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Preface

The discovery of the physiological and pathophysiological roles of nitric oxide (NO)
during the 1980s was one of the most surprising and exciting developments in bio-
logical research. NO exhibits a broad range of biological activities. Thus, it comes
as no surprise that, as far back as 1992, the editors of the journal Science called NO
the molecule of the year, and in 1998, three scientists, R.F. Furchgott, L.J. Ignarro,
and F. Murad, were awarded the Nobel Prize in physiology and medicine for their
contribution to elucidating the role of nitric oxide in the functions of living organisms.

As a simple diatomic free radical, NO is generally considered to represent the bio-
logically important form of the endothelium-derived relaxing factor (EDRF). Cellular
NO is almost exclusively generated via the oxidation of L-arginine, which is catalyzed
by nitric oxide synthetases (NOS). Under physiological conditions, NO directly acti-
vates soluble guanylate cyclase (sGC) to transform guanosine triphosphate (GTP) into
cyclic guanosine monophosphate (cGMP), followed by kinase-mediated signal trans-
duction. The endogenous formation of NO plays a key role in many bioregulatory
systems, including smooth muscle relaxation, platelet inhibition, neurotransmission,
and immune stimulation.

Due to the instability and inconvenient handling of aqueous solutions of authentic
NO, there is increasing interest in using compounds capable of generating NO in
situ. These compounds are called NO donors, or NO releasing agents. Glyceryl
trinitrate (GTN) may be the most well known NO donor. Although the use of GTN
for medicinal purposes dates back more than 150 years, little had been revealed
about its physiological mechanism of action before the 1980s. It is well known
that the epoch-making invention realized by Alfred Nobel in 1863 paved the way
for controlled detonation of GTN. Therefore, when Nobel’s physician recommended
GTN as a treatment of his angina pectoris, Nobel wrote: “Isn’t it the irony of fate that
I have been prescribed N/G 1 [nitroglycerine] to be taken internally! They called it
Trinitrin, so as not to scare the chemist and the public.” Nobel would not have found
it ironic if he had known that it was NO, released from GTN in vivo, that helps relieve
angina.

In addition to organic nitrates, many other chemicals can be transformed into NO
in vitro or in vivo. Due to the diversity of NO donor structures, the pathway for each
class of compounds to generate NO could differ significantly, e.g., enzymatical vs.
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non-enzymatical, reductive vs. oxidative, etc. As each class of compounds offers
distinct biochemical properties, this allows us to choose a compound that best meets
the demands of specific investigations.

Insufficient NO production causes serious medical problems. Many diseases such
as hypertension, atherosclerosis and restenosis involve the deficiency of NO produc-
tion. Therefore, a compound that can release NO under specific conditions can be
used therapeutically to palliate NO underproduction. In fact, the best known NO
donor, glyceryl trinitrate, has been used for over a century to relieve acute attacks of
angina pectoris. In 1998, Carl Djerassi published a book entitled “NO”, where he
plotted the success of a biotech company producing NO donor compounds to treat
male impotence. In reality, NO donor compounds have a variety of biomedical appli-
cations. Our latest search using the keyword “nitric oxide donor” at ScienceFinder
revealed that there are 2,880 published research papers on NO donors. More impor-
tantly, there have been 105 US and world patents on the applications of NO donors in
the treatment of cardiovascular diseases, central nervous systems diseases, diseases
related to immunity, physiological disorders and many other medical situations. Be-
sides supplementation of NO in a situation where a NO insufficiency may underlie the
pathology, NO donors can also regulate NO-based physiological pathways, i.e., male
erectile dysfunction, and improve drug safety and efficacy, such as gastrointestinal
toxicity of non-steroidal anti-inflammatory drugs.

Since the mid-1980s, the development of new NO donors has offered several ad-
vantages over the previous NO donors, such as spontaneous releasing NO, donating
NO under controlled rates, and even targeting NO to certain tissues. The current
trends in NO donor development include discovery of new NO donors, finding novel
applications of old NO donors, development of NO-drug hybrids and site-specific de-
livery of NO. Although a number of reviews and books on NO have been published,
we felt that there was a need to publish a comprehensive text addressing the basic
principles of all aspects of NO donors. This book is not only an informative resource
for basic scientists in the NO field, but also for all clinicians and biologists interested
in the applications of NO donors. This 14-chapter book is divided into three sections
ranging from the basic chemistry of NO donors to clinically applied science. The first
seven chapters present a review of medicinal chemistry of all classes of NO donors.
The next three chapters continue to discuss the application of NO donors and NO
inhibition in biological research. The final four chapters of the book address other
important issues on biological functions of NO donors.

