Essential **Medical Statistics**

Betty R. Kirkwood

MA MSc DIC, Hon MFPHM, FMedSci Professor of Epidemiology and International Health London School of Hygiene and Tropical Medicine University of London

Jonathan A.C. Sterne

MA MSc PhD

Professor of Medical Statistics and Epidemiology Department of Social Medicine University of Bristol

This page intentionally left blank

Essential Medical Statistics

Dedication

To our children: Daisy and Sam Kirkwood Max, Kitty and Emily Sterne

Essential **Medical Statistics**

Betty R. Kirkwood

MA MSc DIC, Hon MFPHM, FMedSci Professor of Epidemiology and International Health London School of Hygiene and Tropical Medicine University of London

Jonathan A.C. Sterne

MA MSc PhD

Professor of Medical Statistics and Epidemiology Department of Social Medicine University of Bristol

 \odot 1988, 2003 by Blackwell Science Ltd a Blackwell Publishing company Blackwell Science, Inc., 350 Main Street, Malden, Massachusetts 02148–5020, USA Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK Blackwell Science Asia Pty Ltd, 550 Swanston Street, Carlton, Victoria 3053, Australia

The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

First published 1988 Second edition 2003

2 2006

Library of Congress Cataloging-in-Publication Data Kirkwood, Betty R. Essential medical statistics/Betty R. Kirkwood, Jonathan A.C. Sterne.—2nd ed. p. ; cm. Rev. ed. of: Essentials of medical statistics/Betty R. Kirkwood. 1988. Includes bibliographical references and index. ISBN 0–86542–871–9

1. Medicine–Research–Statistical methods. 2. Medical statistics. [DNLM: 1. Statistics. 2. Biometry. WA 950 K59e 2003] I. Sterne, Jonathan A. C. II. Kirkwood, Betty R. Essential medical statistics. III. Title.

R853.S7 K497 2003 610′. 7′27—dc21

2002015537

ISBN: 978–0–86542–871–3

A catalogue record for this title is available from the British Library

Set in 10/13pt Times by Kolam Information Services Pvt. Ltd, Pondicherry, India Printed and bound in United Kingdom by MPG Books Ltd, Bodmin, Cornwall

Commissioning Editor: Fiona Goodgame Editorial Assistant: Vicky Pinder Production Editor: Karen Moore Production Controller: Kate Charman For further information on Blackwell Publishing, visit our website: www.blackwellpublishing.com

Contents

Preface to the second edition vii Preface to the first edition ix

Part A: Basics

- 1 Using this book 3
- 2 Defining the data 9
- 3 Displaying the data 15

Part B: Analysis of numerical outcomes

- 4 Means, standard deviations and standard errors 33
- 5 The normal distribution 42
- 6 Confidence interval for a mean 50
- 7 Comparison of two means: confidence intervals, hypothesis tests and P-values 58
- 8 Using P-values and confidence intervals to interpret the results of statistical analyses 71
- 9 Comparison of means from several groups: analysis of variance 80
- 10 Linear regression and correlation 87
- 11 Multiple regression 98
- 12 Goodness of fit and regression diagnostics 107
- 13 Transformations 118

Part C: Analysis of binary outcomes

- 14 Probability, risk and odds (of disease) 131
- 15 Proportions and the binomial distribution 138
- 16 Comparing two proportions 148
- 17 Chi-squared tests for 2×2 and larger contingency tables 165
- 18 Controlling for confounding: stratification 177
- 19 Logistic regression: comparing two or more exposure groups 189
- 20 Logistic regression: controlling for confounding and other extensions 205
- 21 Matched studies 214

Part D: Longitudinal studies: Analysis of rates and survival times

- 22 Longitudinal studies, rates and the Poisson distribution 227
- 23 Comparing rates 240
- 24 Poisson regression 249
- 25 Standardization 263
- 26 Survival analysis: displaying and comparing survival patterns 272
- 27 Regression analysis of survival data 287

Part E: Statistical modelling

- 28 Likelihood 297
- 29 Regression modelling 315
- 30 Relaxing model assumptions 343
- 31 Analysis of clustered data 355
- 32 Systematic reviews and meta-analysis 371
- 33 Bayesian statistics 388

Part F: Study design, analysis and interpretation

- 34 Linking analysis to study design: summary of methods 395
- 35 Calculation of required sample size 413
- 36 Measurement error: assessment and implications 429
- 37 Measures of association and impact 447
- 38 Strategies for analysis 458

Appendix: Statistical tables

- A1 Areas in tail of the standard normal distribution 470
- A2 Percentage points of the standard normal distribution 472
- A3 Percentage points of the t distribution 473
- A4 Two-sided P -values for the t distribution, according to the value of the test statistic 474
- A5 Percentage points of the χ^2 distribution 476
- A6 Probits 477
- A7 Critical values for the Wilcoxon matched pairs signed rank test 479
- A8 Critical ranges for the Wilcoxon rank sum test 480
- A9 Random numbers 482

Bibliography 487

Index 493

Preface to the second edition

The practice of medical statistics has changed considerably since the first edition was written. At that time the age of the personal computer was just beginning, and serious statistical analyses were conducted by specialist statisticians using mainframe computers. Now, there is ready access to statistical computing—even the most sophisticated statistical analyses can be done using a personal computer. This has been accompanied by the growth of the evidence-based medicine movement and a commitment of medical journals to improve the statistical rigour of papers they publish.

