

Design of Plated Structures

Eurocode 3: Design of steel structures Part 1-5: Design of plated structures

Darko Beg Ulrike Kuhlmann Laurence Davaine Benjamin Braun

ECCS Eurocode Design Manuals

DESIGN OF PLATED STRUCTURES

ECCS EUROCODE DESIGN MANUALS

ECCS EDITORIAL BOARD

Luís Simões da Silva (ECCS) António Lamas (Portugal) Jean-Pierre Jaspart (Belgium) Reidar Bjorhovde (USA) Ulrike Kuhlmann (Germany)

DESIGN OF STEEL STRUCTURES *Luís Simões da Silva, Rui Simões and Helena Gervásio*

FIRE DESIGN OF STEEL STRUCTURES Jean-Marc Franssen and Paulo Vila Real

DESIGN OF PLATED STRUCTURES Darko Beg, Ulrike Kuhlmann, Laurence Davaine and Benjamin Braun

AVAILABLE SOON

DESIGN OF COLD-FORMED STEEL STRUCTURES Dan Dubina, Viorel Ungureanu and Raffaele Landolfo

FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES *Alain Nussbaumer, Luís Borges and Laurence Davaine*

DESIGN OF JOINTS IN STEEL AND COMPOSITE STRUCTURES *Jean-Pierre Jaspart, Klaus Weynand and Jurgen Kuck*

INFORMATION AND ORDERING DETAILS

For price, availability, and ordering visit our website <u>www.steelconstruct.com</u>. For more information about books and journals visit <u>www.ernst-und-sohn.de</u>

DESIGN OF PLATED STRUCTURES

Eurocode 3: Design of Steel Structures Part 1-5 – Design of Plated Structures

Darko Beg Ulrike Kuhlmann Laurence Davaine Benjamin Braun

Design of Plated Structures

1st Edition, 2010

Published by: ECCS – European Convention for Constructional Steelwork <u>publications@steelconstruct.com</u> www.steelconstruct.com

Sales:

Wilhelm Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ECCS assumes no liability with respect to the use for any application of the material and information contained in this publication.

Copyright © 2010 ECCS - European Convention for Constructional Steelwork

ISBN (ECCS): 978-92-9147-100-3 ISBN (Ernst & Sohn): 978-3-433-02980-0 Legal dep.: - Printed in Multicomp Lda, Mem Martins, Portugal Photo cover credits: Vincent de Ville de Goyet

TABLE OF CONTENTS

FOREWORD	vii	
PREFACE	ix	
SYMBOLS	xi	
Chapter 1		
INTRODUCTION	1	
1.1. Plate buckling in steel structures	1	
1.2. Purpose of this book	2	
1.3. Structure of this book	3	
Chapter 2		
OVERVIEW OF DESIGN RULES	5	
2.1. Introduction	5	
2.2. Basis of design and modelling	5	
2.2.1. General	5	i
2.2.2. Effective width models for global analysis	6	
2.2.3. Uniform and non uniform members	7	
2.2.4. Reduced stress method	8	
2.3. Shear lag in member design	8	
2.3.1. Phenomenon	8	
2.3.2. Shear lag in global analysis (calculation of internal forces and moments)	10	
2.3.3. Elastic shear lag in section analysis (calculation of stresses at SLS and fatigue ULS)	11	
2.3.4. Elastoplastic shear lag in section analysis (calculation of stresses at ULS)	14	
2.3.5. Interaction between shear lag and plate buckling at ULS	15	

