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PREFACE

V(D)J recombination: for the community of immunologists and developmental
biologists, the molecular route by which B and T lymphocytes acquire their unique
function of affording adaptive immunity. Yet, for many—from experienced scientists
to trainees—it represents a (rather too) sophisticated process whose true insight is
excessively demanding. However, when not simply considered as a private ground
for a few aficionados, it can be seen as a way of understanding how mature lympho-
cytes carry on their basic functions. For the group of aficionados—which includes
this editor—it is an elegant paradigm featuring many fascinating evolutionary
achievements of which the biological world alone has the secret. These include a
subtle biochemical principle most likely hijacked some 470 million years ago from
an ancestral gene invader and since then cleverly adapted by jawed vertebrates to
precisely cleave and rearrange their antigen receptor (Ig and TCR) loci. This invader
would itself have assigned the services of the nonhomologous end joining (NHEJ)
DNA repair machinery as well as various DNA polymerases or transferases to work
in concert with developmental clues in lymphoid cell lineages to generate an immune
repertoire and efficient host surveillance while avoiding autoimmunity.

Recently, important new refinements in these systems have emerged, continuing
to challenge our knowledge and beliefs. These are just the topics covered by the senior
authors—all established leaders in this field—and their colleagues, whilst writing the
various chapters in ¥(D)J Recombination. They lead us through the latest findings
concerning the biochemical properties of the V(D)J recombinase (Swanson), its buried
and potentially harmful transposase and translocase activities (Oettinger; Roth), the
increasing importance of NHEJ, whose dysfunction causes severe forms of immune
deficiencies (de Villartay), and the numerous facets in the control of gene rearrangement
via non-coding RNA transcription and exquisitely regulated changes in chromosomal
structure (Corcoran; Feeney; Jouvin-Marche; Krangel; Oltz and Spicuglia).

Burning progress on regulatory aspects has included the large-scale dynamics
and nuclear compartmentalization of Ig and TCR loci (Singh), the anticipated—but
difficult to ascertain—role of dedicated transcription factors (Zhang), the relation-
ships between structural properties of the recombination core apparatus and its cell
cycle phase-dependant accumulation/degradation or connection to the chromatin
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template (Desiderio), the evolution of these regulatory aspects throughout the phy-
logeny (Hsu), and how abnormalities in the recombination apparatus/process can
contribute to lymphoid malignancies (Macintyre).

Overall, ¥(D)J Recombination represents a tour over this, in all respects, vital
process and I would like to greatly acknowledge the efforts of these eminent col-
leagues for concisely describing its so many aspects. We believe that every advance
in this field contributes to strengthening knowledge of fundamental importance both
academically and clinically. Together, we hope that the result is an attractive book
which will captivate its readers and encourage some to pursue further digging in
this seemingly inexhaustible mine of biological resources.

Pierre Ferrier, MD, PhD
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CHAPTER 1

Early Steps of V(D)J Rearrangement:
Insights from Biochemical Studies
of RAG-RSS Complexes

Patrick C. Swanson,* Sushil Kumar and Prafulla Raval

Abstract
D)]J recombination is initiated by the synapsis and cleavage of a complementary (12/23)
s / pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins. Our
understanding of these processes has been greatly aided by the development of in vitro
biochemical assays of RAG binding and cleavage activity. Accumulating evidence suggests that
synaptic complex assembly occurs in a step-wise manner and that the RAG proteins catalyze RSS
cleavage by mechanisms similar to those used by bacterial transposases. In this chapter we will
review the molecular mechanisms of RAG synaptic complex assembly and 12/23-regulated RSS

cleavage, focusing on recent advances that shed new light on these processes.

Introduction

The antigen-binding variable domains of immunoglobulins and T-cell receptors exhibit great
structural diversity that mostly originates from a site-specific DNA rearrangement process, called
V(D)] recombination, that assembles the exons encoding the variable domains of these proteins
from germline variable (V), diversity (D) and joining (J) gene segments during lymphocyte de-
velopment.! Adjacent to each gene segment lies a recombination signal sequence (RSS); each RSS
contains a conserved heptamer and nonamer motif (consensus heptamer: 5'-CACAGTG-3';
consensus nonamer: 5'-ACAAAAACC-3’) separated by “spacer” DNA, normally 12 base pairs
(bp) or 23 bp long (12-RSS and 23-RSS, respectively), which displays some sequence preferences
proximal to the heptamer” but is otherwise not well conserved. V(D)J recombination is generally
directed between two gene segments with different RSSs, a restriction termed the 12/23 rule that
serves to facilitate productive receptor gene assembly.

