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PREFACE

v(D)Jrecombination: for thecommunity of immunologists anddevelopmental
biologists, the molecular routeby whichB andT lymphocytes acquire theirunique
function ofaffording adaptive immunity.Yet, formany-from experienced scientists
to trainees-it represents a (rathertoo) sophisticated process whosetrue insightis
excessively demanding. However, whennot simplyconsidered as a privateground
fora fewaficionados, it canbe seenas a wayofunderstanding howmaturelympho­
cytescarryon theirbasicfunctions. For the groupof aficionados-which includes
this editor-it is an elegant paradigm featuring many fascinating evolutionary
achievements of which the biological world alone has the secret. These include a
subtlebiochemical principle most likelyhijacked some470million yearsago from
an ancestral gene invaderand since then cleverly adapted by jawed vertebrates to
precisely cleave andrearrange theirantigen receptor (IgandTCR)loci.Thisinvader
woulditselfhaveassigned the services of the nonhomologous endjoining(NHEJ)
DNArepairmachinery as wellasvarious DNApolymerases or transferases towork
inconcert withdevelopmental clues in lymphoid celllineages togenerate animmune
repertoire and efficient host surveillance whileavoiding autoimmunity.

Recently, important newrefinements in these systems haveemerged, continuing
tochallenge ourknowledge andbeliefs.These arejust thetopics coveredbythesenior
authors-all established leaders in thisfield-and theircolleagues, whilst writing the
various chapters in V(D)J Recombination. They lead us through the latest findings
concerning thebiochemical properties oftheV(D)J recombinase (Swanson), itsburied
andpotentially harmful transposase and translocase activities (Oettinger; Roth), the
increasing importance of NHEJ, whose dysfunction causes severe forms of immune
deficiencies (deVillartay), andthenumerous facets inthecontrol ofgene rearrangement
vianon-coding RNAtranscription andexquisitely regulated changes inchromosomal
structure (Corcoran; Feeney; Jouvin-Marche; Krangel; OltzandSpicuglia).

Burning progress on regulatory aspects has included the large-scale dynamics
andnuclearcompartmentalization ofIg andTCRloci(Singh), theanticipated-but
difficult to ascertain-role of dedicated transcription factors (Zhang), the relation­
shipsbetween structural properties of the recombination coreapparatus and its cell
cycle phase-dependant accumulation/degradation or connection to the chromatin

v



vi Preface

template (Desiderio), the evolution of theseregulatory aspects throughout the phy­
logeny (Hsu), and how abnormalities in the recombination apparatus/process can
contribute to lymphoid malignancies (Macintyre).

Overall, V(DP Recombination represents a tour over this, in all respects, vital
process and I would like to greatlyacknowledge the efforts of these eminent col­
leagues forconcisely describing its so manyaspects. We believethateveryadvance
in thisfieldcontributes to strengthening knowledgeoffundamental importance both
academically and clinically. Together, we hope that the result is an attractive book
which will captivate its readers and encourage some to pursue further digging in
this seemingly inexhaustible mineof biological resources.
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CHAPTER!

Early Steps ofV(D)J Rearrangement:
Insights from Biochemical Studies
ofRAG-RSS Complexes
Patrick C. Swanson: Sushi! Kumar and Prafulla Raval

Abstract

\f:D)J recombinationis initiated bythe synapsis and cleavage of a complementary(12123)
pair of recombination signalsequences (RSSs) by the RAGI and RAG2 proteins. Our
understanding of these processes has been greadyaided by the developmentof in vitro

biochemicalassays of RAG binding and cleavage activity. Accumulating evidencesuggests that
synapticcomplexassembly occursin a step-wise manner and that the RAG proteinscatalyze RSS
cleavage by mechanisms similar to those used by bacterial transposases. In this chapter we will
review the molecularmechanisms of RAG synapticcomplexassembly and 12123-regulated RSS
cleavage, focusingon recent advances that shed new light on theseprocesses.