ii

2.3.6. Design examples	16
2.4. Plate buckling effects due to direct stresses (including annexes A	
and E where applicable)	22
2.4.1. Introduction	22
2.4.2. Effective width method	25
2.4.2.1. General requirements	25
2.4.2.2. Principles of effective width calculation	27
2.4.2.3. Hybrid girders	30
2.4.2.4. Plate-like and column-like buckling	31
2.4.3. Plate-like buckling	32
2.4.3.1. Unstiffened plates	32
2.4.3.2. Longitudinally stiffened plates	36
2.4.4. Column-like buckling	42
2.4.4.1. Unstiffened plates	42
2.4.4.2. Longitudinally stiffened plates	43
2.4.5. Interpolation between plate-like and column-like	
buckling	45
2.4.6. Verification of the cross section resistance in ultimate	
limit states	48
2.4.7. Verification of plated structural elements in the	
serviceability limit states	50
2.4.8. Design examples	51
2.5. Resistance to shear (including annex A where applicable)	83
2.5.1. Collapse behaviour	83
2.5.2. Design according to section 5, EN 1993-1-5	84
2.5.3. Design example	92
2.6. Resistance to transverse loading	93
2.6.1. Collapse behaviour	93
2.6.2. Design according to section 6, EN 1993-1-5	94
2.6.3. Design example	102
2.7. Interaction	109
2.7.1. Interaction between bending moment and shear force in	100
a web panel	109

iii

2.7.2. Interaction between axial force, bending moment and	
shear force in a web panel	112
2.7.3. Interaction between axial force, bending moment and	
shear force in a flange panel	112
2.7.4. Interaction between axial force, bending moment and	
transverse force	113
2.7.5. Interaction between shear force and transverse force in	
a web panel	115
2.7.6. Design examples	117
2.8. Flange induced buckling	118
2.9. Stiffeners and detailing	121
2.9.1. Introduction	121
2.9.2. Transverse stiffeners	124
2.9.2.1. Direct stresses	124
2.9.2.2. Shear	127
2.9.2.3. Simultaneous action of direct stresses and shear	131
2.9.2.4. Introduction of reaction forces and other large	
transverse forces	134
2.9.3. Longitudinal stiffeners	135
2.9.3.1. Direct stresses	135
2.9.3.2. Shear	137
2.9.4. Torsional buckling of stiffeners	137
2.9.5. Structural detailing related to plate buckling	140
2.9.5.1. Transverse welds in the plate	140
2.9.5.2. Cut-outs in stiffeners	141
2.9.5.3. Welds	142
2.9.6. Design examples	143
2.10. Reduced stress method (including Annexes A and B where	
applicable)	160
2.10.1. General	160
2.10.2. Choice of reduction factors	164
2.11. FEM	166
2.11.1. Introduction	166

4.1. Description of the bridge	209
BOX-GIRDER BRIDGE EXAMPLE	209
Chapter 4	
3.9.1. Bearing stiffeners	205
3.9. Stiffener verifications	205
3.8. Flange induced buckling verification	204
3.7. Buckling verifications according to section 10, EN 1993-1-5	200
5.6.5. Interaction checks	199
3.6.2. Resistance to transverse forces	197
3.6.1. Kesistance to shear forces	195
3.6. Buckling verifications according to sections 4 to 7, EN 1993-1-5	194
3.5. Verifications in general	194
3.4.4. Maximum shear forces and stresses	193
3.4.3. Maximum bending moments and stresses	192
3.4.2. Transverse forces and stresses	190
3.4.1. General	189
3.4. Internal forces and stresses	189
3.3.2. Crane actions	187
3.3.1. General	186
3.3. Actions and load partial factors	186
3.2.3. Cross section classification	184
3.2.2. Material properties and material partial factors	184
3.2.1. Geometry	182
3.2. Description of the crane runway beam	182
3.1. Description of the crane	181
CRANE RUNWAY BEAM EXAMPLE	181
Chapter 3	
2.11.5. Design examples	173
2.11.4. Definition of material behaviour in the FE model	172
2.11.3. Definition of initial imperfections in the FE model	168
2.11.2. Modelling	168
211.2 Modelling	160