The biochemistry of V(D)) recombination can be conceptually divided into a cleavage phase
and a joining phase (Fig. 1). To initiate the cleavage phase, two lymphoid cell-specific proteins
encoded by recombination activating gene-1 and -2 (RAG1 and RAG2, respectively>#), possibly
assisted by high mobility group proteins of the HMG-box family (HMGB1 and HMGB?2, called
HMGB1/2 henceforth; discussed further below), bring two different gene segments into close
proximity through interactions with the adjoining 12- and 23-RSS (forming a “synaptic” com-
plex) and then catalyze a DNA double-strand break (DSB) at each RSS between the heptamer
and the coding segment.>* RAG-mediated cleavage produces two types of DNA ends: blunt and
5'-phosphorylated signal ends containing the RSS and coding ends covalently sealed as DNA

hairpins.”® These reaction intermediates originate from a two-step cleavage mechanism in which

*Corresponding Author: Patrick C. Swanson—Department of Medical Microbiology
and Immunology, Creighton University Medical Center, Omaha, Nebraska 68178, USA.
Email: pswanson@creighton.edu
V(D)J Recombination, edited by Pierre Ferrier. ©2009 Landes Bioscience
and Springer Science+Business Media.




2 V(D)] Recombination
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Figure 1. Overview of V(D)) recombination (adapted from Fugmann et al®). In the cleavage
phase of V(D)j recombination, coding segments (filled rectangles), flanked by a 12-RSS or
23-RSS (small or large triangles, respectively) are assembled into a synaptic complex by the
RAG proteins, possibly assisted by HMGB1/2 (filled ovals). Coupled cleavage by the RAG
proteins yields blunt signal ends and coding ends sealed as DNA hairpins. In the joining
phase of V(D) rearrangement, sealed coding ends are resolved by an Artemis/DNA-PKcs
complex and may be further processed by TdT (if present) and DNA polymerases p and/or A
{Polu/A). Processed coding ends are joined to create imprecise coding joints that may have
gained palindromic (P) or nontemplated (N) nucleotides through asymmetric hairpin opening
or TdT-mediated addition, respectively, or lost nucleotides through end processing reactions
(open rectangle). Signal ends are joined to create signal joints that are typically precise.
Alternative, less frequent joining events, such as open-shut and hybrid joints are not shown
for simplicity. Signal and coding joint formation is mediated by the NHE} pathway, which
includes Ku70, Ku80, XRCC4, DNA Ligase IV and Cernunnos (XLF). Although the processing
and joining reactions are shown as sequential processes, these steps may be integrated and
iterative for joining of incompatible coding ends, involving single-strand ligation, processing
of the unligated strand by Artemis/DNA-PKcs and DNA polymerases and eventual ligation
of the second strand resulting in repaired double-stranded DNA.'*'
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the RAG proteins first nick the RSS at the 5' end of the heptamer and then use the resulting
3'-OH to catalyze a direct transesterification reaction on the opposing phosphodiester bond.’ In
the joining phase, the two signal ends are typically ligated precisely, forming a signal joint, and the
coding ends are subjected to reactions that resolve the hairpins and then process and connect the
DNA ends to form codingjoints. As a result, coding joints often show evidence of nucleotide gain
or lossat the coding ends. Infrequently, alternative outcomes of V(D)J recombination are observed
in which one gene segment is joined to the RSS of another gene segment (“hybrid joint”) or is
separated and rejoined to the same RSS (“open-shut joint”).!*!! Efficient signal and coding joint
formation requires a competent nonhomologous end-joining (NHE]) repair pathway, including
Ku70, Ku80, XRCC4, DNA Ligase IV and XLF/Cernunnos.'*** Codingjoint formation requires
two additional factors not strictly essential for joining signal ends, Artemis and DNA-PKcs, which
together function as a structure-specific endonuclease responsible for opening the DNA hairpins
on coding ends.”® Asymmetric hairpin opening can give rise to palindromic (P) nucleotides being
inserted in coding joints. Terminal deoxynucleotidyl transferase (TdT) and DNA polymerases
w and/or A (Pol p/A) can further diversify these junctional sequences by catalyzing addition of
nontemplated (N) nucleotides to coding ends (TdT) and processing incompatible DNA ends
to facilitate end-joining (Pol p/A).'” A detailed consideration of the proteins involved in the
processing and repair of V(D)J recombination intermediates is beyond the scope of this review,
but has been discussed elsewhere.!*2