Integrating internationally recognized authors for each chapter was not an easy
job. We really appreciate the help from all these hard-working authors. We are also
grateful to the editors at Wiley-VCH – without their continuous support this project
would never have been possible. We would like to sincerely thank faculty members,
postdoctoral fellows, graduate and undergraduate students who have contributed
so much in Wang’s and Taniguchi’s laboratories on nitric oxide research. These
people are Libing Yu, Zhengmao Guo, Andrea McGill, Johnny Ramirez, Jun Li,
Ming Xian, Adam Janczuk, Yongchun Hou, Vladislav Telyatnikov, Yingxin Zhang,
Xuejun Wu, Alvin A. Holder, Qiang Jia, Zhong Wen, Xiaoping Tang, Xinchao Chen,
Jaime Martin Franco, Mingchuan Huang, Dongning Lu, Arindam Talukdar, Noriko
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Fujiwara, Satoshi Kazuma, and Yasuhide Miyamoto. P. George Wang acknowledges
the continuing funding support (NIH 54074) over the past ten years from the National
Institute of Health on the development of nitric oxide donors. Naoyuki Taniguchi
was supported by the 21st Center of Excellence Program funded by the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

December 2004 Peng George Wang
Tingwei Bill Cai
Naoyuki Taniguchi
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NO and NO Donors
Tingwei Bill Cai, Peng George Wang, and Alvin A. Holder

Nitric oxide (NO), a magic free radical gas molecule, has been shown to be involved
in numerous physiological and pathophysiological processes. Among its diverse
functions, NO has been implicated in the relaxation of vascular smooth muscle, the
inhibition of platelet aggregation, neurotransmission (Viagra reverses impotence by
enhancing an NO-stimulated pathway), and immune regulation [1]. It was named the
molecule of the year in 1992 by Science and was the subject of the Nobel Prize in 1998.
NO has limited solubility in water (2–3 mM), and it is unstable in the presence of
various oxidants. This makes it difficult to introduce as such into biological systems
in a controlled or specific fashion. Consequently, the development of chemical agents
that release NO is important if we are to target its bioeffector roles to specific cell types
for biological and pharmacological applications. Based on our comprehensive review
of NO donors [2], this chapter focuses on recent progress and current trends in NO
donor development and novel applications which are not covered by the following
chapters.

1.1

Introduction to NO Biosynthesis and NO donors

1.1.1

Nitric Oxide Synthases

Endogenous NO is produced almost exclusively by l-arginine catabolism to l-citrul-
line in a reaction catalyzed by a family of nitric oxide synthases (NOSs) [3]. In the first
step, Arg is hydroxylated to an enzyme-bound intermediate Nù-hydroxy-l-arginine
(NHA), and 1 mol of NADPH (nicotinamide adenine dinucleotide phosphate, re-
duced form) and O2 are consumed. In the second step, NHA is oxidized to citrulline
and NO, with consumption of 0.5 mol of NADPH and 1 mol of O2 (Scheme 1.1).
Oxygen activation in both steps is carried out by the enzyme-bound heme, which
derives electrons from NADPH. Mammalian NOS consists of an N-terminal oxy-
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Scheme 1.1 Endogenous synthesis of nitric oxide.

genase domain that binds iron protoporphyrin IX (heme), 6-(R)-tetrahydrobiopterin
(H4B) and Arg, and a C-terminal reductase domain that binds FMN (flavin mononu-
cleotide), FAD (flavin adenine dinucleotide), and NADPH, with a calmodulin binding
motif located between the two domains. To be active, two NOS polypeptides must
form a homodimer. The reductase domains each transfer NADPH-derived electrons,
through FAD and FMN, to the heme located in the adjacent subunit. Three distinct
isoforms of NOS have been identified – neuronal, macrophage and endothelial types,
and each is associated with a particular physiological process (Table 1.1). Constitutive
endothelial NOS (eNOS or NOS III) regulates smooth muscle relaxation and blood
pressure; constitutive neuronal NOS (nNOS or NOS I) is involved in neurotransmis-
sion and long-term potentiation; the NO produced from inducible NOS (iNOS or
NOS II) in activated macrophage cells acts as a cytotoxic agent in normal immune
defense against microorganisms and tumor cells. The constitutive isoforms (nNOS
and eNOS) require added Ca2+ and calmidulin for activity and produce a relatively
small amount of NO, while the inducible isoform (iNOS) has tightly bound Ca2+ and
calmodulin, and produces a relatively large amount of NO.

Tab. 1.1: Properties of NOS isoforms.