iv

TABLE OF CONTENTS

4.1.1. Longitudinal elevation	209	
4.1.2. Cross section of the composite deck	209	
4.1.3. Material properties and partial factors	210	
4.1.3.1. Structural steel	210	
4.1.3.2. Reinforced concrete	211	
4.1.3.3. Partial factors	211	
4.1.4. Structural steel distribution	211	
4.2. Internal forces and moments, Stresses	214	
4.2.1. Actions and load partial factors	214	
4.2.2. Transient design situation (launching phase)	215	
4.2.3. Permanent design situation	215	
4.3. Web buckling verification for the launching phase	217	
4.3.1. Patch loading verification	218	
4.3.1.1. Resistance load for a single wheel ($ss = 0$)	220	
4.3.1.2. Resistance load for a patch length $ss = 1500 \text{ mm}$	220	
4.3.1.3. Patch loading verification	221	
4.3.2. Interaction between patch loading and bending moment	221	
4.4. Effective cross section of the stiffened bottom flange at internal		
support P1 (uniform compression)	222	
4.4.1. First step: shear lag effect according to EN1993-1-5, 3.2		v
and 3.3	222	
4.4.2. Second step: Critical plate buckling stress according to		
EN1993-1-5, Annex A	223	
4.4.3. Third step: Effective cross section	225	
4.4.3.1. Step A: Local buckling of sub-panels	225	
4.4.3.2. Step B: Global buckling of the whole stiffened		
bottom flange	227	
4.5. Effective cross section of the stiffened web at internal supp	oort P1	
(bending)	230	
4.5.1. Local buckling of sub-panels	232	
4.5.2. Global buckling of the whole stiffened web in bending	234	
4.5.2.1. Column like behaviour	234	

vi

4.5.2.2. Plate like behaviour	236
4.5.2.3. Interpolation between plate like and column like	
behaviour	237
4.5.3. Torsional buckling of the longitudinal web stiffener	238
4.6. Checking of the box-girder section under bending at support P1	239
4.7. Shear resistance of the stiffened web panel closest to the	
internal support P1	240
4.8. Interaction between bending and shear at support P1	246
4.9. Intermediate transverse stiffener design	247
4.9.1. Transverse web stiffeners	247
4.9.1.1. Axial forces from the tension field action	247
4.9.1.2. Transverse deviation forces from adjacen	
compressed panels	247
4.9.1.3. Verification of the transverse stiffener	248
4.9.2. Lower flange transverse stiffeners	250
4.9.2.1. Cross section class check	251
4.9.2.2. Strength and stiffness check of the stiffener	252
4.9.2.3. Shear resistance of the stiffener web	253
4.10. Buckling verifications at internal support P1 according to	
section 10, EN 1993-1-5	254
4.10.1. General	254
4.10.2. Stiffened bottom flange	254
4.10.2.1. General	254
4.10.2.2. Determination of ρ_{loc} to account for local buckling	256
4.10.2.3. Determination of ρ_c to account for global buckling	257
4.10.3. Stiffened bottom flange	260
4.10.3.1. General	260
4.10.3.2. Determination of ρ_{loc} to account for local buckling	261
4.10.3.3. Determination of ρ_c to account for global buckling	263
REFERENCES	267

FOREWORD

Plated structures are large steel structures commonly made from steel plates welded together. A typical use is for bridge girders and girders for heavy overhead cranes. Compared to steel structures of rolled profiles, plated structures are more prone to local buckling and therefore require design rules to cover such phenomena. In Eurocode 3 such rules are collected in Part 1-5 "Plated structures", EN 1993-1-5. I was the convener of the project team that wrote the standard, and this team was made up of some very knowledgeable specialists. We spent many years on comparing and finding the best methods of dealing with the most common buckling phenomena. These have attracted a lot of research efforts not only due to some spectacular bridge failures, but also because buckling of plates, and particularly stiffened plates, are scientifically interesting and have attracted the attention of many sharp brains. The result of our efforts was published as a standard in 2006, but the implementation in the different member countries of CEN follows different time tables.