These changes mean that the boundary between what used to be considered 'basic' or 'essential' statistics and more advanced methods has been blurred. A statistical analysis presented in a leading general medical journal is more likely to use logistic regression (formerly considered a specialist technique) than to present results from χ^2 tests. In this second edition we describe the most commonly used regression models—multiple linear regression, logistic regression, Poisson regression and Cox regression—and explain how these include many basic methods as special cases. By including chapters on general issues in regression modelling, interpretation of analyses and likelihood, we aim to present a unified view of medical statistics and statistical inference, and to reflect the shift in emphasis in modern medical statistics from hypothesis testing to estimation. Other new chapters introduce methods, some relatively new, that allow common problems in statistical analysis to be addressed; these include meta-analysis, bootstrapping, robust standard errors, and analysis of clustered data.

Our aim throughout has been to retain the strengths of the first edition, by keeping the emphasis on enabling the reader to know which method to apply when. We have therefore structured the book into parts relating to the analysis of different types of outcome variable, and included new chapters on linking analysis to study design, measures of association and impact, and general strategies for analysis.

A number of the larger datasets used in the chapters on regression modelling are available for downloading from the book's website (www.blackwellpublishing. com/essentialmedstats), to allow readers to reproduce the analyses presented or try out further analyses for themselves. Readers are also invited to visit the website to check for corrections and updates and to give feedback, which we welcome.

In writing this second edition, we have benefited from advice and support from many colleagues, students and friends. In particular, we would like to thank the many readers who gave feedback on the first edition and inspired us to embark on this, Cesar Victora, Kate Tilling and Simon Cousens for so willingly commenting on early drafts in detail, David Clayton and Michael Hills for generous advice and unstinting help on many occasions, George Davey Smith for helpful comments on a number of draft chapters and the late Paul Arthur for his enduring encouragement and advice. We would like to express our appreciation to Christopher Baum, James Carpenter, Matthias Egger, Stephen Frankel, David Gunnell, Richard Hayes, Sharon Huttly, Mike Kenward, Peter McCarron, Roger Newson, Steven Oliver, Andrew Polmear, Bianca de Stavola, and Lesley Wood for helpful discussions and for sharing their insights into statistical issues. We are grateful to James Carpenter, Erik Christensen, Shah Ebrahim, Alison Elliot, Richard Hayes, David Kessler, Carl-Johan Lamm, Debbie Lawlor, Steven Oliver, Mary Penny, Seif Shaheen and Bianca de Stavola, who generously provided datasets for use as examples. We would also like to thank Maggie Rae and Alan Haworth, whose generous hospitality facilitated much writing, and last but not least Harriet Aston, Emily, Kitty and Max Sterne, Alex Khot, and Sam and Daisy Kirkwood, for their support and the difference they make in our lives.

> Betty Kirkwood Jonathan Sterne

Preface to the first edition

The aim in writing this book has been to put the multitude of statistical methods applicable to medical research into their practical context, and in doing this I hope I have combined simplicity with depth. I have adopted a somewhat different ordering of topics than found in most books, based on a logical progression of practical concepts, rather than a formal mathematical development. Statistical ideas are introduced as and when needed, and all methods are described in the context of relevant examples drawn from real situations. There is extensive crossreferencing to link and contrast the alternative approaches which may apply in similar situations. In this way the reader is led more quickly to the analysis of practical problems and should find it easier to learn which procedures are applicable and when.

This book is suitable for self-instruction, as a companion to lecture courses on medical statistics, and as a reference text. It covers all topics which a medical research worker or student is likely to encounter. Some advanced (or uncommon) methods are described only briefly, and the reader referred to more specialist books. It is hoped, however, that it will be a rare event to look for a topic in the index, and not to find even a mention. All formulae are clearly highlighted for easy reference, and there is a useful summary of methods on the inside front and back covers.

The book is a concise and straightforward introduction to the basic methods and ideas of medical statistics. It does not, however, stop here. It is intended also to be a reasonably comprehensive guide to the subject. For anyone seriously involved in statistical applications, it is not sufficient just to be able to carry out, for example, a t test. It is also important to appreciate the limitations of the simple methods, and to know when and how they should be extended. For this reason, chapters have been included on, for example, analysis of variance and multiple regression. When dealing with these more advanced methods the treatment concentrates on the principles involved and the interpretation of results, since with the wide availability of computing facilities it is no longer necessary to acquire familiarity with the details of the calculations. The more advanced sections may be omitted at a first reading, as indicated at the relevant points in the text. It is recommended, however, that the introductions of all chapters are read, as these put the different methods into context.

x Preface to the first edition

The reader will also find such topics as trend tests for contingency tables, methods of standardization, use of transformations, survival analysis and case– control studies. The last quarter of the book is devoted to issues involved in the design and conduct of investigations. These sections are not divorced in any way from the sections on methods of analysis and reflect the importance of an awareness of statistics throughout the execution of a study. There is a detailed summary of how to decide on an appropriate sample size, and an introduction to the use of computers, with much of the common jargon explained.

