

assumed, and contributions from the surface of the crystal are neglected by as-

suming an infinite solid (periodic boundary conditions). Electrons are described as

a superposition of plane waves extended throughout the solid. As opposed to the

case of atoms and molecules, the energy structure of a solid no longer consists of

discrete energy levels, but rather of broad energy bands [14, 15], as sketched in

Figure 2-1. Every band can be filled only with a limited amount of charge carriers.

energy

number of connected atoms

atom molecule
quantum 

dot
bulk solid-
state body

energy gap

p

s

sp3

σ*

σ

conduction
band

valence
band

Fig. 2-1 Electronic energy levels depending on

the number of bound atoms. By binding more

and more atoms together, the discrete energy

levels of the atomic orbitals merge into energy

bands (here shown for a semiconducting

material) [16]. Therefore semiconducting

nanocrystals (quantum dots) can be regarded

as a hybrid between small molecules and bulk

material.
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In very small crystals of nanometer dimensions, so called nanocrystals, the as-

sumptions of translational symmetry and infinite size of the crystal are no longer

valid, and thus these systems cannot be described with the same model used for a

bulk solid. We can imagine indeed that the electronic structure of a nanocrystal

should be something intermediate between the discrete levels of an atomic system

and the band structure of a bulk solid. This can be evidenced from Figure 2-1: the

energy levels of a nanocrystal are discrete, their density is much larger, and their

spacing is smaller than for the corresponding levels of one atom or a small atomic

cluster. Because of their discrete energy levels, such structures are called also

quantum dots. The concept of energy bands and band gap can still be used. High-

est occupied atomic levels of the atomic (or ionic) species interact with each other

to form the valence band of the nanocrystal. Similarly, lowest unoccupied levels

combine to form the conduction band of the nanocrystal. The energy gap between

the valence and conduction bands results in the band gap of the nanocrystal. As an

example, consider a metallic quantum dot. Its level spacing at the Fermi level is

roughly proportional to@EF=N, where N is the number of electrons in the quan-

tum dot. Given that EF is a few eV and that N is close to 1 per atom, the band gap

of a metallic quantum dot becomes observable only at very low temperatures.

Conversely, in the case of semiconductor quantum dots, the band gap is larger and

its effects can be observed at room temperature. The size-tunable fluorescence

emission of CdSe quantum dots in the visible region of the spectrum is for in-

stance a very explanatory illustration of the presence of a size-dependent band gap.

2.4

Shrinking Bulk Material to a Quantum Dot

In this chapter we will use the concept of quantum confinement of carriers in a

solid to derive a more detailed description of the electronic band structure in a low-

dimensional solid. This description, although more elaborate than the one just

given above, is indeed more powerful and will underline the general physics of a

solid when its dimensions shrink one by one down to few nanometers. We will

start first with an elementary model of the behavior of electrons in a bulk solid.

This model will then be adapted to the case of confined carriers.

2.4.1

Three-Dimensional Systems (Bulk Material)

We now consider the case of a three-dimensional solid of size dx; dy; dz, containing
N free electrons. ‘‘Free’’ means that these electrons are delocalized and thus not

bound to individual atoms. Furthermore, we will make the assumption that the

interactions between the electrons, as well as the interactions between the elec-

trons and the crystal potential, can be neglected as a first approximation. Such a

model system is called ‘‘free-electron gas’’ [14, 15].
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Astonishingly, this oversimplified model still captures many of the physical as-

pects of real systems. From more complicated theories it has been learnt that many

of the expressions and conclusions from the free-electron model remain valid as a

first approximation even when one takes electron-crystal and electron-electron in-

teractions into account. In many cases it is sufficient to replace the free-electron

mass m by an ‘‘effective’’ mass m�, which implicitly contains the corrections for

the interactions. To keep the story simple, we proceed with the free-electron pic-

ture. In the free-electron model, each electron in the solid moves with a velocity

~vv ¼ ðvx; vy; vzÞ. The energy of an individual electron is then just its kinetic energy:

E ¼ 1

2
m~vv2 ¼ 1

2
mðvx 2 þ vy

2 þ vz
2Þ ð1Þ

According to Pauli’s exclusion principle, each electron must be in a unique quan-

tum state. Since electrons can have two spin orientations (ms ¼ þ 1
2 and ms ¼ � 1