Introduction
The antigen-bindingvariable domainsof immunoglobulinsand T-cellreceptorsexhibitgreat

structuraldiversitythat mosdyoriginatesfroma site-specific DNA rearrangementprocess, called
V(D)J recombination, that assembles the exonsencodingthe variable domainsof theseproteins
from germlinevariable (V), diversity(D) and joining (J) genesegments during lymphocytede­
veloprnenr. ' Adjacentto eachgenesegmentliesa recombinationsignalsequence(RSS);eachRSS
contains a conservedheptamer and nonamer motif (consensus heptamer: 5' -CACAGTG-3 ';
consensus nonamer: 5 ' -ACAAAAACC-3') separatedby"spacer" DNA, normally 12basepairs
(bp) or 23 bp long (12-RSSand 23-RSS, respectively),which displays somesequencepreferences
proximalto the heptarner' but isotherwisenot wellconserved. V(D)J recombinationisgenerally
directed betweentwo genesegments with differentRSSs,a restriction termed the 12123 rule that
servesto facilitate productivereceptorgeneassembly.

The biochemistryofV(D)J recombinationcan be conceptuallydividedinto a cleavage phase
and a joining phase (Fig. 1). To initiate the cleavage phase, two lymphoid cell-specific proteins
encoded by recombinationactivatinggene-I and -2 (RAG1 and RAG2, respectively-"), possibly
assisted byhigh mobilitygroupproteinsofthe HMG-boxfamily(HMGB 1and HMGB2,called
HMGBl/2 henceforth; discussed further below),bring two differentgene segmentsinto close
proximity through interactionswith the adjoining 12- and 23-RSS (forming a "synaptic" com­
plex) and then catalyze a DNA double-strand break (DSB) at each RSSbetween the heptamer
and the codingsegment.5.6RAG-mediatedcleavage producestwo typesof DNA ends: blunt and
5' -phosphorylatedsignalends containing the RSS and coding ends covalently sealedas DNA
halrpins.Y'Ihese reactionintermediatesoriginatefrom a two-step cleavage mechanismin which

·Corresponding Author: PatrickC. Swanson-Departmentof Medical Microbiology
and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA.
Email: pswansonecrelghton.edu

V(D)J Recombination, edited by Pierre Ferrier. ©2009 Landes Bioscience
and SpringerScience+Business Media.
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Figure 1. Overview of V(D)j recombination (adapted from Fugmann et aI6). In the cleavage
phase of V(D)j recombination, cod ing segments (filled rectangles), flanked by a 12-RSS or
23-RSS(small or large triangles, respectively) are assembled into a synaptic complex by the
RAG proteins, possibly assisted by HMGB1/2 (filled ovals). Coupled cleavage by the RAG
prote ins yields blunt Signal ends and coding ends sealed as DNA hairpins. In the jo ining
phase of V(D)J rearrangement, sealed coding ends are resolved by an Artemis/DNA-PKcs
complex and may be further processed by TdT (if present) and DNA polymerases 11 and/or A
(Poll.l/A). Processed coding ends are joined to create imprecise coding joints that may have
gained palindromic (P)or nontemplated (N) nucleotides through asymmetric hairpin opening
or TdT-mediated addition, respectively, or lost nucleotides through end processing reactions
(open rectangle). Signal ends are joined to create signal joints that are typically precise.
Alternative, less frequent joining events, such as open-shut and hybrid joints are not shown
for simplicity. Signal and coding joint formation is mediated by the NHEj pathway, which
includes Ku70, Ku80, XRCC4, DNA Ligase IV and Cernunnos (XLF). Although the processing
and joining reactions are shown as sequential processes, these steps may be integrated and
iterative for joining of incompatible coding ends, involving single-strand ligation, processing
of the unligated strand by Artemis/DNA-PKcs and DNA polymerases and eventual ligation
of the second strand resulting in repaired double-stranded DNA.101
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the RAG proteins first nick the RSSat the 5' end of the heptarnerand then use the resulting
3' -OH to catalyze adirect transesterification reactionon the opposingphosphodiesterbond,"In
the joiningphase, the twosignal endsaretypically ligatedprecisely, formingasignaljoint, and the
codingendsaresubjectedto reactions that resolve the hairpinsand then process and connect the
DNA endsto formcodingjoints.Asaresult.codingjointsofienshowevidence ofnucleotidegain
or lossat thecodingends.Infrequently. alternative outcomesofV(D)J recombination areobserved
in which one genesegmentis joined to the RSS of another genesegment ("hybridjoint") or is
separatedand rejoinedto the sameRSS ("open-shut joint").I0·11 Efficient signaland codingjoint
formationrequires a competentnonhomologousend-joining(NHEJ) repairpathway. including
Ku70.Ku80,XRCC4, DNA Ligase IVandXLF/Cernunnos.P:" Codingjoint formationrequires
two additionalfactors not strictlyessential forjoiningsignalends.Artemisand DNA-PKcs. which
together function asa structure-specific endonuclease responsible foropeningthe DNA hairpins
on codingends,"Asymmetric hairpinopeningcangiveriseto palindromic(P) nucleotides being
inserted in coding joints. Terminal deoxynucleotidyl transferase (TdT) and DNA polymerases
!J. and/or;" (Pol !J./;") can further diversify these junctional sequences by catalyzing addition of
nontemplaeed (N) nucleotides to coding ends (TdT) and processing incompatible DNA ends
to facilitate end-joining(Pol !J./;").16.17A detailed consideration of the proteins involved in the
processing and repairofV(D)J recombination intermediates is beyondthe scopeof this review.
but hasbeendiscussed elsewhere.P'"