Here we review and discuss the molecular mechanisms of V(D)J recombination, focusing on
the cleavage phase of this process and emphasizing new insights. Readers are referred to previous
reviews for more detailed discussion of early studies of RAG protein biochemistry, including
the establishment of cell-free assays of V(D) cleavage and joining*® and the identification and
characterization of the various structural domains of the RAG proteins.?!

Assembly and Organization of Single Site and Synaptic

RAG-RSS Complexes

Cell-free assays of V(D)] cleavage established using truncated, catalytically active “core” forms
of RAG1 (full-length 1040 a.a.; corc residues 384-1008) and RAG2 (full-length 517 a.a.; core
residues 1-387) demonstrated that the RAG1/2 complex is both necessary and sufficient to medi-
ate RSS cleavage’ and that RAG cleavage activity exhibits metal ion-dependence: Mn* supports
RAG-mediated cleavage of a single RSS, whereas Mg* is required for coupled cleavage of RSS
pairs abiding by the 12/23 rule.?*? In natural progression, later studies identified and character-
ized discrete RAG-RSS complexes with increasing complexity, with early work focused on RAG
complexes assembled on a single RSS and later work analyzing higher-order RAG synaptic com-
plexes. Most of this work has been reviewed and discussed elsewhere.>5% Therefore, only salient
features will be highlighted here.

Core RAGI contains three structurally distinct regions:* an amino-terminal nonamer bind-
ing domain (NBD, residues 389-442) that interacts with the RSS nonamer, % a central domain
(residues 528-760) that recognizes the heptamer and exhibits single-strand DNA binding activity
and a C-terminal domain (residues 761-979) that binds double-stranded DNA nonspecifically
and cooperatively. Core RAG1 alone exists in solution primarily as a stable dimer”? and binds
an isolated RSS with moderate affinity (Kd ~41 nM)* as a dimer?”* (although higher-order
aggregates are detectable at elevated RAGI concentrations and conditions of low ionic strength®')
whereas RAG2 is predominantly monomeric in solution? and shows little, if any DNA binding
activity. %33 RAG1 and RAG2 interact with one another in the absence of DNA?**% and
together bind a single RSS with greater specificity than RAG1 alone.***% Purified core RAG1/2
proteins variably assemble one?*** or two**” major protein-DNA complexes detectable using
an electrophoretic mobility shift assay (EMSA). The relative abundance of these complexes, now
generally called SC1 and SC2 (for “single RSS complex”), depends partly on how the RAG proteins
are expressed and purified:¥* in our laboratory, individually expressed and purified RAG proteins
tend to assemble only SC1, coexpressed RAG proteins purified under high salt conditions form
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more SC1 than SC2 and coexpressed RAG proteins purified using milder conditions predomi-
nantly assemble SC2. Both complexes possess similar intrinsic cleavage activity,**” but differ in
RAG protein stoichiometry. Swanson reported that both complexes contain a RAG1 dimer, but
incorporate cither one (SC1) or two (SC2) RAG2 molecules.”” Mundy et al reported comparable
results for RAG2 in these complexes, but presented evidence suggesting SC1 and SC2 contain
three or more RAG1 subunits.> Possible explanations for this apparent discrepancy have been
discussed previously* and will not be revisited here, but we note that recent data reported by De
et al provides corroborating evidence supporting the contention that RAGI exists as a dimer in
an SC (RAG2 stoichiometry was not determined).” The tetrameric RAG1/RAG2 co. tion
reported for SC2 is also consistent with data published by Bailin et al.?