2),

only two electrons with opposite spins can have the same velocity ~vv. This case is

analogous to the Bohr model of atoms, in which each orbital can be occupied by

two electrons at maximum. In solid-state physics, the wavevector~kk ¼ ðkx; ky; kzÞ of
a particle is more frequently used instead of its velocity to describe the particle’s

state. Its absolute value k ¼ j~kkj is the wavenumber. The wavevector ~kk is directly

proportional to the linear momentum ~pp and thus also to the velocity ~vv of the

electron:

~pp ¼ m~vv ¼ h

2p
~kk ð2Þ

The scaling constant is the Planck constant h, and the wavenumber is related to

the wavelength l associated with the electron through the De Broglie relation [14,

15]:

Gk ¼ j~kkj ¼G
2p

l
ð3Þ

The wavelengths l associated with the electrons traveling in a solid are typically of

the order of nanometers1), much smaller than the dimensions of an ordinary solid.

The calculation of the energy states for a bulk crystal is based on the assumption

of periodic boundary conditions. Periodic boundary conditions are a mathematical

trick to ‘‘simulate’’ an infinite ðd!yÞ solid. This assumption implies that the

conditions at opposite borders of the solid are identical. In this way, an electron

that is close to the border does not really ‘‘feel’’ the border. In other words, the

electrons at the borders ‘‘behave’’ exactly as if they were in the bulk. This con-

1) In fact, the wavelength depends on the

electron density. The wavelength for electrons

in metals is typically around 10 nm; in

semiconductors it may vary between 10 nm

and 1 mm.
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dition can be realized mathematically by imposing the following condition to

the electron wavefunctions: cðx; y; zÞ ¼ cðx þ dx; y; zÞ, cðx; y; zÞ ¼ cðx; yþ dy; zÞ,
and cðx; y; zÞ ¼ cðx; y; zþ dzÞ. In other words, the wavefunctions must be peri-

odic with a period equal to the whole extension of the solid [15, 17]. The solution of

the stationary Schrödinger equation under such boundary conditions can be factor-

ized into the product of three independent functions cðx; y; zÞ ¼ cðxÞcðyÞcðzÞ ¼
A expðikxxÞ expðikyyÞ expðikzzÞ. Each function describes a free electron moving

along one Cartesian coordinate. In the argument of the functions, kx; y; z is equal to
GnDk ¼Gn2p=dx; y; z and n is an integer [14, 15, 17]. These solutions are waves

that propagate along the negative and the positive direction, for kx; y; z > 0 and

kx; y; z < 0, respectively. An important consequence of the periodic boundary con-

ditions is that all the possible electronic states in the ~kk space are equally dis-

tributed. There is an easy way of visualizing this distribution in the ideal case of a

one-dimensional free-electron gas: there are two electrons ms ¼G1
2

� �
in the state

kx ¼ 0 ðvx ¼ 0Þ, two electrons in the state kx ¼ þDk ðvx ¼ þDvÞ, two electrons in

the state kx ¼ �Dk ðvx ¼ DvÞ, two electrons in the state kx ¼ þ2Dk ðvx ¼ þ2DvÞ,
and so on.

For a three-dimensional bulk material we can follow an analogous scheme. Two

electrons ms ¼G1
2

� �
can occupy each of the states ðkx; ky; kzÞ ¼ ðGnxDk;GnyDk;

λ = dx

k = ±2 π /dx

V(x)

x
½ dx

0

ψ(x)

n=1

n=2

n=3
λ = dx/3
k = ±6 π /dx

λ = dx/2
k = ±4 π /dx

-½ dx

n=0 λ = ∞
k = 0 

Fig. 2-2 Periodic boundary conditions (only

drawn for the x-dimension) for a free-electron

gas in a solid with thickness d. The idea of

periodic boundary conditions is to mathe-

matically ‘‘simulate’’ an infinite solid. Infinite

extension is similar to an object without any

borders. This means that a particle close to the

‘‘border’’ must not be affected by the border,

but ‘‘behaves’’ exactly as it were in the bulk.

This can be realized by using a wavefunction

cðxÞ that is periodic within the thickness d of

the solid. Any electron that leaves the solid

from its right boundary would reenter under

exactly the same conditions on its left side. For

the electron the borders are quasi-nonexistent.