Already before the standard was published we had many requests for background information. The reason was probably that the project team had collected design rules from different sources and chosen the ones that best fitted available information. Some of those were unfamiliar to many engineers and the requests of background information were reasonable. The contract with the EU commission did not include the task of delivering background documents but the academic participants in the project team decided to write one on their own expense. This document can be found on the ECCS web site with the URL <u>http://www.steelconstruct.com/</u>. It is described as a commentary to EN 1993-1-5 and includes background to the design rules and some explanations. There are also some design examples.

As a third step, ECCS has taken on the task of publishing the present manual that you have in your hands. It is intended for engineers who shall apply the rules of EN 1993-1-5 and I have to admit that it is needed. That does not

vii

FOREWORD

mean that I think we did a bad job with the standard but that the text in the standard is quite brief and in order to interpret it correctly one needs experience and insight in the problems to be dealt with. This manual will be of great importance for engineers to aid them to apply the standard correctly thanks to its explanations and design examples. The authors have done a very good job and after reviewing the text I fully support it as a proper interpretation of the standard.

Bernt Johansson

Professor Emeritus Steel Structures

PREFACE

Plate buckling related problems in steel structures are inherently linked to complex solution strategies and design procedures. They involve stability analysis in the post-critical state, interaction of different failure modes, imperfection sensitivity, etc.

Eurocode standard EN 1993-1-5 gives a unique opportunity to deal with these problems, at least for typical geometrically more or less regular structural components, by means of fairly simple and consistent set of design procedures, suitable for hand calculations. The main advantage of these design procedures is that generally they were derived from available test results and despite their relative simplicity very often they can be more reliable than advanced numerical simulations. The latter heavily depend on the quality of the applied software tool, the way of modelling, experience of the user, correct interpretation of the results, etc. But even when an experienced design engineer applies advanced numerical simulations for plate buckling problems, a check by means of EN 1993-1-5 design procedures provides comfort and confidence in the results.

The main aim of this Design Manual is to provide practical advice to designers of plated structures for correct and efficient application of EN 1993-1-5 design rules, including several design examples. No deeper theoretical background is given and in this respect the reader is directed to other literature.

The initiative for this Design Manual came from the ECCS that included this Manual into the comprehensive action of preparing the ECCS Eurocode Design Manuals.

The four authors: Darko Beg (University of Ljubljana, Slovenia), Laurence Davaine (SNCF – French National Railway Service), Ulrike Kuhlmann and Benjamin Braun (University of Stuttgart, Germany) worked in close ix

PREFACE

cooperation helping each other and carefully proof-reading parts of the text prepared by other authors. Nonetheless, the leading authors of individual chapters are:

Chapters 2.2, 2.4, 2.9 and all short numerical examples in Chapter 2: Darko BegChapters 1, 2.5, 2.6, 2.10, 3: Ulrike Kuhlmann and Benjamin BraunChapters 2.3, 2.7, 2.8, 2.11: Laurence DavaineChapter 4: Laurence Davaine and Benjamin Braun

It should be mentioned that Franci Sinur and Blaž Čermelj helped in the preparation of the short numerical examples of Chapter 2 and Primož Može and Mojca Jelančič helped at the final editing of the text, all four coming from the University of Ljubljana.

At the end of this short Preface it is important to express strong wishes and expectations of the authors that this Manual will find a place on the working desks of design engineers helping them design excellent plated structures. In the authors' opinion the manual will also be helpful to students of structural engineering on their way of getting familiar with plated structures.