This book has been compiled from several years' experience both of teaching statistics to a variety of medical personnel and of collaborative research. I hope that the approach I have adopted will appeal to anyone working in or associated with the field of medical research, and will please medical workers and statisticians alike. In particular, I hope the result will answer the expressed need of many that the problem in carrying out statistical work is not so much learning the mechanics of a particular test, but rather knowing which method to apply when.

I would like to express my gratitude to the many colleagues, students, and friends who have assisted me in this task. In particular, I would like to thank David Ross and Cesar Victora for willingly reading early drafts and commenting in great detail, Richard Hayes for many discussions on teaching over the years, Laura Rodrigues for sharing her insight into epidemiological methodology with me, Peter Smith for comments and general support, Helen Edwards for patient and skilled help with the typing, and Jacqui Wright for assistance in compiling the appendix tables. I would also like to thank my husband Tom Kirkwood not only for comments on many drafts, endless discussions and practical help, but also for providing unfailing support and encouragement throughout. It is to him this book is dedicated. Finally, I would like to mention Daisy and Sam Kirkwood, whose birth, although delaying the finalization of an almost complete manuscript, provided me with an opportunity to take a fresh look at what I had written and make a number of major improvements.

Betty Kirkwood

PART A

BASICS

Statistics is the science of collecting, summarizing, presenting and interpreting data, and of using them to estimate the magnitude of associations and test hypotheses. It has a central role in medical investigations. Not only does it provide a way of organizing information on a wider and more formal basis than relying on the exchange of anecdotes and personal experience, it takes into account the intrinsic variation inherent in most biological processes. For example, not only does blood pressure differ from person to person, but in the same person it also varies from day to day and from hour to hour. It is the interpretation of data in the presence of such variability that lies at the heart of statistics. Thus, in investigating morbidity associated with a particular stressful occupation, statistical methods would be needed to assess whether an observed average blood pressure above that of the general population could simply be due to chance variations or whether it represents a real indication of an occupational health risk.

Variability can also arise unpredictably (randomly) within a population. Individuals do not all react in the same way to a given stimulus. Thus, although smoking and heavy drinking are in general bad for the health, we may hear of a heavy smoker and drinker living to healthy old age, whereas a non-smoking teetotaller may die young. As another example, consider the evaluation of a new vaccine. Individuals vary both in their responsiveness to vaccines and in their susceptibility and exposure to disease. Not only will some people who are unvaccinated escape infection, but also a number of those who are vaccinated may contract the disease. What can be concluded if the proportion of people free from the disease is greater among the vaccinated group than among the unvaccinated? How effective is the vaccine? Could the apparent effect just be due to chance? Or, was there some bias in the way people were selected for vaccination, for example were they of different ages or social class, such that their baseline risk of contracting the disease was already lower than those selected into the non-vaccinated group? The methods of statistical analysis are used to address the first two of these questions, while the choice of an appropriate design should exclude the third. This example illustrates that the usefulness of statistics is not confined to the analysis of results. It also has a role to play in the design and conduct of a study.

In this first part of the book we cover the basics needed to understand data and commence formal statistical analysis. In Chapter 1 we describe how to use the book to locate the statistical methods needed in different situations, and to progress from basic techniques and concepts to more sophisticated analyses. Before commencing an analysis it is essential to gain an understanding of the data. Therefore, in Chapter 2 we focus on defining the data, explaining the concepts of populations and samples, the structure of a dataset and the different types of variables that it may contain, while in Chapter 3 we outline techniques for displaying and tabulating data.

CHAPTER 1

Using this book

-
-
- 1.3 Finding the right statistical 1.6 Trying out our examples method (Parts B–D) 1.7 This book and evidence-based
- 1.4 Going further (Part E) medicine
- 1.1 Introduction 1.5 Understanding the links between study 1.2 Getting started (Part A) design, analysis and interpretation (Part F)
	-
	-

1.1 INTRODUCTION

People usually pick up a statistics book when they have data to analyse, or when they are doing a course. This has determined the structure of this book. The ordering of topics is based on a logical progression of both methods and practical concepts, rather than a formal mathematical development. Because different statistical methods are needed for different types of data, we start by describing how to define and explore a dataset (rest of Part A). The next three parts (B, C and D) then outline the standard statistical approaches for the three main types of outcome variables (see Section 1.3). Statistical ideas are introduced as needed, methods are described in the context of relevant examples drawn from real situations, and the data we have used are available for you to reproduce the examples and try further analyses (see Section 1.6). In Part E, we introduce a collection of more advanced topics, which build on common themes in Parts B to D. These are beyond the scope of most introductory texts. The final part of the book (Part F) is devoted to issues involved in the design and conduct of a study, and how to develop an analysis strategy to get the best out of the data collected.

This book is intended to appeal to a wide audience, and to meet several needs. It is a concise and straightforward introduction to the basic methods and ideas of medical statistics, and as such is suitable for self-instruction, or as a companion to lecture courses. It does not require a mathematical background. However, it is not just an introductory text. It extends well beyond this and aims to be a comprehensive reference text for anyone seriously involved in statistical analysis. Thus it covers the major topics a medical research worker, epidemiologist or medical statistician is likely to encounter when analysing data, or when reading a scientific paper. When dealing with the more advanced methods, the focus is on the principles involved, the context in which they are required and the interpretation of computer outputs and results, rather than on the statistical theory behind them.