The probability density jcðxÞj2 is the probability
that an electron is at the position x in the

solid. Different states for the electrons

ðn ¼ 0; 1; 2; . . .Þ have different wavefunctions. l

is the De Broglie wavelength of the electrons

and k is their corresponding wavenumber. A

‘‘real’’ bulk solid can be approximated by an

infinite solid ðd!yÞ and its electronic states

in k-space are quasi-continuously distributed:

Dk ¼ 2p/dx ! 0.
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GnzDkÞ, again with nx; y; z being an integer. A sketch of this distribution is shown

in Figure 2-3. We can easily visualize the occupied states in ~kk-space because all

these states are included into a sphere whose radius is the wavenumber associated

with the highest energy electrons. At the ground state, at 0 K, the radius of the

sphere is the Fermi wavenumber kF (Fermi velocity vF). The Fermi energy

EF z kF2 is the energy of the last occupied electronic state. All electronic states

with an energy EaEF are occupied, whereas all electronic states with higher

energy E > EF are empty. In a solid, the allowed wave numbers are separated by

Dk ¼Gn2p=dx; y; z. In a bulk material dx; y; z is large, and so Dk is very small. Then

the sphere of states is filled quasi-continuously [15].

We need now to introduce the useful concept of the density of states D3dðkÞ,
which is the number of states per unit interval of wavenumbers. From this defini-

tion, D3dðkÞDk is the number of electrons in the solid with a wavenumber between

k and kþ Dk. If we know the density of states in a solid we can calculate, for in-

stance, the total number of electrons having wavenumbers less than a given kmax,

which we will call NðkmaxÞ. Obviously, NðkmaxÞ is equal to
Ð kmax

0 D3dðkÞ dk. In the

ground state of the solid, all electrons have wavenumbers ka kF, where kF is the

Fermi wavenumber. Since in a bulk solid the states are homogeneously distributed

in~kk-space, we know that the number of states between k and kþ Dk is proportional
to k2Dk (Figure 2-3). This can be visualized in the following way. The volume in

three-dimensional ~kk-space varies with k3. If we only want to count the number of

states with a wavenumber between k and kþ Dk, we need to determine the volume

of a spherical shell with radius k and thickness Dk. This volume is proportional to

product of the surface of the sphere (which varies as k2) with the thickness of the

shell (which is Dk). D3dðkÞDk is thus proportional to k2Dk, and in the limit when Dk
approaches zero, we can write:

D3dðkÞ ¼
dNðkÞ
dk

z k2 ð4Þ

Instead of knowing the density of states in a given interval of wavenumbers it is

more useful to know the number of electrons that have energies between E and

E þ DE. From Eqs. (1) and (2) we know that EðkÞ is proportional to k2, and thus

kz
ffiffiffi
E
p

. Consequently, dk=dEz 1=
ffiffiffi
E
p

. By using Eq. (4), we obtain for the density

of states for a three-dimensional electron gas [17]:

D3dðEÞ ¼
dNðEÞ
dE

¼ dNðkÞ
dk

dk

dE
zE � 1=

ffiffiffi
E
p

z
ffiffiffi
E
p

ð5Þ

This can be seen schematically in Figure 2-3. With Eq. (5) we conclude our simple

description of a bulk solid. The possible states in which an electron can be found

are quasi-continuous. The density of states varies with the square root of the en-

ergy. More details about the free-electron gas model and more refined descriptions

of electrons in solids can be found in any solid state physics textbook [14].
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2.4.2

Two-Dimensional Systems

We now consider a solid that is fully extended along the x- and y-directions, but
whose thickness along the z-direction (dz) is only a few nm (see Figure 2-5). Free

electrons can still move freely in the x-y plane. However, movement in the z-
direction is now restricted. Such a system is called a 2-dimensional electron gas

(2DEG) [18]. As mentioned in Section 2.2, when one or more dimensions of a

solid become smaller than the De Broglie wavelength associated with the free

charge carriers, an additional contribution of energy is required to confine the

dx

y

z

x

a) b)

c) d)

E

D3d(E)

→0

ky

(kx, ky, kz) Dky

kz

kx

ky

kz

kx

kx,y,zDkx,y,z

E(kx,y,z)