Mutagenesis studies**# revealed that RAG1 contains three carboxylate residues (asp-600,
asp-708 and glu-962) critical for catalysis that resemble a “DDE motif ” found in many transpos-
ases and integrases.> Similar to the Tn5 transposase, % biochemical studies established that a
single RAG1 subunit contributes all three carboxlate residues to single active site which mediates
sequential nickingand hairpin formation steps of the cleavage reaction® and that these reactions
are catalyzed in trans; that is, by the subunit of the RAG1 heterodimer not bound to the nonamer
of the RSS being cleaved.?

While the RAG proteins themselves are sufficient for assembling SC1 and SC2, HMGB1/2
proteins are known to facilitate RAG-mediated binding and cleavage of an isolated 23-RSS, but
not a 12-RSS, in vitro.®® The RAG proteins also require the presence of HMGB1/2 to efficiently
assemble a complex containing a complementary (12/23) pair of RSSs (“paired complex” or PC)
and mediate coupled cleavage at both RSSs adhering to the 12/23 rule in vitro.®* Whether
HMGB1/2 also assist the RAG proteins during V(D)] recombination in vivo has not been formally
established nor entirely ruled out,” since HMGB1/2 exhibit functional redundancy in RAG bind-
ing and cleavage assays.’ The HMGB1/2 proteins are nonhistone chromosomal DNA binding
proteins known to promote DNA bending and facilitate assembly of nucleoprotein complexes;*
HMGBI further functions as an alarmin to signal cellular damage in response to inflammatory
processes.”* HMGB1/2 proteins contain tandem homologous HMG-box domains (called A and
B) attached to a basic linker and an acidic tail. HMGB1/2 interacts with the NBD of RAG1 in
the absence of DNA and enhances the intrinsic DNA bending activity of the RAG proteins.™
The integration of HMGB1/2 into RAG-RSS complexes can often be detected as a supershift by
EMSA 555 Recent structure-function studies conducted in our laboratory’* suggest that both
HMG-box domains must be competent to bend DNA and physically linked together in either
orientation (AB or BA) to stimulate RAG-mediated 23-RSS cleavage in the presence of Mg
Interestingly, single HMG-box domains can be integrated into 23-RSS-RAG complexes,’6%8 but
cannot stimulate 23-RSS cleavage unless Mn* replaces Mg?* in the reaction,””® or 12-RSS partner
is added to promote synapsis.”” These results suggest the two HMG-box domains have separable
but potentially redundant roles in stimulating RAG binding and cleavage activity in vitro and
that synapsis promotes a conformational change that bypasses the need for one of these domains.
HMGBI lacking the acidic tail stimulates RAG binding and cleavage activity at lower concentra-
tions than full-length HMGB1, but promotes aggregation of RAG-RSS complexes.’6% Moreover,
loss of the acidic tail enables HMGBI mutants that otherwise fail to support RAG-mediated
synapsis to stimulate PC formation.* These data suggest the acidic tail helps maintain the cor-
rect oligomerization state of RAG synaptic complexes. The acidic tail is also known to facilitate
HMGBI1-mediated nucleosome repositioning,>® which may help promote RSS accessibility in
nucleosomal DNA 614