1.2 GETTING STARTED (PART A)

The other chapters in Part A deal with the basics of getting to know your data. In Chapter 2 ('Defining the data') we explain the link between populations and samples, and describe the different types of variables, while in Chapter 3 we outline simple techniques for tabulating and displaying them.

In particular, we introduce the distinction between exposure variables or risk factors (that is variables which influence disease outcomes, including medical treatments) and outcome variables (the variables whose variation or occurrence we are seeking to understand). Assessing the size and strength of the influence of one or more exposure variables on the outcome variable of interest is the core issue that runs throughout this book, and is at the heart of the majority of statistical investigations.

1.3 FINDING THE RIGHT STATISTICAL METHOD (PARTS B–D)

The appropriate statistical methods to use depend on the nature of the outcome variable of interest. Types of outcome variables are described in detail in Chapter 2; they may be essentially one of three types:

- 1 Numerical outcomes, such as birthweight or cholesterol level.
- 2 Binary outcomes, summarized as proportions, risks or odds, such as the proportion of children diagnosed with asthma, the proportion of patients in each treatment group who are no longer hypertensive, or the risk of dying in the first year of life.
- 3 Rates of mortality, morbidity or survival measured longitudinally over time, such as the survival rates following different treatments for breast cancer, or the number of episodes of diarrhoea per person per year among AIDS patients.

Parts B, C and D comprehensively cover the full range of standard methods for these three types of outcome respectively, and will be sufficient for the majority of analysis requirements. The emphasis throughout is on how to choose the right method for the required analysis, how to execute the method and how to interpret the results from the computer output. A quick guide to the appropriate statistical methods for the analysis of the different types of outcome variable is included on the inside covers.

The key concepts underlying statistical methods are all introduced in Part B in the context of analysing numerical outcomes, but they apply equally to all the statistical methods in the book. Statistics is used to evaluate the association between an exposure variable and the outcome of interest. More specifically, it is used to measure this association in the data collected from the particular sample of individuals in our study and to make inferences about its likely size and strength in the population from which the sample was derived. In Chapter 6, we introduce the use of a confidence interval, to give a range of values within which the size of the association in the population is likely to lie, taking into account sampling variation and standard error, which reflect the inherent variation between individuals.

Hypothesis tests (also known as significance tests) and P-values, introduced in Chapter 7, are used to assess the strength of the evidence against the null hypothesis that there is no true association in the population from which the sample was drawn.

The methods in these three core parts of the book range from simple techniques such as t-tests or chi-squared tests for comparing two exposure groups, to the use of regression models for examining the effect of several exposure variables. Throughout we aim to show how these regression models arise as natural extensions to the simpler methods. These more sophisticated analyses are no longer the preserve of the trained statistician. They are widely available in statistical software packages and can be used by anyone with a desktop or notebook/laptop computer, and a moderate level of computer expertise. The more advanced sections can be omitted at a first reading, as indicated at the relevant points in the text. It is recommended, however, that the introductions of all chapters be read, as these put the different methods into context.

1.4 GOING FURTHER (PART E)

Parts B, C and D comprehensively cover the full range of standard methods for the three types of outcome variables. This range of methods will be sufficient for the majority of analysis requirements. Part E is for those who wish to go further, and to understand general issues in statistical modelling. It can be omitted until needed.

In Part E we explain the idea of likelihood, upon which most statistical methods are based, discuss generic issues in regression modelling, so that skills learned in applying one type of regression model can be applied directly to the others, and describe methods that allow us to relax the assumptions made in standard statistical methods. We also include chapters for two specialised areas of analysis. The first is the analysis of clustered data, which arise, for example, in cluster-randomized trials where communities, rather than individuals, are randomized to receive the intervention or to act as control. The second is on systematic reviews and meta-analyses, which synthesize findings from several independent studies. Finally, we include a brief overview of the Bayesian approach to statistical inference.

In these more advanced chapters our emphasis is on a practical approach, focussing on what the reader needs to know to conduct such analyses, and what is needed to critically appraise their reporting in scientific papers. However, we recommend that only the introductions of the chapters be attempted at first reading. The detail can be omitted and used only when the necessity arises, and/ or the reader has acquired experience of basic regression modelling.

1.5 UNDERSTANDING THE LINKS BETWEEN STUDY DESIGN, ANALYSIS AND INTERPRETATION (PART F)

The results of a study are only as good as the data on which they are based. Part F addresses the links between study design, analysis and interpretation. It starts by explaining how to choose the right analysis for each of the main types of study

Fig. 1.1 Organization of this book.

design. It then describes how to choose an appropriate sample size, the effects of measurement error and misclassification, and the different ways in which associations can be measured and interpreted.

Finally, it is essential to plan and conduct statistical analyses in a way that maximizes the quality and interpretability of the findings. In a typical study, data are collected on a large number of variables, and it can be difficult to decide which methods to use and in what order. In Part F we aim to navigate you through this, by describing how to plan and conduct an analysis. Time invested here before you start pays off. Millions of trees must have been sacrificed to unplanned data analyses, where the data were looked at in every way imaginable. Equally often, gaps in analyses are discovered when the analyst tries to present the results. In fact it is not uncommon for people to find themselves going back to the drawing board at this stage. Careful planning of analyses should avoid these frustrations.

Of course, the issues discussed in Part F will affect all stages of the analysis of a study. This is illustrated in Figure 1.1, which shows how this book is organized.