Darko Beg Ulrike Kuhlmann Laurence Davaine Benjamin Braun

х

SYMBOLS

a	length of a stiffened or unstiffened plate	
b	width of a stiffened or unstiffened plate	
b_f	flange width	
$b_{c,loc,i}$	width of the compressed part of each individual sub-panel <i>i</i>	
$b_{e\!f\!f}$	effective width (for elastic shear lag or local plate buckling)	
b_1	height of the loaded sub-panel taken as the clear distance	
	between the loaded flange and the longitudinal stiffener	
b_w	clear width between welds	
С	distance between plastic hinges in the flanges	
e_{max}	maximum distance from the edge of the stiffener to the	
	centroid of the stiffener	
f_y	yield strength of steel	
f_{yf}	flange yield strength	
f_{yw}	web yield strength	
h_f	distance between mid-planes of flanges	
h_w	clear web depth between flanges	
h_{wi}	clear height of sub-panel i \overline{xi}	
k_F	buckling coefficient for transverse loading	
$k_{\sigma,p}$	plate buckling coefficient	
k_{τ}	shear buckling coefficient of the web between flanges	
$k_{ au,i}$	shear buckling coefficient of sub-panel <i>i</i>	
$k_{ au s \ell}$	shear buckling coefficient of a web stiffened with	
	longitudinal stiffeners	
ℓ_y	effective loaded length	
S_{S}	length of stiff bearing	
t	thickness of the plate	
t_f	flange thickness	
t_w	web thickness	
Wel	elastic deflection of the stiffener	
w_0	equivalent geometric imperfection of the stiffener	

SY	MB	OI	S

Ac	gross cross sectional area of the stiffener
Aal	total area of all the longitudinal stiffeners of a stiffened plate
A	gross cross sectional area of one transverse stiffener
A.c.	effective cross sectional area
A	effective area of the compression zone of the stiffened or
110,00	unstiffened plate
Acostica	effective section areas of all the stiffeners and sub-panels
110,000	that are fully or partially in the compression zone
Anton	sum of the effective sections of all longitudinal stiffeners
i si,ejj	with gross area A _a located in the compression zone
A	gross cross sectional area of the stiffener and the adjacent
1151,1	parts of the plate
Ast Leff	effective cross sectional area of the stiffener and adjacent
51,1,00	parts of the plate with due allowance for plate buckling of
	sub-panels
Ε	elastic modulus of steel
F_{Ed}	design transverse force
F_{Rd}	design resistance to transverse loading
F _{cr}	elastic critical load at transverse loading
F_y	yield load at transverse loading
G	shear elastic modulus
I_p	polar second moment area of the stiffener alone around the
	edge fixed to the plate
I_{st}	minimum required second moment of the area of a
	transverse stiffener to be considered as rigid
I_t	St. Venant torsional constant of the stiffener alone (without
	contributing plating)
I_w	warping cross section constant of the stiffener alone around
	the edge fixed to the plate
$L_{e\!f\!f}$	effective length for resistance to transverse forces
$I_{s\ell}$	sum of the second moment of area of all longitudinal
	stiffeners
$I_{s\ell,I}$	second moment of area of the gross cross section of the
	stiffener and the adjacent parts of the plate, relative to the
	out-of-plane bending of the plate

xii

I _{st}	second moment of the area of a stiffener for a cross section
	for the axis parallel to the web plate
$I_{st,act}$	actual second moment of area of the transverse stiffener
M_{Ed}	applied design bending moment
$M_{pl,Rd}$	design plastic moment resistance of the cross section
	(irrespective of cross section class)
$M_{f,Rd}$	design plastic moment resistance of a cross section
	consisting of the flanges only
N_{Ed}	design axial force
N _{st,ten}	axial force in the intermediate stiffener imposed by the
	tension field action
N _{cr}	Euler elastic critical force
N _{cr,st}	Euler elastic critical force of the stiffener
V_{Ed}	design shear force including shear from torque
$V_{bw,Rd}$	contribution from the web to the design shear resistance
$V_{bf,Rd}$	contribution from the flanges to the design shear resistance
$V_{b,Rd}$	design shear resistance
W_{eff}	effective elastic section modulus
$\alpha_{ult,k}$	minimum load amplifier for the design loads to reach the
	characteristic value of the resistance
α_{cr}	minimum load amplifier for the design loads to reach the
	elastic critical value of the plate
β	effective width factor for elastic shear lag xiii
eta_{ult}	effective width factor for the effect of shear lag at the
	ultimate limit state
χc	reduction factor due to column buckling
χ_F	reduction factor for transverse loading
Xw	reduction factor for shear buckling

$$\varepsilon = \sqrt{\frac{235}{f_y [MPa]}}$$

γм	partial safety factor
η	factor depending on the steel grade
η_{I}	utilisation level of the design resistance to direct stresses
η_2	utilisation level of the design resistance to transverse loading