Synaptic complex assembly is thought to proceed via initial formation of SC2 followed by cap-
ture of an appropriate partner RSS to form a PC. This “capture model” of assembly was suggested
initially by biochemical experiments demonstrating that SC2 can be driven to form the PC by
adding appropriate partner R§S$* and the observation that RAG cleavage activity is greater when
synaptic complexes are assembled in step-wise fashion by adding free 23-RSS to a 12-RSS-RAG
complex (or vice versa) than when they are assembled by mixing preformed 12-RSS-RAG and
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23-RSS-RAG complexes together.** This model has gained in vivo experimental support from a
recent study by Curry et al®® showing that nicks can be detected at endogenous 12-RSSs, but not
at 23-RSSs, in lymphoid cells. These findings lead the authors to propose a model in which RAG
proteins bind and nick a 12-RSS first, then capture and nick a 23-RSS and, in rapid succession,
finally cleave both RSSs. This model is consistent with previous biochemical studies showing that
nicking can occur on an RSS in the absence of synapsis,®’ but nicking at one RSS is required for
efficient cleavage of its partner.?% The capture model is also consistent with data this laboratory
and others have published showing that the complement of RAG proteins is the same between a
RAG complex bound to a single RSS (as SC2) and the PC.*¥" Interestingly, these studies show
that molecules of RAG2, but not RAG1, freely re-assort during PC assembly.**¥” Work from this
laboratory suggests that the PC contains two molecules each of RAG1 and RAG2 and that this
heterotetramer configuration remains the same through the cleavage steps of V(D)] recombina-
tion.” Another study reported the same stoichiometry for RAG2 in the PC,* but others conclude
the PC contains three or more RAG1 subunits.*#% Possible scenarios to explain these discordant
results have been discussed elsewhere.

How are the RSSs arranged in the synaptic complex? Early observations that the efficiency of
in vitro coupled cleavage? and in vivo V(D)J rearrangement® is more sensitive to shortening of
the intersignal distance when the RSSs are positioned in an inversional configuration than when
they are positioned in a deletional configuration argued that the RSSs are aligned in a parallel,
rather than anti-parallel orientation in the synaptic complex. To test this possibility more directly,
Cibutaru et al recently measured levels of fluorescence resonance energy transfer (FRET) in RAG
synaptic complexes assembled under various conditions on 12- and 23-RSS oligonucleotide
substrates labeled with FAM and TAMRA in different configurations.® Significant FRET was
detected only when the following three conditions were met: (i) the fluorophores were placed on
different RSSs (but not the same RSS); (ii) the two RSSs contained different length spacers (i.e.,
abiding by the 12/23 rule); and, (iii) synaptic complexes were assembled in binding reactions
containing Mg* and the full complement of RAG1/2 and HMGB1/2 proteins. Interestingly,
FRET was observed in synaptic complexes regardless of which end of a given RSS was labeled;
the only apparent requirement was that the two fluorophores were placed on different RSSs (12
and 23). Thesc data suggest that the distance between the ends of the two bound RSSs in the syn-
aptic complex are approximately the same. Given this constraint and limitations on the maximal
distance between fluorophores to observe FRET, the authors propose the two RSSs likely adopt
abent and crossed configuration in the PC.%

Insights into RAG-Mediated RSS Recognition and Cleavage Mechanisms

Interactions between the RAG proteins and DNA have been investigated using a variety of
approaches and the insights from these studies have greatly improved our understanding of how
the RAG proteins recognize and cleave their RSS targets. Much of the early work has been exten-
sively reviewed,*5?* so it will not be covered in depth here. Chemical and DNase I protection and
modification interference footprinting assays performed on RAG complexes assembled on a single
RSS suggest RAG1 primarily interacts with the nonamer and adjacent spacer sequence, whereas
RSS contacts in complexes containing both RAG proteins are overlapping, but more expansive,
extending from the nonamer, through the spacer and into the 3’ end of the heptamer, with a bias
of phosphate contacts toward one face of the DNA helix.**””! Photo cross-linking studies suggest
RAGI mediates most of the contact with the RSS, with RAG2-RSS interactions more localized
to the junction of the heptamer and coding segment.?-*6727 Integration of HMGB1/2 into
23-RSS-RAG complexes enables detection of heptamer-spacer contacts resembling those observed
in 12-RSS-RAG complexes that are not otherwise visualized in 23-RSS complexes containing
RAG1/2 alone,’** suggesting HMGB1 stabilizes RAG association with the heptamer in these
complexes. Ethylation interference footprinting suggests HMGB1/2 contacts the 23-RSS proximal
to the nonamer, expanding the footprint of the RAG proteins in this region.’' Although RAG
contacts at the junction of the heptamer and coding sequence are not readily detected in RAG
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complexes assembled on a single RSS, this region is protected from DNase I cleavage in synaptic
complexes.”* Nagawa et al showed that synaptic complexes assembled with nicked RSS substrates
show slight expansion of the DNase I footprint relative to precleavage synaptic complexes (from
~12 nt to ~16 nt), suggesting that RAG-mediated nicking causes more intimate and stable RAG
association with the coding sequence.” Pull-down assays showing that nicked RSS substrates are
more readily incorporated into synaptic complexes than intact substrates support this contention.
Interestingly, two different joining-deficient RAG1 mutants (S723C” and K118/9A7") were
shown to exhibit poor protection of the heptamer-coding junction, leading to speculation that
the joining defect is caused by poor coding end retention in the postcleavage synaptic complex.”
However, close inspection of the mutant RAG1 footprinting patterns in precleavage complexes also
reveals that these mutants exhibit less protection of spacer and nonamer sequences compared to
wild-type RAG1. This observation argues that these mutations cause a global defect in RAG-RSS
complex stability, but can also be interpreted to suggest that the RAG proteins require stable
contact with the coding sequence in order to maintain strong interactions with the RSS (or vice
versa) in precleavage complexes.