1.6 TRYING OUT OUR EXAMPLES

Almost all statistical analyses are now done using computers, and all but very large datasets (those with measurements made on hundreds of thousands of individuals) can now be analysed using standard (desktop or laptop) office or home computers. Although simple analyses can be done with a hand-held calculator, even for these the use of a computer is recommended because results will be produced more quickly and be more accurate. For more complex analyses it is essential to use computers. Computers also allow production of high quality graphical displays.

For these reasons, we have conducted all analyses in this book using a computer. We have done these using the statistical package Stata (Stata Corporation, College Station, TX, USA; see www.stata.com). For simple analyses, we have included raw data where possible to enable readers to try out our examples for themselves. Most regression analyses presented in this book are based on datasets that are available for downloading from the book's web site, at www.blackwellpublishing.com/ EssentialMedStats. Readers may wish to use these datasets either to check that they can reproduce the analyses presented in the book, or to practice further analyses.

In general, hand-held calculators do not provide facilities to perform a large enough range of statistical analyses for most purposes. In particular, they do not allow the storage of data or analysis commands that are needed to make sure that an analysis can be reproduced (see Chapter 38). However, calculators are useful for quick calculations and checking of results (both one's own and those in scientific papers). The minimum requirements are keys for scientific functions (such as square root and logarithm) and at least one memory. The new generation of handheld computers and personal organizers is blurring the distinction between calculators and computers, and it is likely that statistical software for such devices will become available in the future.

1.7 THIS BOOK AND EVIDENCE-BASED MEDICINE

As discussed above, statistics is the science of collecting, summarizing, presenting and interpreting data, and of using them to estimate the size and strengths of associations between variables. The core issue in medical statistics is how to assess the size and strength of the influence of one or more exposure variables (risk factors or treatments) on the outcome variable of interest (such as occurrence of disease or survival). In particular it aims to make inferences about this influence by studying a selected sample of individuals and using the results to make more general inferences about the wider population from which the sample was drawn.

The approach of evidence-based medicine is like a mirror to this. Inferences are made the other way around; by appraising the evidence based on the average effect of a treatment (or exposure) assessed on a large number of people, and judging its relevance to the management of a particular patient. More specifically, practitioners need to ask themselves what to consider before they can assume that the general finding will apply to a particular patient. For example, does the patient share the same characteristics as the group from which the evidence was gathered, such as age, sex, ethnic group, social class and the profile of related risk factors, such as smoking or obesity?

The evidence that the practitioner needs to appraise may come from a single study or, increasingly, from a systematic review of many. There has been an explosion in research evidence in recent decades: over two million articles are published annually in the biomedical literature and it is common for important issues to be addressed in several studies. Indeed, we might be reluctant to introduce a new treatment based on the result of one trial alone. A systematic review, or

8 Chapter 1: Using this book

overview, of the literature is a 'systematic assembly, critical appraisal and synthesis of all relevant studies on a specific topic'. The statistical methods for combining the results of a number of studies are known as meta-analysis. It should be emphasized that not all systematic reviews will contain a meta-analysis: this depends on the systematic review having located studies which are sufficiently similar that it is reasonable to consider combining their results. The increase in interest in metaanalysis is illustrated by the fact that while in 1987 there were 25 MEDLINE citations using the term 'meta-analysis'; this had increased to around 380 by 1991 and around 580 by 2001.

The majority of practitioners are concerned with using and appraising this evidence base, whereas the main focus of this book is on how to conduct the statistical analyses of studies that contribute to the evidence base. There are several excellent specialized evidence-based medicine books that lay out the issues in critically appraising a scientific paper or systematic review. We have therefore decided to refer the reader to these, rather than including a detailed discussion of critical appraisal in this book. We recommend Crombie (1996), Clarke and Croft (1998), Silagy and Haines (1998), Greenhalgh (2000) and Sackett et al. (2000).

The parts of this book that are particularly relevant to those practising evidence-based medicine are Chapters 32, 34 and 37. Thus in Chapter 32 on 'Systematic reviews and meta-analysis', we include a discussion of the sources of bias in meta-analysis and how these may be detected. In Chapter 34 we briefly review the most important aspects of the quality of randomized controlled trials. In Chapter 37 we describe the various different 'Measures of association and impact' and how to interpret them. These include numbers needed to treat or harm as well as risk ratios, odds ratios, attributable risks and absolute risk reductions. In addition, this book will be a useful companion for any practitioner who, as well as appraising the quality and relevance of the evidence base, wishes to understand more about the statistics behind the evidence generated.

CHAPTER 2

Defining the data

-
- 2.2 Types of variable Variable Variables derived from reference curves. Binary and other categorical values Transformed variables
- 2.3 Derived variables and exposure variables Calculated or categorized from recorded variables

2.1 Populations and samples Variables based on threshold values Numerical variables based on standard population values

Rates 2.4 Distinguishing between outcome

2.1 POPULATIONS AND SAMPLES

Except when a full census is taken, we collect data on a sample from a much larger group called the population. The sample is of interest not in its own right, but for what it tells the investigator about the population. Statistics allows us to use the sample to make inferences about the population from which it was derived, as illustrated in Figure 2.1. Because of chance, different samples from the population will give different results and this must be taken into account when using a sample to make inferences about the population. This phenomenon, called sampling variation, lies at the heart of statistics. It is described in detail in Chapter 4.