NOS Locations Characteristics Major Biological Functions

nNOS (NOS-I) Brain, spinal cord, peripheral Constitutive, Ca2+ dependent Neuromediator
iNOS (NOS-II) Macrophages, other tissues Inducible, Ca2+ independent Host defender, cytotoxic
eNOS (NOS-III) Endothelium Constitutive, Ca2+ dependent Vasodilator tone modulator

The first step of an NOS catalyzed reaction is a “classical” P450-dependent N-
hydroxylation of a guanidine, except for the involvement of H4B. As shown in Scheme
1.2, Fe(III)heme 1 first accepts one electron to give Fe(II)heme 2, which binds O2 to
produce ferrous-dioxy heme 3. The second electron from H4B reduces 3 to peroxy-
iron 4. Arg donates a proton to 4 to facilitate O–O bond cleavage to generate an
oxo-iron (IV) cation radical species 5, which then rapidly hydroxylates the neutral
guanidinium to NHA [4].

The second step of NOS oxidation is a greater challenge to enzymologists since
there is no direct analogy in other systems. A variety of proposed reaction steps can be
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Scheme 1.2 The first step of NOS reaction.

roughly summarized in three mechanisms (Scheme 1.3). The popular Mechanism
I was proposed by Marletta and modified by Ingold and others [5, 6], a superoxo-
iron(III)heme intermediate 6 abstracts the hydrogen atom of the NHA to furnish an
iminoxy radical 8, which upon nucleophilic attack by the hydroperoxoiron(III)heme
7 on its carbon generates NO and citrulline. This mechanism, however, appears not
to be supported by the crystal structure analysis of the NOS-NHA complex [7–9] or by
a recent spectral study [10]. The second mechanism was proposed by Groves (Mecha-
nism II), where the NOS-catalyzed aerobic oxidation of NHA occurs via a radical-type
auto-oxidation process [11, 12], i.e., NHA is oxidized by the Fe(III) heme to generate
an iminoxyl radical 8, which tautomerizes to the á-nitroso radical 12. Insertion of a
dioxygen molecule between 12 and Fe(II) heme forms an energetic á-nitrosoperoxy
Fe(III) heme intermediate that decomposes to generate NO [13, 14]. However, direct
ligation of NHA to heme iron has been precluded by the X-ray crystallographic data
[7–9]. The third mechanism, proposed by Silverman and others [15–18], mainly in-
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Scheme 1.3 The second step of NOS reaction.
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volves the oxidation of the nitrogen on the protonated N-hydroxyguanidino moiety
(Mechanism III). It was suggested that the initial N–H bond cleavage by superoxo-
iron(III)heme 6 generates a radical cation intermediate 15, which, upon heterolysis
of the O–H bond, gives the iminoxy radical 17. The nucleophilic attack of peroxo-
iron(III)heme 18 on 17 gives an intermediate similar to 13, which decomposes to NO
and citrulline. More recently, Stuehr has emphasized the involvement of H4B in the
second step of the NOS reaction [19–21].

1.1.2

Chemistry of Reactive Nitrogen Species

One of NO’s major biological actions is to activate guanylate cyclase directly to gener-
ate cyclic guanosine monophosphate (cGMP) as an intracellular second messenger,
followed by kinase-mediated signal transduction. In another pathway, NO undergoes
oxidation or reduction in biological systems to convert to many different reactive nitro-
gen species (RNS). It can react with molecular oxygen (O2), superoxide anion (O2

−•)
or transition metals (M) to produce RNS such as N2O3, NO2, NO2

−, NO3
−, peroxyni-

trite (OONO−), and metal-nitrosyl adducts (Route A, Scheme 1.4) [22, 23]. Among
these RNS, peroxynitrite stands out as an important species [24, 25]. The reaction
between NO and O2

−• produces peroxynitrite at a diffusion controlled rate [26–28].
Peroxynitrite is a strong oxidizing and nitrating species that causes molecular dam-
age leading to disease-causing cellular dysfunction [29, 30]. NO can also be rapidly
oxidized by oxygen, superoxide or transition metals to nitrosonium (NO+) which re-
acts with nucleophilic centers such as ROH, RSH and RR′NH to produce RO–NO,
RS–NO or RR′N–NO, respectively (Route B, Scheme 1.4) [31, 32]. These products sub-
sequently undergo other reactions to exhibit their biological effects. In addition, NO
also undergoes a one-electron reduction to produce nitroxyl (NO−) (Route C, Scheme
1.4). The reducing potential of this reduction is approximately +0.25 V [33]. Nitroxyl
converts rapidly to N2O under physiological conditions. Other competing reactions
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Scheme 1.4 Oxidation and reduction of reactive nitrogen species.