Here wereview and discuss the molecularmechanisms ofV(D)J recombination. focusing on
the cleavage phaseof this process and emphasizing newinsights. Readers are referredto previous
reviews for more detailed discussion of earlystudies of RAG protein biochemistry, including
the establishment of cell-free assays ofV(D)J cleavage and joining5.6 and the identification and
characterization of the various structuraldomainsof the RAGproteins."

Assembly and Organization ofSingle Site andSynaptic
RAG-RSS Complexes

Cell-free assays ofV(D)J cleavage established usingtruncated.catalytically active "core" forms
of RAG1 (full-length 1040 a.a.; core residues 384-1008) and RAG2 (full-length 517 a.a.; core
residues 1-387)demonstratedthat the RAG1/2 complex isboth necessary and sufficient to medi­
ate RSScleavage? and that RAG cleavage activity exhibitsmetal ion-dependence: Mnl. supports
RAG-mediatedcleavage of a single RSS, whereas Mg2+ is required for coupled cleavage ofRSS
pairsabidingby the 12123 rule.22.23 In natural progression. laterstudiesidentifiedand character­
izeddiscreteRAG-RSS complexes with increasing complexity, with earlyworkfocused on RAG
complexes assembled on a single RSS and laterworkanalyzing higher-order RAG synaptic com­
plexes. Most of this workhas been reviewed and discussed elsewhere.5.6.24 Therefore. only salient
features willbe highlightedhere.

Core RAG1 containsthreestructurallydistinct regions:" an amino-terminalnonamer bind­
ingdomain (NBD. residues 389-442)that interactswith the RSS nonamer,25.26 a centraldomain
(residues 528-760)that recognizes the heptamerand exhibitssingle-strandDNA bindingactivity
and a C-terminal domain (residues 761-979) that binds double-stranded DNA nonspecifically
and cooperatively. Core RAG1 aloneexists in solutionprimarilyas a stabledimer7-29and binds
an isolatedRSSwith moderate affinity(Kd -41 nM)28 as a dimer7,28.3o (although higher-order
aggregates aredetectableat elevated RAG1concentrations and conditionsoflowionicstrength")
whereas RAG2ispredominantlymonomericin solution" and shows little. if anyDNA binding
activity.2s.26.32.34 RAG1 and RAG2 interact with one another in the absence of DNA27.29.3S and
togetherbind asingle RSS with greaterspecificity than RAG1alone.32.33.36 Purified coreRAG1/2
proteins variably assemble one29.32,33 or two34.37major protein-DNA complexes detectableusing
an electrophoretic mobilityshifiassay (EMSA).Therelative abundanceof thesecomplexes, now
generally called SC1andSC2(for"single RSS complex"),dependspartlyon howthe RAGproteins
areexpressed andpurified:37.38inour laboratory. individually expressed andpurifiedRAGproteins
tend to assemble only SC1, coexpressed RAG proteinspurifiedunder high salt conditionsform
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more SCI than SC2 and coexpressed RAG proteins purifiedusingmilderconditionspredomi­
nantlyassemble SC2. Both complexes possess similarintrinsiccleavage activity,3oIJ7 but differin
RAGprotein stoichiometry. Swanson reponed that both complexes contain a RAGI dimer, but
incorporateeitherone (SCI) or two (SC2)RAG2molecules. " Mundyet al reponed comparable
resultsfor RAG2 in these complexes, but presentedevidence suggesting SCI and SC2 contain
three or more RAGI subunits.r' Possible explanations for this apparent discrepancy havebeen
discussed previously"and will not be revisited here,but wenote that recentdatareponed byDe
et al provides corroboratingevidence supporting the contention that RAGI exists as a dimer in
anSC (RAG2stoichiometrywasnot determined).39ThetetramericRAGl/RAG2 configuration
reponed for SC2 isalsoconsistentwith data publishedbyBailinet al.29