Fig. 2-3 Electrons in a three-dimensional bulk

solid [15]. (a) Such a solid can be modeled

as an infinite crystal along all three dimen-

sions x; y; z. (b) The assumption of periodic

boundary conditions yields standing waves

as solutions for the Schr€odinger equation for

free electrons. The associated wavenumbers

ðkx ; ky; kzÞ are periodically distributed in the

reciprocal k-space [17]. Each of the dots shown

in the figure represents a possible electronic

state ðkx ; ky; kzÞ. Each state in k-space can be

only occupied by two electrons. In a large solid

the spacing Dkx; y; z between individual electron

states is very small, and therefore the k-space

is quasi-continuously filled with states. A

sphere with radius kF includes all states with

k ¼ ðkx 2 þ ky
2 þ kz

2Þ1/2 < kF. In the ground

state, at 0 K, all states with k < kF are oc-

cupied by two electrons, and the other states

are empty. Since the k-space is homogene-

ously filled with states, the number of states

within a certain volume varies with k3. (c) Dis-

persion relation for free electrons in a three-

dimensional solid. The energy of free electrons

varies with the square of the wavenumber,

and its dependence on k is described by a

parabola. For a bulk solid the allowed states

are quasi-continuously distributed and the

distance between two adjacent states (here

shown as points) in k-space is very small.

(d) Density of states D3d for free electrons in

a three-dimensional system. The allowed

energies are quasi-continuous and their density

varies with the square root of the energy E1/2.
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component of the motion of the carriers along this dimension. In addition, the

movement of electrons along such a direction becomes quantized. This situation is

shown in Figure 2-4. No electron can leave the solid, and electrons that move in

the z-direction are trapped in a ‘‘box’’. Mathematically this is described by infi-

nitely high potential wells at the border z ¼G1
2 dz.

The solutions for the particle-in-a-box situation can be obtained by solving the

one-dimensional Schrödinger equation for an electron in a potential VðzÞ, which
is zero within the box but infinite at the borders. As can be seen in Figure 2-4, the

solutions are stationary waves with energies2) Enz ¼ p2kz 2=2m ¼ h2kz 2=8p2m ¼
h2nz 2=8mdz 2, nz ¼ 1; 2; . . . [9, 17]. This is similar to states kz ¼ nzDkz with Dkz ¼
p=dz. Again, each of these states can be occupied at maximum by two electrons.

Let us compare the states in the k-space for three- and two dimensional materials

(Figures 2-3 and 2-5). For a two-dimensional solid that is extended in the x-y-plane
only discrete values are allowed for kz. The thinner the solid in the z-direction, the
larger is the spacing Dkz between these allowed states. On the other hand, the dis-

tribution of states in the kx-ky plane remains quasi-continuous. Therefore one can

describe the possible states in the k-space as planes parallel to the kx- and ky-axes,
with a separation Dkz between the planes in the kz-direction. We can number the

2) The particle-in-a-box approach (Figure 2-4)

looks similar to the case of the periodic

boundary conditions (Figure 2-2). There are

indeed important differences between the

two cases. Periodic boundary conditions

‘‘emulate’’ an infinite solid. A quantum

mechanical treatment of this problem yields

propagating waves that are periodic within

the solid. Such waves can be seen as the

superposition of plane waves. For an idealized

one-dimensional solid, with boundaries fixed

at x ¼Gd=2, a combination of plane waves

can be, for instance, cðxÞ ¼ A � expðikxÞ þ
B � expð�ikxÞ with k ¼ n2p=d. Written in

another way, the solutions are of the type

expðikxÞ, with k ¼Gn2p=d. The solutions for

k ¼ þn2p=d and k ¼ �n2p=d are linearly

independent. The waves expðþin2px=dÞ prop-
agate to the right, the waves expð�in2px=dÞ
to the left side of the solid. Neither wave feels

the boundaries. Since expðikxÞ ¼ cosðkxÞ þ
i sinðkxÞ and expð�ikxÞ ¼ cosðkxÞ � i sinðkxÞ,
we also can write cðxÞ ¼ C � sinðkxÞ þ
D � cosðkxÞ with k ¼ n2p=d as solutions. The