η_3	utilisation level of the design shear resistance
$\overline{\lambda}_{_F}$	slenderness for transverse loading (in EN 1993-1-5 the term
	"modified slenderness" is used according the Corrigendum
	(April 2009). In this document a shorter version, i.e.
	"slenderness", is systematically used for the sake of
	simplicity)
$\overline{\lambda}_p$	plate slenderness
$\overline{\lambda}_{p,red}$	reduced plate slenderness
$\overline{\lambda}_w$	web slenderness for shear
ν	Poisson coefficient of steel
ρ	plate buckling reduction factor
$\rho_x; \rho_z$	reduction factors
$ ho_{_{loc,i}}$	reduction factor for each sub-panel <i>i</i>
$\sigma_{_{cr,p}}$	elastic critical plate buckling stress
$\sigma_{_{cr,c}}$	elastic critical column buckling stress
$\sigma_{\scriptscriptstyle cr,sl}$	elastic critical column buckling stress of a single stiffener
$\sigma_{\scriptscriptstyle com,Ed}$	maximum design compressive stress
$\sigma_{eq,Ed}$	equivalent design stress
σ_{E}	Euler stress
$\sigma_{cr,x}$; $\sigma_{cr,z}$; τ_{cr}	elastic critical buckling stress
$\sigma_{x,Ed}$; $\sigma_{z,Ed}$; $ au_{Ed}$	design stresses
$ au_{cr}$	elastic critical shear buckling stress
ψ	stress ratio along edges

Chapter 1

INTRODUCTION

1.1 PLATE BUCKLING IN STEEL STRUCTURES

State-of-the-art steel structures are characterised by a lightweight, slender and fabrication-optimised design. Especially the progress in welding technology since the 1930s has facilitated the increased application of steel plated structures, see Fig. 1.1. The significant knowledge gained since then has clearly influenced the design as well as the development of the design standards. With the Eurocodes, harmonised European rules have been established of which standard EN 1993-1-5 "Design of steel structures – Plated structural elements" (CEN, 2006a) deals with the design of plated structural elements in steel structures.

1

Fig. 1.1: Assembly of Haseltal road bridge near Suhl, Germany

1. INTRODUCTION

Based on EN 1993-1-5 the designer can choose, considering national allowance, mainly between two different types of design methods according to Fig. 1.2. The effective width method, also comprising resistance models for shear force and transverse force, is very efficient for standard geometries because it accounts not only for the post-critical reserve in a single plate element but also for load shedding between cross sectional elements. The reduced stress method abstains from load shedding between cross sectional elements, but it fully accounts for the post-critical reserve in a single plate element. Beyond that, its general format facilitates its use for serviceability verifications and for the design of non-uniform members such as haunched beams, beam webs with openings and plates with non-orthogonal stiffeners. In addition, a verification methodology based on the finite element method is given in section 2.11. It is the most versatile verification method, however, it requires a lot of experience. It can be used for the determination of the "real" buckling resistance by means of a nonlinear analysis considering imperfections and for the calculation of elastic critical stress values by means of a linear bifurcation analysis.