Mutagenesis studies4042revealed that RAGI contains three carboxylate residues (asp-600,
asp-708and glu-962)criticalfor catalysis that resemble a "DDE motif" found in manytranspos­
ases and integrases." Similar to the TnS transposase,44.45 biochemical studiesestablished that a
single RAGI subunit contributesall threecarboxlare residues to single active sitewhich mediates
sequentialnickingandhairpin formationstepsofthe cleavage reaction46.47and that thesereactions
arecatalyzed in trans; that is,bythe subunitof the RAGI heterodimernot bound to the nonamer
ofthe RSSbeingcleaved."

While the RAG proteins themselves are sufficient for assembling SCI and SC2, HMGBl/2
proteins areknown to facilitate RAG-mediatedbinding and cleavage of an isolated23-RSS, but
not a 12-RSS, in vitro.48TheRAGproteinsalsorequirethe presence ofHMGBl/2 to efficiently
assemble a complexcontaininga complementary (12/23) pairofRSSs ("pairedcomplex" or PC)
and mediate coupled cleavage at both RSSs adhering to the 12/23 rule in vitro.48•49Whether
HMGBl/2 also assist theRAGproteinsduringV(D)Jrecombination invivo hasnot beenformally
established nor entirely ruledout,SO sinceHMGB1/2 exhibitfunctionalredundancyin RAGbind­
ingand cleavage assays," The HMGBl/2 proteins are nonhistone chromosomal DNA binding
proteinsknownto promote DNA bendingand facilitate assembly ofnucleoproteincomplexese"
HMGBI further functionsas an alarmin to signalcellular damagein response to inflammatory
processes.P HMGBl/2 proteinscontain tandemhomologous HMG -boxdomains(calledA and
B) attached to a basiclinkerand an acidictail. HMGBl/2 interactswith the NBD ofRAGI in
the absence of DNA and enhancesthe intrinsic DNA bending activityof the RAG proteins."
TheintegrationofHMGBl/2 into RAG-RSS complexes canoften bedetected asa supershifi: by
EMSA.51,55Recent structure-function studiesconducted in our laboratory56.57suggest that both
HMG-box domainsmust be competent to bend DNA and physically linked together in either
orientation (AB or BA) to stimulateRAG-mediated23-RSScleavage in the presence ofMg4.
Interestingly, single HMG -boxdomainscan be integratedinto 23-RSS-RAG complexes,56-58 but
cannotstimulate23-RSS cleavage unless Mn4 replaces Mg4 in the reaction,57.58 or 12-RSSpartner
is added to promote synapsis.57Theseresultssuggest the two HMG-box domainshaveseparable
but potentially redundant rolesin stimulatingRAG binding and cleavage activityin vitro and
that synapsis promotesa conformational changethat bypasses the needfor one of thesedomains.
HMGB I lackingthe acidictailstimulates RAGbindingand cleavage activityat lowerconcentra­
tionsthan full-length HMGBl, but promotesaggregation ofRAG-RSScomplexes.56-58 Moreover,
loss of the acidic tail enables HMGBI mutants that otherwise fail to suppon RAG-mediated
synapsis to stimulatePC formation.56These data suggest the acidic tail helpsmaintain the cor­
rect oligomerization state of RAG synaptic complexes. The acidictail is alsoknown to facilitate
HM GBl-mediated nucleosome repositioning,59.60 which mayhelppromote RSSaccessibility in
nucleosomal DNA.61-63