only constraint here is that the wavefunction

must be periodic throughout the solid. The

state with wavenumber k ¼ 0 is a solution,

since C � sinð0Þ þ D � cosð0Þ ¼ D0 0. There-

fore the state with the lowest kinetic energy is

Ez k2 ¼ 0 for k ¼ 0. The individual states in

k-space are very close to each other because

Dk ¼ 2p=d tends to 0 when d increases. On

the other hand, the particle-in-a-box model

describes the case in which the motion of the

electrons is confined along one or more direc-

tions. Outside the box the probability of find-

ing an electron is zero. For a one-dimensional

problem the solutions are standing waves of

the type cðxÞ ¼ A � sinðkxÞ with k ¼ np=d.
There is only one solution of this type. The

function cðxÞ ¼ B � sinð�kxÞ can be written

as cðxÞ ¼ �B � sinðkxÞ and therefore is still of

the type cðxÞ ¼ A � sinðkxÞ. Because of the

boundary conditions cðx ¼Gd=2Þ ¼ 0 there

is no solution of the type cðxÞ ¼ B � cosðkxÞ.
Since the standing wave is confined to the

box, there is only the solution k ¼ þnp=d > 0.

For a small box the energy states are far apart

from each other in k-space, and the distribu-

tion of states and energies is discrete. An

important difference with respect to the

extended solid is the occurrence of a finite

zero-point energy [9]. There is no solution for

k ¼ 0, since cð0Þ ¼ A � sinð0Þ ¼ 0. Therefore

the energy of the lowest possible state ðn ¼ 1Þ
is equal to E ¼ h2=8md2, i.e. k ¼ p=d. This
energy is called zero-point energy and is a

purely quantum mechanical effect. It can be

understood as the energy that is required to

‘‘confine’’ the electron inside the box. For a

large box the zero-point energy tends to zero.

However, for small boxes this energy becomes

significant as it varies with the square of the

reciprocal of the box size d2.
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individual planes with nz. Since within one plane the number of states is quasi-

continuous, the number of states is proportional to the area of the plane. This

means that the number of states is proportional to k2 ¼ kx 2 þ ky 2. The number of

states in a ring with radius k and thickness Dk is therefore proportional to k � Dk.
Integration over all rings yields the total area of the plane in k-space. Here, in

contrast to the case of a three-dimensional solid, the density of states varies linearly

with k:

D2dðkÞ ¼
dNðkÞ
dk

z k ð6Þ

In the ground state, all states with ka kF are occupied by two electrons. We now

want to know how many states exist for electrons that have energies between E and

E þ DE. From Eqs. (1) and (2) we know the relation between k and E: EðkÞz k2

and thus kz
ffiffiffi
E
p

and dk=dEz 1=
ffiffiffi
E
p

. By using Eq. (6) we obtain the density of

states for a 2-dimensional electron gas, see also Figure 2-5 [17].

D2dðEÞ ¼
dNðEÞ
dE

¼ dNðkÞ
dk

dk

dE
z

ffiffiffi
E
p
� 1=

ffiffiffi
E
p

z 1 ð7Þ

The density of electronic states in a two-dimensional solid is therefore remarkably

different from the three-dimensional case. The spacing between the allowed en-

ergy levels in the bands increases, because fewer levels are now present. As soon as

one dimension is reduced to nanometer size, dramatic changes due to quantum

confinement occur, as, for example, the non-negligible zero-point energy. In two-

λ = 2dz
k = 1 π /dz

∞V(z)

x

½dz
0

ψ(z)

n=1

n=2

n=3 λ = 2/3dz
k = 3 π /dz

λ = dz
k = 2 π /dz

∞

0
-½dz

Fig. 2-4 Particle-in-a-box model for a free

electron moving along in the z-axis. The

movement of electrons in the z-direction is

limited to a ‘‘box’’ with thickness d: since

electrons cannot ‘‘ leave’’ the solid (the box),

their potential energy VðxÞ is zero within the

solid, but is infinite at its borders. The

probability density jcðzÞj2 is the probability

that an electron is located at position x in the

solid. Different states for the electrons

ðn ¼ 1; 2; . . .Þ differ in their wavefunction.
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Fig. 2-5 Electrons in a two-dimensional

system. (a) A two-dimensional solid is

(almost) infinitely extended in two dimensions

(here x; y), but is very thin along the third

dimension (here denoted as z), which is

comparable to the De Broglie wavelength of a

free electron (dz ! l.). (b) Electrons can still

move freely along the x- and y-directions. The

wavefunctions along such directions can be

found again by assuming periodic boundary

conditions. kx and ky states are quasi-

continuously distributed in k-space. The

movement of electrons in the z-direction is

restricted and electrons are confined to a

‘‘box’’. Only certain quantized states are

allowed along this direction. For a discrete

kz-state, the distribution of states in three-

dimensional k-space can be described as a

series of planes parallel to the kx - and ky-axes.