The word 'population' is used in statistics in a wider sense than usual. It is not limited to a population of people but can refer to any collection of objects. For

Fig. 2.1 Diagram to show the role of statistics in using information from a sample to make inferences about the population from which the sample was derived.

example, the data may relate to a sample of 20 hospitals from the population of all hospitals in the country. In such a case it is easy to imagine that the entire population can be listed and the sample selected directly from it. In many instances, however, the population and its boundaries are less precisely specified, and care must be taken to ensure that the sample truly represents the population about which information is required. This population is sometimes referred to as the target population. For example, consider a vaccine trial carried out using student volunteers. If it is reasonable to assume that in their response to the vaccine and exposure to disease students are typical of the community at large, the results will have general applicability. If, on the other hand, students differ in any respect which may materially affect their response to the vaccine or exposure to disease, the conclusions from the trial are restricted to the population of students and do not have general applicability. Deciding whether or not 'students are typical' is not a statistical issue, but depends on an informed judgement taking into account relevant biological and epidemiological knowledge.

Note that the target population often includes not only all persons living at present but also those that may be alive at some time in the future. This is the case in this last example evaluating the efficacy of the vaccine. It is obvious that the complete enumeration of such a population is not possible.

2.2 TYPES OF VARIABLE

The raw data of an investigation consist of observations made on individuals. In many situations the individuals are people, but they need not be. For instance, they might be red blood cells, urine specimens, rats, or hospitals. The number of individuals is called the sample size. Any aspect of an individual that is measured, like blood pressure, or recorded, like age or sex, is called a variable. There may be only one variable in a study or there may be many. For example, Table 2.1 shows the first six lines of data recorded in a study of outcome of treatment in tuberculosis patients treated in three hospitals. Each row of the table shows the data collected on a particular individual, while the columns of the table show the different variables which have been collected.

				Date of	Weight Smear		Culture	Skin test diameter	Alive after
Id	Hospital	Date of birth		Sex diagnosis	(kg)	result	result	(mm)	6 months?
001		03/12/1929	M	23/08/1998	56.3	Positive	Negative	18	Y
002		13/04/1936	M	12/09/1998	73.5	Positive	Negative	15	Υ
003	1	31/10/1931	F	17/06/1999	57.6	Positive	Positive	21	N
004	2	11/11/1922	F	05/07/1999	65.6	Uncertain	Positive	28	Υ
005	2	01/05/1946	M	20/08/1999	81.1	Negative	Positive	6	Υ
006	3	18/02/1954	M	17/09/1999	56.8	Positive	Negative	12	Υ

Table 2.1 First six lines of data from a study of outcome after diagnosis of tuberculosis.

A first step in choosing how best to display and analyse data is to classify the variables into their different types, as different methods pertain to each. The main division is between numerical (or quantitative) variables, categorical (or qualitative) variables and rates.

Numerical variables

A numerical variable is either continuous or discrete. A continuous variable, as the name implies, is a measurement on a continuous scale. In Table 2.1, weight is a continuous variable. In contrast, a discrete variable can only take a limited number of discrete values, which are usually whole numbers, such as the number of episodes of diarrhoea a child has had in a year.

Binary and other categorical variables

A categorical variable is non-numerical, for instance place of birth, ethnic group, or type of drug. A particularly common sort is a **binary variable** (also known as a dichotomous variable), which has only two possible values. For example, sex is male or female, or the patient may survive or die. We should also distinguish ordered categorical variables, whose categories, although non-numerical, can be considered to have a natural ordering. A common example of an ordered categorical variable is social class, which has a natural ordering from most deprived to most affluent. Table 2.2 shows the possible categories and sub-types of variable for each of the categorical variables in the data displayed in Table 2.1. Note that it could be debated whether smear result should be classified as ordered categorical or simply as categorical, depending on whether we can assume that ''uncertain'' is intermediate between 'negative' and 'positive'.

Rates

Rates of disease are measured in follow-up studies, and are the fundamental measure of the frequency of occurrence of disease over time. Their analysis forms the basis for Part D, and their exact definition can be found there. Examples include the survival rates following different treatments for breast cancer, or the number of episodes of diarrhoea/person/year among AIDS patients.

Variable	Categories	Type of variable		
Hospital	1, 2, 3	Categorical		
Sex	Male, female	Binary		
Smear result	Negative, uncertain, positive	Ordered categorical		
Culture result	Negative, positive	Binary		
Alive at 6 months?	No, yes	Binary		

Table 2.2 Categorical (qualitative) variables recorded in the study of outcome after diagnosis of tuberculosis.

2.3 DERIVED VARIABLES

Often, the variables included in a statistical analysis will be derived from those originally recorded. This may occur in a variety of different ways, and for a variety of reasons.

Calculated or categorized from recorded variables

We commonly derive a patient's *age* at diagnosis (in years) by calculating the number of days between their date of birth and date of diagnosis, and dividing this by 365.25 (the average number of days in a year, including leap years). We will often proceed to categorize age into age groups, for example we might define tenyear age groups as 30 to 39, 40 to 49, and so on. Age group is then an ordered categorical variable.