Synaptic complex assembly isthought to proceedviainitialformationofSC2 followed bycap­
ture of an appropriatepartner RSS to forma pc. This"capture model"ofassernblywas suggested
initiallyby biochemical experiments demonstratingthat SC2 can be driven to form the PC by
addingappropriatepartner RSS30I and the observation that RAGcleavage activityisgreaterwhen
synapticcomplexes areassembled in step-wise fashionbyaddingfree23-RSS to a 12-RSS-RAG
complex(or viceversa) than when they are assembled by mixingpreformed 12-RSS-RAG and
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23-RSS-RAG complexes together/"This modelhas gained in vivoexperimental support from a
recentstudybyCurry et al6Sshowing that nickscanbe detectedat endogenous12-RSSs, but not
at 23-RSSs, in lymphoidcells. Thesefindings leadthe authors to proposea model in which RAG
proteins bind and nick a 12-RSS first, then captureand nick a 23-RSS and, in rapid succession,
finally cleave both RSSs. Thismodelisconsistentwith previous biochemical studiesshowingthat
nickingcanoccuron an RSS in the absence of synapsis,66.67but nickingat one RSS isrequiredfor
efficient cleavage ofits partner.22,66The capturemodelis also consistentwith data this laboratory
and othershavepublishedshowingthat the complementofRAGproteins is the samebetweena
RAG complex bound to a single RSS (asSC2) and the PC.34.37Interestingly, thesestudiesshow
that molecules ofRAG2, but not RAG1,freely re-assertduringPC assembly.34.37Workfrom this
laboratorysuggests that the PC containstwo molecules eachof RAG1 and RAG2 and that this
heterotetramerconfiguration remains the samethrough the cleavage stepsofV(D)J recombina­
non." Anotherstudyreportedthesamestoichiometryfor RAG2in the PC,34 but othersconclude
the PC containsthreeor moreRAG1subunits.34.46 Possible scenarios to explainthesediscordant
resultshavebeendiscussed elsewhere."

How are the RSSs arrangedin the synaptic complex? Earlyobservations that the efficiency of
in vitro coupledcleavage" and in vivo V(D)J rearrangemenr'" is more sensitive to shorteningof
the intersignal distancewhen the RSSs arepositioned in an inversional configuration than when
they are positioned in a deletionalconfiguration argued that the RSSs are aligned in a parallel,
rather than anti-parallel orientationin thesynapticcomplex. Totest thispossibility moredirectly,
Cibutaruet al recently measured levels offluorescence resonance energytransfer(FRET) in RAG
synaptic complexes assembled under various conditions on 12- and 23-RSS oligonucleotide
substrates labeledwith FAM and TAMRA in differentconfigurarions/" Significant FRET was
detectedonlywhen the following threeconditionsweremet: (i) the fluorophores wereplacedon
differentRSSs (but not the sameRSS); (ii) the two RSSs containeddifferentlength spacers [i.e.,
abiding by the 12123 rule); and, (iii) synaptic complexes wereassembled in binding reactions
containing Mg2- and the full complementof RAG1/2 and HMGBl/2 proteins. Interestingly,
FRET wasobservedin synaptic complexes regardless ofwhich end of a given RSS waslabeled;
the only apparent requirementwasthat the two fluorophores wereplacedon differentRSSs (12
and 23).Thesedatasuggest that the distancebetweenthe endsof the two bound RSSs in the syn­
aptic complex areapproximately the same. Giventhis constraintand limitationson the maximal
distancebetweenfluorophores to observe FRET, the authors proposethe two RSSs likely adopt
a bent and crossed configuration in the PC.69

Insightsinto RAG-Mediated RSSRecognitionandCleavage Mechanisms
Interactionsbetween the RAG proteins and DNA havebeen investigated usinga varietyof

approaches and the insightsfrom thesestudieshavegreatlyimprovedour understandingof how
the RAGproteinsrecognize and cleave their RSStargets.Muchof the earlyworkhasbeenexten­
sively reviewed,s.6.24 soit willnot be covered in depth here.Chemicaland DNaseI protection and
modification interference footprintingassays performedon RAGcomplexes assembled on asingle
RSSsuggest RAG1 primarilyinteractswith the nonamer and adjacentspacersequence, whereas
RSS contactsin complexes containingboth RAG proteins are overlapping, but more expansive,
extendingfrom the nonamer, through the spacerand into the 3' end of the heptamer,with a bias
ofphosphatecontactstowardoneface of the DNA helix.32.70.71 Photo cross-linkingstudiessuggest
RAG1 mediates most of the contact with the RSS, with RAG2-RSS interactionsmore localized
to the junction of the heptamer and coding segrnent.27.36.72.73 Integration of HMGB1/2 into
23-RSS-RAGcomplexes enables detectionofheptamer-spacer contactsresembling thoseobserved
in 12-RSS-RAG complexes that are not otherwisevisualized in 23-RSS complexes containing
RAG1/2 alone,Sl .SS suggesting HMGBI stabilizes RAG association with the heptamer in these
complexes. Ethylation interference footprintingsuggests HMGB1/2 contactsthe 23-RSS proximal
to the nonamer, expandingthe footprint of the RAG proteins in this region." Although RAG
contactsat the junction of the heptamer and codingsequence are not readily detected in RAG
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complexes assembled on a single RSS, this region is protected from DNase I cleavagein synaptic
complexes." Nagawa et al showed that synaptic complexes assembled with nicked RSS substrates
show slight expansion ofthe DNase I footprint relative to precleavage synaptic complexes (from
-12 nt to -16 nr), suggesting that RAG-mediated nicking causes more intimate and stable RAG
association with the coding sequence." Pull-down assaysshowing that nicked RSS substrates are
more readily incorporated into synaptic complexes than intact substrates support thiscontention.
Interestingly, two different joining-deficient RAGI mutants (S723C76 and K118/9A77) were
shown to exhibit poor protection of the heptamer-coding junction, leading to speculation that
the joining defect is caused by poor coding end retention in the postcleavage synaptic complex,"
However, closeinspection ofthe mutant RAG 1footprintingpatterns in precleavagecomplexesalso
reveals that these mutants exhibit less protection ofspacer and nonamer sequences compared to
wild-type RAG l.1his observation argues that these mutations causea global defect in RAG-RSS
complex stability, but can also be interpreted to suggest that the RAG proteins require stable
contact with the coding sequence in order to maintain strong interactions with the RSS (or vice
versa) in precleavage complexes.