Fig. 1.2: Overview of design methods in EN 1993-1-5 and their references to the sections in this book

1.2 PURPOSE OF THIS BOOK

2

This book intends to provide the designer of steel plated structures with a practically oriented guide to assess EN 1993-1-5 (CEN, 2006a). This design manual is part of a comprehensive series of ECCS publications dealing with accompanying documentation to the Eurocodes. Its aim is to complement the comprehensive theoretical background given in the

3

Commentary to EN 1993-1-5 (Johansson *et al*, 2007) with practical knowledge for daily usage. Nevertheless, fundamental knowledge of structural mechanics is expected.

This book gives explanations and examples, advice and warnings, all of which intend to give the user considerably more insight and confidence in applying the rules of EN 1993-1-5. In order not to prejudice the use of EN 1993-1-5 where national choices are possible, Eurocode recommendations have been adopted throughout. This has to be kept in mind and, if required, the nationally determined parameters have to be adjusted when applying EN 1993-1-5 in the various member states.

1.3 STRUCTURE OF THIS BOOK

The layout of this book deliberately follows the layout of EN 1993-1-5 in order to allow for easy navigation and reference.

Chapter 2 gives a concise overview of the stability behaviour of plates in steel structures and the corresponding design rules in EN 1993-1-5. Relevant knowledge and terms about load-carrying mechanisms in plates and plated structures under direct stress, shear stress and transverse stress are introduced in order to ease the understanding of the design rules. The main components of Chapter 2 are the explanations of the verification methods which correspond to sections in this book as shown in Fig. 1.2. In this book, small design examples in each section address specific issues of these design rules.

In addition, chapters 3 and 4 present two comprehensive design examples of a crane runway beam and a box-girder bridge. In both examples not only the verification methods are illustrated, but also the big picture of the whole design is given. Besides general information on geometry and material properties, firstly loads and governing internal forces are determined. Based on cross section classification, and while adhering to the objective of this book, the examples finally focus on the plate buckling verifications. **1. INTRODUCTION**

4

Chapter 2

OVERVIEW OF DESIGN RULES

2.1 INTRODUCTION

Chapter 2 gives a commented overview of the EN 1993-1-5 design rules following the structure of the standard. At the end of each main section short numerical examples illustrate practical application of the design rules. The Contents of the Annexes are included in the corresponding sections of chapter 2, except that FEM analysis (Annex C of EN 1993-1-5) is given in section 2.11 and that plate girders with corrugated webs (Annex D of EN 1993-1-5) are not addressed in this Manual.

5

2.2 BASIS OF DESIGN AND MODELLING

2.2.1 General

When designing plated structures the effects of shear lag, plate buckling and interaction of both effects should be taken into account at the ultimate, serviceability or fatigue limit states. Possible simplifications for global analysis are given in section 2.2.2. EN 1993-1-5 (CEN, 2006a), as a generic Eurocode standard does not provide the values of partial factors γ_{M0} and γ_{M1} . These values should be taken from relevant application parts of Eurocode standards or National Annexes to these standards, whenever the values are different from the recommended ones. This means that for example for buildings γ_{M0} and γ_{M1} should be taken from EN 1993-1-1 (CEN, 2005), in bridge design from EN 1993-2 (CEN, 2006b) and for crane runway

girders from EN 1993-6 (CEN, 2007).

Three approaches to the analysis of plated structures are covered by EN 1993-1-5:

- Effective width method (sub-chapter 2.3-2.9 of this publication)
- Reduced stress method (sub-chapter 2.10 of this publication)
- Finite element analysis (FEA) (sub-chapter 2.11 of this publication)

For effective width and reduced stress methods very detailed design procedures are given, while for FEA only general principles are described. The first two methods are meant to be predominantly used in the design of plated structures and the FEA may be successfully used to calculate elastic critical stresses to be used in the first two approaches. A complete design by FEA is possible but requires experience, appropriate software and a very careful interpretation of results.

In relation to the effective width method, EN 1993-1-5 introduces three different designations for three types of effective widths:

- Effective^s width shear lag effects
- Effective^p width local buckling of plates
- Effective width interaction of shear lag and local buckling
- 6

2.2.2 Effective width models for global analysis

Shear lag and plate buckling reduce the stiffness of plated structures and should in principle be accounted for in the global analysis.