Direct and interference footprinting experiments suggest RAG-RSS complex formation
is accompanied by structural distortions in the spacer region and near the site of DNA cleav-
age.22+7%7! Studies showing that the RAG proteins mediate RSS bending, which is augmented
by HMGB1/2,% plausibly explain spacer hypersensivity to chemical and enzymatic probes in
RAG-RSS complexes. Structural distortions near the cleavage site are likely attributed to base
unpairing mediated by the RAG proteins to promote hairpin formation, which is suggested
by observations that RAG-mediated RSS cleavage is facilitated by incorporating base-pair
mismatches”™” or abasic sites®® at the coding flank. Clues to how these structural distortions
may be induced and stabilized are suggested by structural studies of the related Tn5 transposase,
which, like the V(D)J recombinase, catalyzes DNA hairpin formation (except that hairpins are
formed at the transposon end, which is equivalent to the signal end in V(D)J recombination).®!
Analysis of a Tn5 postcleavage synaptic complex reveals that the transposase promotes extru-
sion of a thymine from the DNA helix, stabilizing the “flipped base” via stacking interactions
with an aromatic tryptophan residue (trp-298).% Recent studies indicate a similar mechanism
is operative in V(D)] recombination. Two lines of evidence suggest the terminal nucleotide
on the bottom strand of the coding flank (C1b, see Fig. 2 inset) is stabilized in an extrahelical
configuration by the RAG proteins. First, when thymine is incorporated into the RSS at posi-
tion C1b, this base exhibits hypersensitivity to permanganate modification under conditions
favoring RAG-RSS synaptic complex formation.® Second, base removal at C1b potentiates
hairpin formation.® Both outcomes are consistent with comparable studies of the flipped T2
thymine in the ThS5 transposon end.#*# One notable contrast between the two recombination
systems is that although the base subjected to flipping in the RSS coding flank and the Th5
transposon end are both located opposite the nicking site within the hairpin-forming sequence,
they are offset from one another by one nucleotide: in the RSS, the base is at the terminus of
the sequence; in the Th5 transposon end, it occupies the penultimate position.

When does base-flipping occur during RSS cleavage? Base-flipping appears to occur after nick-
ing, rather than upon RAG binding to the RSS, as permanganate hypersensitivity is not observed
in RAG synaptic complexes assembled on intact substrates.’ Interestingly, permanganate interfer-
ence assays reveal that intact substrates bearing oxidized thymine at C1b and S2b are selectively
bound by the RAG complex relative to unmodified substrates, with the latter modification being
much preferred over the former.** If the RAG proteins stabilize base-flipping at C1b during the
hairpin-forming step, why is prior modification of S2b selected over C1b in interference assays?
Since base-flipping is most evident in synaptic complexes assembled on nicked substrates,® one
possibility is that a conformational change in the RAG complex occurs after synapsis or nicking
that alters the position of thymine binding pocket relative to the cleavage site. Thus, an oxidized
extrahelical thymine at S2b may be preferentially accommodated over C1b in the binding pocket
of a RAG complex bound to an intact RSS. Alternatively, modified S2b may be selected because
C1b is more easily flipped if the oxidized base at S2b is already displaced from the DNA helix.