Direct and interference footprinting experiments suggest RAG-RSS complex formation
is accompanied by structural distortions in the spacer region and near the site ofDNA cleav­
ageY·51.70.71 Studies showing that the RAG proteins mediate RSS bending, which is augmented
by HMGB1I2,54 plausibly explain spacer hypersensivity to chemical and enzymatic probes in
RAG-RSS complexes. Structural distortions near the cleavage site are likely attributed to base
unpairing mediated by the RAG proteins to promote hairpin formation. which is suggested
by observations that RAG -mediated RSS cleavage is facilitated by incorporating base-pair
mismatches78.79or abasic sites80at the coding flank. Clues to how these structural distortions
may be induced and stabilized are suggested by structural studies ofthe related Tn5 transposase,
which, like the V(D)J recombinase, catalyzes DNA hairpin formation (except that hairpins are
formed at the transposon end, which is equivalent to the signal end in V(D)J recombination]."
Analysis ofa Tn5 postcleavage synaptic complex reveals that the transposase promotes extru­
sion ofa thymine from the DNA helix, stabilizing the "flipped base" via stacking interactions
with an aromatic tryptophan residue (trp-298).44 Recent studies indicate a similar mechanism
is operative in V(D)] recombination. Two lines of evidence suggest the terminal nucleotide
on the bottom strand of the coding flank (C 1b, see Fig. 2 inset) is stabilized in an extrahelical
configuration by the RAG proteins. First, when thymine is incorporated into the RSS at posi­
tion Clb, this base exhibits hypersensitivity to permanganate modification under conditions
favoring RAG -RSS synaptic complex formadon." Second, base removal at Clb potentiates
hairpin formation." Both outcomes are consistent with comparable studies of the flipped T2
thymine in the Tn5 transposon end.83.84One notable contrast between the two recombination
systems is that although the base subjected to flipping in the RSS coding flank and the Tn5
transposon end are both located opposite the nicking site within the hairpin-formingsequence,
they are offset from one another by one nucleotide: in the RSS. the base is at the terminus of
the sequence; in the Tn5 transposon end . it occupies the penultimate position.

When does base-flipping occur during RSS cleavage?Base-flipping appears to occur after nick­
ing , rather than upon RAG binding to the RSS, as permanganate hypersensitivity is not observed
in RAG synaptic complexes assembled on intact substrates." Interestingly,permanganate interfer­
ence assaysreveal that intact substrates bearing oxidized thymine at Clb and S2b are selectively
bound by the RAG complex relative to unmodified substrates , with the latter modification being
much preferred over the formerY·51 Ifthe RAG proteins stabilize base-flipping at Clb during the
hairpin-forming step, why is prior modification ofS2b selected over C 1b in interference assays?
Since base-flipping is most evident in synaptic complexes assembled on nicked substrates," one
possibility is that a conformational change in the RAG complex occurs after synapsis or nicking
that alters the position ofthymine binding pocket relative to the cleavagesite. Thus, an oxidized
extrahelical thymine at S2b may be preferentially accommodated over Clb in the bindingpockct
ofa RAG complex bound to an intact RSS. Alternatively, modified S2b may be selected because
Clb is more easily flipped ifthe oxidized base at S2b is already displaced from the DNA helix.