The effect of shear lag of flanges in global analysis may be taken into account by means of the effective width method. For simplicity this effective^s width may be taken as constant over the length of each span, see Fig. 2.1.

The effect of plate buckling in elastic global analysis may also be taken into account by means of the effective^p width method (see section 2.4.2 and 2.4.7 and references Johansson *et al* (2007), Sedlacek *et al* (2008)). This effect may be neglected when the effective cross sectional area of an element in compression in the ultimate limite state is larger than ρ_{lim} times the gross cross sectional area of the same element. The recommended value

7

is $\rho_{lim} = 0.5$, but different values may be given in the National Annex. Only very slender plates will violate this criterion.

Fig. 2.1: Effective^s widths for global analysis

2.2.3 Uniform and non-uniform members

The design procedures for plate buckling that are based on the effective width method (see sub-chapter 2.3 to 2.9) were developed for web or flange panels of uniform width. Usually these panels are stiffened or unstiffened plates between rigid transverse stiffeners. The panels may be considered as uniform when:

- The shape of the panel is rectangular or almost rectangular. In the latter case the angle α (see Fig. 2.2) should not exceed 10°.
- The diameter of any unstiffened hole or cut-out does not exceed 0.05 *b*, where *b* is the width of the panel.

Fig. 2.2: Nominally uniform panels

If angle α is larger than 10°, then the panel may be conservatively treated as rectangular with the width equal to the larger of widths on both ends of the panel (Fig. 2.3).

Fig. 2.3: Non-uniform panel transformed to equivalent uniform panel

Another more general possibility for non-uniform members (e.g. haunched members, not rectangular panels) or members with large openings is to take advantage of sub-chapter 2.10 or to apply FE analysis.

For the calculation of stresses at the serviceability and fatigue limit states only the effective^s area due to shear lag, which is based on purely elastic assumption, may be used if parameter $\rho_{lim} > 0.5$. For the ultimate limit state the effective area due to combined effects of shear lag and plate buckling (see section 2.3.5) should be used.

8

2.2.4 Reduced stress method

When the reduced stress method is applied, the stresses in each panel should not exceed the limiting values calculated according to sub-chapter 2.10 and the cross sections may be treated as Class 3 sections.

2.3 SHEAR LAG IN MEMBER DESIGN

2.3.1 Phenomenon

When the flange width of an I-girder or box-girder is not negligible compared to the girder span, the transverse distribution of the longitudinal normal stresses is no more uniform over the whole width of the flange due to shear deformation. In a given cross section the value of maximum normal stress in the flange is reached at the junction between the web and the flange and this stress progressively decreases when moving transversally away across the flange width. See Fig. 2.4.

Fig. 2.4: Transverse distribution of the longitudinal normal stresses in a wide flange compared to the span length

In EN1993-1-5, the concept of taking shear lag into account is based on an effective^s width of the flange. This effective^s width is defined in order to have the same total normal force in the gross flange subjected to the real transverse stress distribution as in the effective flange subjected to a uniform stress equal to the maximum stress of the real transverse distribution:

$$\int_{b_f} \sigma_x(y) \cdot t_f \cdot dy = b_{eff} t_f \cdot \sigma_{x,\max}$$
(2.1) $\overline{9}$

Then the following aspects should be highlighted:

- Shear lag effects should be taken into account for the global analysis as well as for the section analysis.
- Shear lag effects are a first order effect (no out-of-plane deformations in the flange) that should not be confused with the second order plate buckling effect (also dealt with in EN1993-1-5 through the definition of an effective^p width).
- As a consequence of the previous comment, shear lag can occur in tension flange as well as in compression flange. In compression flange, interaction should be considered between shear lag and plate buckling effects.
- Shear lag should be considered for Serviceability Limit State (SLS)