Another example is where the range of values observed for average monthly income is used to divide the sample into five equally-sized income groups (quintiles, see Section 3.3), and a new variable 'income group' created with '1' corresponding to the least affluent group in the population and '5' to the most affluent group.

Similarly, body mass index (BMI), which is calculated by dividing a person's weight (in kg) by the square of their height (in m), may be categorized into a 5-point scale going from $\langle 16 \text{ kg/m}^2$ being malnourished to $\geq 30 \text{ kg/m}^2$ defining obese. In contrast to the income group variable where the categorization is specific to the particular set of data, the categorization of the BMI scale has been carried out using conventionally agreed cut-off points to define the different groups. This type of variable, where the categorizing is based on pre-defined threshold values, is described in the next paragraph.

Variables based on threshold values

A particular group of derived variables are those based on threshold values of a measured variable. Two examples are given in Table 2.3. LBW is a binary variable for low birthweight ('yes' if the baby's birthweight was below 2500 g, and 'no' if

Derived variable	Original variable
LBW (Low birthweight):	Birthweight:
Yes	$<$ 2500 a
No	$>$ 2500 g
Vitamin A status:	Serum retinol level:
Severe deficiency	$< 0.35 \mu$ mol/l
Mild/moderate deficiency	$0.35 - 0.69 \mu mol/l$
Normal	$> 0.70 \mu$ mol/l

Table 2.3 Examples of derived variables based on threshold values.

the birthweight was 2500 g or above). Vitamin A status is an ordered categorical variable, derived from the serum retinol level.

Variables derived from reference curves, based on standard population values

A more refined comparison is based on comparing the value of a variable for the individual with reference curves based on the average and range of values for the whole population. For example, a child's growth can be monitored by plotting his/her weight (and height) against standard **growth curves**. This allows not only an assessment of where the child's weight (or height) lays compared to the average child at this age, but also allows growth faltering to be detected, if their growth curve appears to be dropping below what is usually expected for a child with their birthweight. How to calculate variables derived from a comparison with reference curves is postponed until Chapter 13 ('Transformations') at the end of Part B, since it requires an understanding of means, the normal distribution and z-scores, all of which are covered in Part B.

Transformed variables

In some cases it may be necessary to *transform* a numerical variable onto another scale in order to make it satisfy the assumptions needed for the relevant statistical methods. The logarithmic transformation, in which the value of the variable is replaced by its logarithm, is by far the most frequently applied. Its use is appropriate for a great variety of variables including incubation periods, parasite counts, titres, dose levels, concentrations of substances, and ratios. The reasons why a variable should be transformed, the different types of transformation, and how to choose between them are covered in detail in Chapter 13 at the end of part B.

2.4 DISTINGUISHING BETWEEN OUTCOME AND EXPOSURE VARIABLES

In order to choose appropriate data displays and statistical methods, it is very important to distinguish between outcome and exposure variables, in addition to identifying the types of each of the variables in the data set. The outcome variable is the variable that is the focus of our attention, whose variation or occurrence we are seeking to understand. In particular we are interested in identifying factors, or exposures, that may influence the size or the occurrence of the outcome variable. Some examples are given in Table 2.4. The purpose of a statistical analysis is to quantify the magnitude of the association between one or more exposure variables and the outcome variable.

A number of different terms are used to describe exposure and outcome variables, depending on the context. These are listed in Table 2.5. In particular, in a

Table 2.4 Examples of outcome and exposure variables.

Table 2.5 Commonly used alternatives for describing exposure and outcome variables.

clinical trial (see Chapter 34) the exposure is the treatment group, and in a case– control study, the outcome is the case–control status, and the exposure variables are often called risk factors.

The type of outcome variable is particularly important in determining the most appropriate statistical method. Part B of this book describes statistical methods for numerical outcome variables. Part C describes methods for binary outcome variables, with a brief description (Section 20.5) of methods for categorical outcomes with more than two types of response. Part D describes methods to be used for rates, arising in studies with binary outcomes in which individuals are followed over time.

CHAPTER 3

Displaying the data

-
- 3.2 Frequencies, frequency quantiles and percentiles Frequencies (categorical variables) Median and quartiles Frequency distributions Quantiles and percentiles Histograms two variables Frequency polygon Cross tabulations Frequency distribution of the Scatter plots population 3.5 Displaying time trends Shapes of frequency distributions
- 3.1 Introduction 3.3 Cumulative frequency distributions, distributions and histograms Cumulative frequency distributions
	- (numerical variables) 3.4 Displaying the association between
		-

3.1 INTRODUCTION

With ready access to statistical software, there is a temptation to jump straight into complex analyses. This should be avoided. An essential first step of an analysis is to summarize and display the data. The familiarity with the data gained through doing this is invaluable in developing an appropriate analysis plan (see Chapter 38). These initial displays are also valuable in identifying outliers (unusual values of a variable) and revealing possible errors in the data, which should be checked and, if necessary, corrected.

This chapter describes simple tabular and graphical techniques for displaying the distribution of values taken by a single variable, and for displaying the association between the values of two variables. Diagrams and tables should always be clearly labelled and self-explanatory; it should not be necessary to refer to the text to understand them. At the same time they should not be cluttered with too much detail, and they must not be misleading.