For each discrete kz-state, there is a separate

plane parallel to the kx and to the ky-axes.

Here only one of those planes is shown. The

kx - and ky-states within one plane are quasi-

continuous, since Dkx; y ¼ 2p/dx; y ! 0. The

distance between two planes for two sepa-

rate kz-states is large, since Dkz ¼ p/dz g 0.

For each kz-value the kx - and ky states are

homogeneously distributed on the kx -ky-plane

[17]. The number of states within this plane is

therefore proportional to the area of a disk

around kx ¼ ky ¼ 0. This means that the

number of states for a certain wavenumber

varies with k2. In the ground state all states

with ka kF are occupied with two electrons,

while the remaining states are empty. (c) Free

electrons have a parabolic dispersion relation

ðEðkÞz k2Þ. The energy levels EðkxÞ and EðkyÞ
for the electron motion along the x- and the

y-directions are quasi-continuous (they are

shown here as circles). The wavefunction cðzÞ
at the border of a small ‘‘box’’ must be zero,

leading to standing waves inside the box.

This constraint causes discrete energy levels

EðkzÞ for the motion along the z-direction.

Electrons can only occupy such discrete states

(nz1; nz2; . . . ; shown here as circles). The

position of the energy levels now changes with

the thickness of the solid in the z-direction,

or in other words with the size of the ‘‘box’’.

(d) Density of states for a two-dimensional

electron gas. If electrons are confined in one

direction ðzÞ but can move freely in the other

two directions ðx; yÞ, the density of states for a

given kz-state ðnz ¼ 1; 2; . . . :Þ does not depend
on the energy E.
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dimensional materials the energy spectrum is still quasi-continuous, but the den-

sity of states now is a step function [17, 19].

The quantum-mechanical behavior of electrons in a two-dimensional solid is the

origin of many important physical effects. With recent progress in nanoscience

and technology, the fabrication of two-dimensional structures has become routine.

2D systems are usually formed at interfaces between different materials or in lay-

ered systems in which some of the layers may be only a few nanometers thick.

Structures like this can be grown, for example, by successive deposition of the

individual layers by molecular beam epitaxy. In such geometry, charge carriers

(electrons and holes) can move freely parallel to the semiconductor layer, but their

movement perpendicular to the interface is restricted. The study of these nano-

structures led to the discovery of remarkable 2-dimensional quantized effects, such

as the Integer and the Fractional Quantum Hall Effect [20–23].

2.4.3

One-Dimensional Systems (Quantum Wires)

Let us now consider the case in which the solid also shrinks along a second (y)
dimension. Now electrons can only move freely in the x-direction, and their

motion along the y- and z-axes is restricted by the borders of the solid (see Figure

2-6). Such a system is called a quantum wire or – when electrons are the charge

carriers – a one-dimensional electron system (1DES). The charge carriers and the

E(kx)

→0

a) b)

c) d)

y

z

x

E

D1d(E)

kz

kykx

kx = 0

kx = -Dkx

kx = Dkx

kx = 2Dkx Dkx

E(ky,z)

ky,z
Dky,z

kx
Dkx

Fig. 2-6 (a) One-dimensional solid. (b) The

allowed ðkx ; ky; kzÞ-states can be visualized

as lines parallel to the kx -axes in the three-

dimensional k-space. In this figure only one

line is shows as an example. Within each line,

the distribution of states is quasi-continuous,

since Dkx ! 0. The arrangement of the

individual lines is discrete, since only certain

discrete ky- and kz-states are allowed. (c) This

can also be seen in the dispersion relations.

Along the kx -axes the energy band Eðkx ; ky; kzÞ
is quasi-continuous, but along the ky- and kz-

axes only certain energies exist. (d) The density

of states within one line along the kx -axes is

proportional to E�1/2. Each of the hyperbolas

shown in the D1d-diagram corresponds to an

individual ðky; kzÞ-state.
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