3.2 FREQUENCIES, FREQUENCY DISTRIBUTIONS AND HISTOGRAMS

Frequencies (categorical variables)

Summarizing categorical variables is straightforward, the main task being to count the number of observations in each category. These counts are called frequencies. They are often also presented as relative frequencies; that is as proportions or percentages of the total number of individuals. For example, Table 3.1 summarizes the method of delivery recorded for 600 births in a hospital. The

Method of delivery	No. of births	Percentage	
Normal	478	79.7	
Forceps	65	10.8	
Caesarean section	57	9.5	
Total	600	100.0	

Table 3.1 Method of delivery of 600 babies born in a hospital.

variable of interest is the method of delivery, a categorical variable with three categories: normal delivery, forceps delivery, and caesarean section.

Frequencies and relative frequencies are commonly illustrated by a **bar chart** (also known as a bar diagram) or by a pie chart. In a bar chart the lengths of the bars are drawn proportional to the frequencies, as shown in Figure 3.1. Alternatively the bars may be drawn proportional to the percentages in each category; the shape is not changed, only the labelling of the scale. In either case, for ease of reading it is helpful to write the actual frequency and/or percentage to the right of the bar. In a pie chart (see Figure 3.2), the circle is divided so that the areas of the sectors are proportional to the frequencies, or equivalently to the percentages.

Frequency distributions (numerical variables)

If there are more than about 20 observations, a useful first step in summarizing a numerical (quantitative) variable is to form a frequency distribution. This is a table showing the number of observations at different values or within certain ranges. For a discrete variable the frequencies may be tabulated either for each value of the variable or for groups of values. With continuous variables, groups have to be formed. An example is given in Table 3.2, where haemoglobin has been measured

Fig. 3.1 Bar chart showing method of delivery of 600 babies born in a hospital.

Fig. 3.2 Pie chart showing method of delivery of 600 babies born in a hospital.

to the nearest 0.1 g/100 ml and the group 11–, for example, contains all measurements between 11.0 and 11.9 g/100 ml inclusive.

When forming a frequency distribution, the first things to do are to count the number of observations and to identify the lowest and highest values. Then decide

\cdots								
10.2	13.7	10.4	14.9	11.5	12.0	11.0		
13.3	12.9	12.1	9.4	13.2	10.8	11.7		
10.6	10.5	13.7	11.8	14.1	10.3	13.6		
12.1	12.9	11.4	12.7	10.6	11.4	11.9		
9.3	13.5	14.6	11.2	11.7	10.9	10.4		
12.0	12.9	11.1	8.8	10.2	11.6	12.5		
13.4	12.1	10.9	11.3	14.7	10.8	13.3		
11.9	11.4	12.5	13.0	11.6	13.1	9.7		
11.2	15.1	10.7	12.9	13.4	12.3	11.0		
14.6	11.1	13.5	10.9	13.1	11.8	12.2		

(a) Raw data with the highest and lowest values underlined.

(b) Frequency distribution.

whether the data should be grouped and, if so, what grouping interval should be used. As a rough guide one should aim for 5–20 groups, depending on the number of observations. If the interval chosen for grouping the data is too wide, too much detail will be lost, while if it is too narrow the table will be unwieldy. The starting points of the groups should be round numbers and, whenever possible, all the intervals should be of the same width. There should be no gaps between groups. The table should be labelled so that it is clear what happens to observations that fall on the boundaries.

For example, in Table 3.2 there are 70 haemoglobin measurements. The lowest value is 8.8 and the highest $15.1 \frac{\text{g}}{100 \text{ ml}}$. Intervals of width $1 \frac{\text{g}}{100 \text{ ml}}$ were chosen, leading to eight groups in the frequency distribution. Labelling the groups 8–, 9–, . . . is clear. An acceptable alternative would have been 8.0–8.9, 9.0–9.9 and so on. Note that labelling them 8–9, 9–10 and so on would have been confusing, since it would not then be clear to which group a measurement of 9.0 g/100 ml, for example, belonged.

Once the format of the table is decided, the numbers of observations in each group are counted. If this is done by hand, mistakes are most easily avoided by going through the data in order. For each value, a mark is put against the appropriate group. To facilitate the counting, these marks are arranged in groups of five by putting each fifth mark horizontally through the previous four (1111) ; these groups are called **five-bar gates**. The process is called **tally**ing.

As well as the number of women, it is useful to show the percentage of women in each of the groups.

Histograms

Frequency distributions are usually illustrated by histograms, as shown in Figure 3.3 for the haemoglobin data. Either the frequencies or the percentages may be used; the shape of the histogram will be the same.

The construction of a histogram is straightforward when the grouping intervals of the frequency distribution are all equal, as is the case in Figure 3.3. If the intervals are of different widths, it is important to take this into account when drawing the histogram, otherwise a distorted picture will be obtained. For example, suppose the two highest haemoglobin groups had been combined in compiling Table 3.2(b). The frequency for this combined group (14.0– 15.9 g/100 ml) would be six, but clearly it would be misleading to draw a rectangle of height six from 14 to 16 g/100 ml. Since this interval would be twice the width of all the others, the correct height of the line would be three, half the total frequency for this group. This is illustrated by the dotted line in Figure 3.3. The general rule for drawing a histogram when the intervals are not all the same width is to make the heights of the rectangles proportional to the frequencies divided by the widths, that is to make the areas of the histogram bars proportional to the frequencies.